高一抽象函数模型常见考法总结
高一抽象函数五大模型总结教师版

高一抽象函数五大模型总结模型一:正比例函数模型y =kx已知函数f x 对一切x ,y ∈R ,都有f x +y =f x +f y ,当x >0时,f x <01证明:f 0=0; 2证明:函数f x 为奇函数; 3证明:函数f x 在R 上为减函数.证明: 1令x =y =0⇒f 0=f 0+f 0⇒f 0=0 2令y =-x ⇒f 0=f x +f -x ,由于f 0=0⇒f -x =-f x ⇒函数f x 为奇函数3任取x 1<x 2,则f x 2=f x 1+ x 2-x 1=f x 1+f x 2-x 1由于x 2-x 1>0,所以f x 2-x 1<0,从而f x 1>f x 2即函数f x 在R 上为减函数。
证毕!模型二:一次函数模型y =kx -c已知函数f x 对一切x ,y ∈R ,都有f x +y =f x +f y +c ,且当x >0时,f x >-c1证明:f 0=-c ; 2证明:函数g x =f x +c 为奇函数; 3证明:函数f x 在R 上为增函数.证明: 1令x =y =0⇒f 0=f 0+f 0+c ⇒f 0=-c 2令y =-x ⇒f 0=f x +f -x +c⇒f -x +c =- f x +c ⇒g -x =-g x ⇒函数g x =f x +c 为奇函数3任取x 1<x 2,则f x 2=f x 1+ x 2-x 1=f x 1+f x 2-x 1+c 由于x 2-x 1>0,所以f x 2-x 1>-c ,从而f x 2>f x 1即函数f x 在R 上为增函数.证毕!模型三:指数函数模型y =a x已知定义域为R 的函数f x 对任意的实数x ,y ∈R 均有 f x +y =f x f y ,且当x <0时,f x >11证明:f 0=1; 2证明:当x >0时,有0<f x <1; 3证明:函数f x 在R 上单调递减证明: 1令x =0,y =-1⇒f -1=f 0f -1,又f -1>1则f 0=12令y =-x ⇒f 0=f x f -x ⇒f -x = 1fx 当x >0时,f -x >1,f x =f - -x = 1f-x ∈ 0,1 3任取x 1<x 2,f x 2=f x 1+ x 2-x 1=f x 1f x 2-x 1易知f x 1>0,f x 2-x 1∈ 0,1,所以f x 2<f x 1即函数f x 在R 上单调递减.证毕!模型四:对数函数模型y =log a x已知定义在 0,+∞上的函数f x 对任意的x ,y ∈ 0,+∞均有f xy =f x +f y ,且当x >1时,f x >01证明:f 1=0; 2证明:当0<x <1时,f x <0; 3证明:函数f x 在 0,+∞上为增函数.证明: 1令x =y =1⇒f 1=f 1+f 1⇒f 1=02令y = 1x ⇒f 1=f x +f 1x ⇒f 1x=-f x ⇒当0<x <1时,f 1x >0⇒f x =f1 1x =-f 1x <0 3任取0<x 1<x 2, x 2x 1>1⇒f x 2x 1>0则f x 2=f x 1⋅ x 2x 1=f x 1+fx 2x 1>f x 1即函数f x 在 0,+∞上为增函数.证毕!模型五:幂函数模型y =x α已知定义在 0,+∞上的函数f x 对任意x ,y ∈R ∈均有f xy =f x f y ,且当x >1时,f x >11证明:f 0=0; 2证明:函数f x 在 0,+∞上单调递增.证明: 1令x =0,y =1⇒f 0=f 0f 1,又f 1>1故f 0=02令x =1,y =2⇒f 2=f 1f 2,又f 2>1⇒f 1=1令y = 1x ⇒f 1=f x f 1x ⇒f 1x = 1fx ⇒当x ∈ 0,1时,f 1x>1则f x =f1 1x = 1f 1x ∈ 0,1任取0<x 1<x 2,则f x 1>0,f x 2x 1>1f x 2=f x 1⋅ x 2x 1=f x 1fx 2x 1>f x 1即函数f x 在 0,+∞上单调递增.证毕!。
抽象函数模型归纳总结(八大题型)(解析版)

抽象函数模型归纳总结目录01方法技巧与总结02题型归纳总结题型一:一次函数模型题型二:二次函数模型题型三:幂函数模型题型四:指数函数模型题型五:对数函数模型题型六:正弦函数模型题型七:余弦函数模型题型八:正切函数模型03过关测试20一次函数(1)对于正比例函数f x =kx k≠0,与其对应的抽象函数为f x±y=f x ±f y .(2)对于一次函数f x =kx+b k≠0,与其对应的抽象函数为f x±y=f x ±f y ∓b.二次函数(3)对于二次函数f x =ax2+bx+c a≠0,与其对应的抽象函数为f x+y=f x +f y +2axy-c幂函数(4)对于幂函数f x =x n,与其对应的抽象函数为f xy=f x f y .(5)对于幂函数f x =x n,其抽象函数还可以是fxy=f x f y.指数函数(6)对于指数函数f x =a x,与其对应的抽象函数为f x+y=f x f y .(7)对于指数函数f x =a x,其抽象函数还可以是f x -y =f xf y.其中(a >0,a ≠1)对数函数(8)对于对数函数f x =log a x ,与其对应的抽象函数为f xy =f x +f y .(9)对于对数函数f x =log a x ,其抽象函数还可以是fxy=f x -f y .(10)对于对数函数f x =log a x ,其抽象函数还可以是f x n=nf x .其中(a >0,a ≠1)三角函数(11)对于正弦函数f x =sin x ,与其对应的抽象函数为f x +y f x -y =f 2x -f 2y 注:此抽象函数对应于正弦平方差公式:sin 2α-sin 2β=sin α+β sin α-β(12)对于余弦函数f x =cos x ,与其对应的抽象函数为f x +f y =2fx +y 2 f x -y2注:此抽象函数对应于余弦和差化积公式:cos α+cos β=2cos α+β2cosα-β2(13)对于余弦函数f x =cos x ,其抽象函数还可以是f x f y =12f x +y +f x -y注:此抽象函数对应于余弦积化和差公式:cos αcos β=cos α+β +cos α-β2(14)对于正切函数f x =tan x ,与其对应的抽象函数为f x ±y =f x ±f y1∓f x f y注:此抽象函数对应于正切函数和差角公式:tan α±β =tan α±tan β1∓tan αtan β题型一:一次函数模型1已知f x +y =f x +f y -1且f 1 =2,则f 1 +f 2 +⋯+f n 不等于A.f 1 +2f 1 +⋯+nf 1 -n n -12B.f n n +1 2+n -1C.n 2+3n2 D.n n +1【答案】D【解析】∵f x +y =f x +f y -1,∴f x +y -1=f x -1 +f y -1 ,构造函数g x =f x -1,则g x +y =g x +g y ,且g 1 =f 1 -1=1,令a n =g n =f n -1,则a 1=f 1 -1=1,令x =n ,y =1,得g n +1 =g n +g 1 ,∴a n +1=a n +a 1=a n +1,即a n +1-a n =1,所以,数列a n 为等差数列,且首项为1,公差为1,∴a n =1+n -1 ×1=n ,∴f n -1=n ,则f n =n +1.f 1 +f 2 +⋯+f n =2+3+⋯+n +1 =n 2+n +1 2=n n +3 2=n 2+3n 2,f 1 +2f 1 +⋯+nf 1 -n n -1 2=n n +1 2f 1 -n n -1 2=n n +1 -n n -1 2=n 2+3n2,合乎题意;f n n +1 2 +n -1=n n +1 2+1+n -1=n 2+3n 2,合乎题意;故选D .2已知函数f x 的定义域为R ,且f 12≠0,若f (x +y )+f (x )f (y )=4xy ,则下列结论错误的是()A.f -12=0 B.f 12=-2C.函数f x -12是偶函数 D.函数f x +12是减函数【答案】C【解析】对于A ,令x =12、y =0,则有f 12 +f 12 ×f 0 =f 121+f 0 =0,又f 12≠0,故1+f 0 =0,即f 0 =-1,令x =12、y =-12,则有f 12-12 +f 12 f -12 =4×12×-12,即f 0 +f 12 f -12 =-1,由f 0 =-1,可得f 12 f -12 =0,又f 12 ≠0,故f -12=0,故A 正确;对于C ,令y =-12,则有f x -12 +f x f -12 =4x ×-12,则f x -12 =-2x ,故函数f x -12是奇函数,故C 错误;对于D ,有f x +1-12 =-2x +1 =-2x -2,即f x +12=-2x -2,则函数f x +12 是减函数,故D 正确;对于B ,由f x -12 =-2x ,令x =1,有f 12=-2×1=-2,故B 正确.故选:C 3(2024·河南新乡·一模)已知定义在R 上的函数f x 满足∀x ,y ∈R ,f 2xy -1 =f x ⋅f y +f y +2x -3,f 0 =-1,则不等式f x >3-2x 的解集为()A.1,+∞B.-1,+∞C.-∞,1D.-∞,-1【答案】A【解析】令x =y =0,得f (-1)=f (0)⋅f (0)+f (0)-3=-3.令y =0,得f (-1)=f (x )f (0)+f (0)+2x -3,解得f (x )=2x -1,则不等式f (x )>3-2x 转化为2x +2x -4>0,因为y =2x +2x -4是增函数,且2×1+21-4=0,所以不等式f (x )>3-2x 的解集为(1,+∞).故选:A4已知定义在R 上的单调函数f x ,其值域也是R ,并且对于任意的x ,y ∈R ,都有f xf y =xy ,则f 2022 等于()A.0B.1C.20222D.2022【答案】D【解析】由于f x 在R 上单调,且值域为R ,则必存在y 0∈R ,使得f y 0 =1,令y =y 0得,f xf y 0 =xy 0,即f x =y 0x ,于是∀x ,y ∈R ,f xf y =f xy 0y =y 0xy 0y =y 20xy =xy ,则y 0=±1,从而f x =±x ,有f 2022 =2022.故选:D题型二:二次函数模型1(2024·高三·河北保定·期末)已知函数f (x )满足:∀x ,y ∈Z ,f (x +y )=f (x )+f (y )+2xy +1成立,且f (-2)=1,则f 2n n ∈N * =()A.4n +6B.8n -1C.4n 2+2n -1D.8n 2+2n -5【答案】C【解析】令x =y =0,则f 0 =f 0 +f 0 +1,所以f 0 =-1,令x =y =-1,则f -2 =f -1 +f -1 +2+1=2f -1 +3=1,所以f -1 =-1,令x =1,y =-1,则f 0 =f 1 +f -1 -2+1=f 1 -2=-1,所以f 1 =1,令x =n ,y =1,n ∈N *,则f n +1 =f n +f 1 +2n +1=f n +2n +2,所以f n +1 -f n =2n +2,则当n ≥2时,f n -f n -1 =2n ,则f n =f n -f n -1 +f n -1 -f n -2 +⋯+f 2 -f 1 +f 1=2n +2n -2 +⋯+4+1=2n +4 n -12+1=n 2+n -1,当n =1时,上式也成立,所以f n =n 2+n -1n ∈N * ,所以f 2n =4n 2+2n -1n ∈N * .故选:C .2(2024·山东济南·三模)已知函数f x 的定义域为R ,且yf x -xf y =xy x -y ,则下列结论一定成立的是()A.f 1 =1B.f x 为偶函数C.f x 有最小值D.f x 在0,1 上单调递增【答案】C【解析】由于函数f x 的定义域为R ,且yf x -xf y =xy x -y ,令y =1,则f x -xf 1 =x x -1 ,得f x =x 2+f 1 -1 x ,x =1时,f 1 =12+f 1 -1 恒成立,无法确定f 1 =1,A 不一定成立;由于f 1 =1不一定成立,故f x =x 2+f 1 -1 x 不一定为偶函数,B 不确定;由于f x =x 2+f 1 -1 x 的对称轴为x =-12⋅f 1 -1 与0,1 的位置关系不确定,故f x 在0,1 上不一定单调递增,D 也不确定,由于f x =x 2+f 1 -1 x 表示开口向上的抛物线,故函数f x 必有最小值,C 正确,故选:C3(2024·陕西西安·模拟预测)已知函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,则下列结论正确的是()A.f (4)=12B.方程f (x )=x 有解C.f x +12 是偶函数D.f x -12是偶函数【答案】C【解析】对于A ,因为函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,取x =y =1,得f (1)+f (1)=f (2)-2+2,则f (2)=4,取x =y =2,得f (2)+f (2)=f (4)-8+2,则f (4)=14,故A 错误;对于B ,取y =1,得f (x )+f (1)=f (x +1)-2x +2,则f (x +1)-f (x )=2x ,所以f (x )-f (x -1)=2(x -1),f (x -1)-f (x -2)=2(x -2),⋯,f (2)-f (1)=2,以上各式相加得f (x )-f (1)=2(x -1)+2 ⋅(x -1)2=x 2-x ,所以f (x )=x 2-x +2,令f (x )=x 2-x +2=x ,得x 2-2x +2=0,此方程无解,故B 错误.对于CD ,由B 知f (x )=x 2-x +2,所以f x +12 =x +12 2-x +12 +2=x 2+74是偶函数,f x -12 =x -12 2-x -12 +2=x 2-2x +114不是偶函数,故C 正确,D 错误.故选:C .4(2024·河南·三模)已知函数f x 满足:f 1 ≥3,且∀x ,y ∈R ,f x +y =f x +f y +6xy ,则9i =1f i 的最小值是()A.135 B.395C.855D.990【答案】C【解析】由f x +y =f x +f y +6xy ,得f x +y -3x +y 2=f x -3x 2+f y -3y 2,令g x =f x -3x 2,得g x +y =g x +g y ,令x =n ,y =1,得g n +1 -g n =g 1 ,故g n =g n -g n -1 + g n -1 -g n -2 +⋅⋅⋅+ g 2 -g 1 +g 1 =ng 1 ,又g n =f n -3n 2,所以f n =g n +3n 2=3n 2+f 1 -3 n ,所以9i =1f i =39i =1i 2+f 1 -3 9i =1i =855+45f 1 -3 ,因为f 1 ≥3,当f 1 =3时,9i =1f i 的最小值为855.故选:C .题型三:幂函数模型1已知函数f x 的定义域为-∞,0 ∪0,+∞ ,且xf x =y +1 f y +1 ,则()A.f x ≥0B.f 1 =1C.f x 是偶函数D.f x 没有极值点【答案】D【解析】令g x =xf x ,则g y +1 =y +1 f y +1 ,所以g x =g y +1 ,且x ,y +1为定义域内任意值,故g x 为常函数.令g x =k ,则f x =kx,为奇函数且没有极值点,C 错,D 对;所以f x ≥0不恒成立,f 1 =1不一定成立,A 、B 错.故选:D2(2024·河北·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x 满足f xy =f -x y +f -yx+1xy,则()A.f x 是奇函数且在0,+∞ 上单调递减B.f x 是奇函数且在-∞,0 上单调递增C.f x 是偶函数且在0,+∞ 上单调递减D.f x 是偶函数且在-∞,0 上单调递增【答案】A【解析】令x =y =-1,则f 1 =-2f 1 +1,所以f 1 =13,令x =y =1,则f 1 =2f -1 +1,所以f -1 =-13,令y =-1,则f -x =-f -x +f 1 x -1x =-f -x +13x -1x =-f -x -23x,所以f -x =-13x,令y =1,则f x =f -x +f -1 x +1x =-13x -13x +1x =13x ,所以f x =13x,因为f -x =-13x=-f x ,且定义域关于原点对称,所以函数f x 是奇函数,由反比例函数的单调性可得函数f x =13x在0,+∞ 上单调递减.故选:A .题型四:指数函数模型1(多选题)(2024·山西晋中·三模)已知函数f x 的定义域为R ,满足f x +y =f x f y +f x +f y ,且f 0 ≠-1,f 1 >-1,则下列说法正确的是()A.f 0 =0B.f x 为非奇非偶函数C.若f 1 =1,则f 4 =15D.f x >-1对任意x ∈N *恒成立【答案】ACD【解析】我们有恒等式:f x +y +1=f x f y +f x +f y +1=f x +1 f y +1 .对于A ,由恒等式可得f 0 +1=f 0 +1 f 0 +1 ,而f 0 ≠-1,故f 0 +1≠0,所以1=f 0 +1,即f 0 =0,故A 正确;对于B ,由于f x =0满足条件且是偶函数,所以f x 有可能是偶函数,故B 错误;对于C ,由恒等式可得f x +1 +1=f x +1 f 1 +1 ,故f 4 +1=f 3 +1 f 1 +1 =f 2 +1 f 1 +12=f 1 +1 4.若f 1 =1,则f 4 =f 1 +1 4-1=24-1=15,故C 正确;对于D ,由恒等式可得f x +1 +1=f x +1 f 1 +1 .而f 1 +1>0,故f x +1 +1和f x +1同号(同为正数,或同为负数,或同为0),从而再由f 1 +1>0可知f x +1>0x ∈N * ,即f x >-1x ∈N * ,故D 正确.故选:ACD .2已知函数f x 满足,f p +q =f p ⋅f q ,f 1 =3,则f 21 +f 2 f 1 +f 22 +f 4f 3+f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10f 9 的值为()A.15B.30C.60D.75【答案】B【解析】∵f p +q =f p ⋅f q ,∴f n +1 =f n ⋅f 1 ,∵f 1 =3∴f n +1 =3f n ∴f n =3×3n -1=3n因此f 21 +f 2 f 1 +f 22 +f 4 f 3 +f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10 f 9=32+323+34+3433+36+3635+38+3837+310+31039=6+6+6+6+6=30故选:B3如果f a +b =f a f b 且f 1 =2,则f 2 f 1 +f 4 f 3 +f 6f 5=()A.125B.375C.6D.8【答案】C【解析】∵f 1 =2,f a +b =f a f b ,∴f 2 =f 1 f 1 ,f 4 =f 3 f 1 ,f 6 =f 5 f 1 ,∴f 2 f 1 =f 1 ,f 4 f 3 =f 1 ,f 6 f 5 =f 1 ,∴f 2 f 1 +f 4 f 3 +f 6 f 5 =3f 1 =6,故选:C .4已知函数f x 对一切实数a ,b 满足f a +b =f a ⋅f b ,且f 1 =2,若a n =f n2+f 2n f 2n -1n ∈N *,则数列a n 的前n 项和为()A.nB.2nC.4nD.8n【答案】C【解析】∵函数f x 对一切实数a,b满足f a+b=f a ⋅f b ,且f1 =2∴f n+1=f n ⋅f1 =2f n∴数列f n是等比数列,首项为2,公比为2∴f n =2n,n∈N*所以a n=f n2+f2nf2n-1=22n+22n22n-1=4所以数列a n的前n项和为4n.故选:C.题型五:对数函数模型1(多选题)已知函数f x 的定义域为R,f xy=y2f x +x2f y ,则( ).A.f0 =0 B.f1 =0C.f x 是偶函数D.x=0为f x 的极小值点【答案】ABC【解析】方法一:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,不妨令f(x)=0,显然符合题设条件,此时f(x)无极值,故D错误.方法二:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,当x2y2≠0时,对f(xy)=y2f(x)+x2f(y)两边同时除以x2y2,得到f(xy)x2y2=f(x)x2+f(y)y2,故可以设f(x)x2=ln x (x≠0),则f(x)=x2ln x ,x≠00,x=0,当x>0肘,f(x)=x2ln x,则f x =2x ln x+x2⋅1x=x(2ln x+1),令f x <0,得0<x<e-12;令f x >0,得x>e-12;故f(x)在0,e-1 2上单调递减,在e-12,+∞上单调递增,因为f(x)为偶函数,所以f(x)在-e-1 2,0上单调递增,在-∞,e-12上单调递减,显然,此时x =0是f (x )的极大值,故D 错误.故选:ABC .2.已知定义在0,+∞ 上的函数f x ,满足f xy +1=f x +f y ,且f 12=0,则f 211 =()A.1B.11C.12D.-1【答案】C【解析】令x =y =1,则f 1 +1=f 1 +f 1 ,解得f 1 =1,令x =2,y =12,则f 1 +1=f 2 +f 12,解得f 2 =2,令x =y =2,则f 22 +1=f 2 +f 2 ,解得f 22 =3,令x =22,y =2,则f 23 +1=f 22 +f 2 ,解得f 23 =4,⋯⋯,依次类推可得f 211 =12。
常见抽象函数题的解法

常见抽象函数题的解法作者:张春林来源:《高中生·高考指导》2013年第09期一、几种常见的抽象函数1.一次函数型抽象函数: f(x+y)= f(x)+ f(y),f(x-y)= f(x)- f(y).对应函数模型: f(x)=kx(k≠0).2.二次函数型抽象函数: f(a+x)= f(a-x).对应函数模型: f(x)=k(x-a)2+m(k≠0).3.指数函数型抽象函数: f(x+y)= f(x) f(y),f(x-y)=.对应函数模型: f(x)=ax(a>0且a≠1).4.对数函数型抽象函数:f(xy)= f(x)+ f(y),f()=f(x)- f(y).对应函数模型:f(x)=loga x(a>0且a≠1).5.余弦函数型抽象函数: f(x1)+ f(x2)=2 f()· f().对应函数模型: f(x)=cos x.6.正切函数型抽象函数: f(x+y)=.对应函数模型: f(x)=tan x(x≠+kπ,k∈Z).7.幂函数型抽象函数: f(xy)= f(x) f(y), f()=.对应函数模型: f(x)=xa(a为常数).二、常见抽象函数的题型及解法1.利用函数的概念,整体换元,求解函数的定义域、值域问题.例1 ①若函数f(1+x)的定义域是[0,1],则函数f(x-1)的定义域是 .②已知函数 f(x)的值域是[-1,1],则函数 f(x+2)的值域是 .分析第①题中的两个函数有相同的法则,括号中的1+x和x-1的地位相同,范围相同,可用换元法求解.第②题中的两个函数有相同的法则,括号中的x与x+2的地位相同,范围相同,则两个函数的值域相同.解①令函数f(1+x)中的1+x=t.由函数f(1+x)的定义域为[0,1],可得l+x=t∈[1,2].令函数f(x-1)中的x-1=m,则m与t的范围相同.因为x-1=m∈[1,2],所以x∈[2,3].故函数f(x-1)的定义域是[2,3].②函数 f(x)与函数f(x+2)的值域相同,所以函数f(x+2)的值域为[-1,1].2.利用抽象关系式,巧妙赋值,求解有关函数值问题.例2 设函数 f(x)的定义域是(-∞,+∞),满足条件:①存在x1≠x2,使得 f(x1)≠ f (x2);②对任何x和y,f(x+y)= f(x)f(y)成立.(1)求 f(0);(2)对任意实数x,判断f(x)值的正负.分析只要将f(x+y)= f(x) f(y)中的y赋值为0,就可以得到f(0)和 f(x)的关系式.解(1)将y=0代入f(x+y)= f(x) f(y),得 f(x)=f(x)f(0),即 f(x)=0或f (0)=1.若 f(x)=0,则对任意x1≠x2,都有 f(x1)= f(x2),这与题设矛盾.所以f(0)=1.(2)将y=x代入f(x+y)= f(x) f(y).因为 f(x)≠0,所以f(2x)= f 2(x)>0,即f(x)>0.所以对任意实数x,f(x)>0.注:如果知道f(x+y)= f(x) f(y)为指数函数型抽象函数,就可以根据对应函数模型f(x)=ax(a>0且a≠1)直接得到相应结论.3.利用抽象关系式,灵活构造,判断函数的单调性、奇偶性等性质.例3 已知函数 f(x)对任意实数x,y,均有 f(xy)= f(x) f(y),且 f(-1)=1.当0≤x(1)判断 f(x)的奇偶性.(2)判断f(x)在[0,+∞)上的单调性,并给出证明.分析根据函数的奇偶性的判定式和单调性的定义构造关系式.解(1)令y =-1,将其代入 f(xy)= f(x) f(y)中,得f(-x)= f(x) f(-1)= f (x).所以, f(x)为偶函数.(2)设x1,x2是[0,+∞)上的任意两个实数,且0≤x1所以,函数 f(x)在[0,+∞)上为增函数.例4 已知函数 f(x)对任意实数x,y,均有f(x+y)= f(x)+ f(y),且当x>0时,f (x)>0,f(-1)=-2,求f(x)在[-2,1]上的值域.分析由题意可知,要求f(x)在[-2,1]上的值域,先要判断函数f(x)的单调性和奇偶性.解设对任意的实数x1,x2,有x10.因为当x>0时,f(x)>0,所以f(x2-x1)>0.因为f(x2)= f [(x2-x1)+x1]= f(x2-x1)+ f(x1),所以f(x2)- f(x1)= f(x2-x1)>0,即 f(x1)< f(x2).可知f(x)为增函数.令y=-x,将其代入f(x+y)= f(x)+ f (y),得f(0)= f(x)+ f(-x),再令x=y=0,则f(0)= 2f(0),即f(0)= 0.所以,f (x)为奇函数,f(1)=- f(-1)=2.又f(-2)=2 f(-1)= -4,所以f(x)在[-2,1]上的值域为[-4,2].例5 若对任意实数x和不为0的常数a都有f(x+a)=成立,请问: f(x)是不是周期函数?为什么?分析根据周期函数的定义来判断.解由已知得f(x+2a)=== -,则f(x+4a)=-= f(x).所以, f(x)为周期函数,周期为4a.4.利用模型函数,类比联想,解决函数的相关问题.例6 如果 f(x+y)= f(x) f(y),且 f(1)=2,那么+++…+的值为 .分析由 f(x+y)= f(x) f(y),类比联想到指数函数 f(x)=ax(a>0且a≠1)的性质.解根据题设条件,令 f(x)=2x,则+++…+=2×1 005=2 010.例7 已知函数 f(x)的定义域为(0,+∞),且函数 f(x)为增函数, f(4)=1, f (xy)= f(x) + f(y).(1)求 f(1)和 f(16).(2)若 f(x) + f(x-3)≤1,求x的范围.分析由 f(xy)= f(x) + f(y)联想到对数函数f(x)= loga x(a>0且a≠1).解(1)根据题设条件,令f(x)= log4 x,则f(1)= log41=0, f(16)= log416=2.(2)由已知得f(x) + f(x-3)= f [x(x-3)]≤1= f(4).因为f(x)是增函数,所以x(x-3)≤4,x-3>0,x>0,即3。
7抽象函数总结

抽象函数知识精要:抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。
常见的特殊模型:特殊模型抽象函数正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y)幂函数 f(x)=x nf(xy)=f(x)f(y) [或)y (f )x (f )yx (f =]指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [)y (f )x (f )y x (f =-或对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )yx (f -=或正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x)正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+=+ 余切函数 f(x)=cotx )y (f )x (f )y (f )x (f 1)y x (f +-=+由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
抽象函数模型化总结大全(珍藏版)

∴ 函数 f(x) 在 (0, + ∞) 上单调递减,
又因为 f(x) 是奇函数,
∴ f(x) 在 ( -∞, + ∞) 上单调递减.
不等式
1 2
< f(x) < 2 可转化为,f( -
3 2
) < f(x) <
f( -6),
由上可知函数 f(x) 在 (0, + ∞) 上单调递减,
∴-6
<
x
<-
3 2
[m,n] 上有
()
·1·
A. 最小值 f(m) B. 最大值 f(n)
C. 最小值 f(n)
D.
最大值
f
(பைடு நூலகம்
m
+ 2
n
)
【分析】利用赋值法证明 f(x) 的单调性,即可判断函数 f(x) 在 [m,n] 的最值情况.
【解答】函数 f(x) 满足 f(x + y) = f(x) + f(y),定义为 R.
得:f(x) = f(x - y + y) = f(x - y) + f(y)
即 f(x) - f(y) > 0.
∴ f(x) 是 R 上的减函数.
则函数 f(x) 在 [m,n] 上有最大值为 f(m),最小值为 f(n).
故选 :C .
【点评】本题考查了抽象函数的奇偶性、单调性求最值的方法
2. 已知定义在 R 上的函数 f (x) 满足:①对于任意的 x,y ∈ R 都有 f (x) + f (y) = f (x + y) 成
f
(xy)
=
f
(x)
+
抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型:一. 求某些特殊值这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。
其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。
例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。
解:由f x f x ()()220-+-=,以t x =-2代入,有f t f t ()()-=,∴f x ()为奇函数且有f ()00=又由f x f x ()[()]+=--44=-=-∴+=-+=f x f x f x f x f x ()()()()()84故f x ()是周期为8的周期函数,∴==f f ()()200000例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0时,f x f()()>-=-012,,求f x()在[]-21,上的值域。
解:设x x12<且x x R12,∈,则x x210->,由条件当x>0时,f x()>0∴->f x x()21又f x f x x x()[()]2211=-+=-+>f x x f x f x()()()2111∴f x()为增函数,令y x=-,则f f x f x()()()0=+-又令x y==0得f()00=∴-=-f x f x()(),故f x()为奇函数,∴=-=f f()()112,f f()()-=-=-2214∴-f x()[]在,21上的值域为[]-42,二. 求参数范围这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。
高三抽象函数总结

高三抽象函数总结抽象函数是高中数学的一个难点,也是近几年来高考的热点。
考查方法往往基于一般函数,综合考查函数的各种性质。
本节给出抽象函数中的函数性质的处理策略,供内同学们参考。
抽象函数是指只给出函数的某些性质,而未给出函数具体的解析式及图象的函数。
由于抽象函数概念抽象,性质隐而不显,技巧性强,因此学生在做有关抽象函数的题目时,往往感觉无处下手。
抽象函数常见题型讲解:一、定义域问题:解决抽象函数的定义域问题——明确定义、等价转换。
例一.若函数)1(x f y的定义域为)3,2[,求函数)21(xf y的定义域。
提示:函数的定义域是指自变量的取值范围,求抽象函数的定义域的关键是括号内式子的地位等同(即同一对应法则后括号内的式子具有相同的取值范围),如本题中的1x 与21x的范围等同。
变式训练1:已知函数)(2x f 的定义域是[1,2],求)(x f 的定义域。
变式训练2:已知函数)(x f 的定义域是]2,1[,求函数)]3([log 21x f 的定义域。
二、求值问题例二、已知定义域为的函数f(x),同时满足下列条件:①1)2(f ,51)6(f ;②)()()(y f x f y x f ,求f(3),f(9)的值。
注:通过观察已知与未知的联系,巧妙地赋值,赋值法是解此类问题的常用技巧。
变式训练3:已知R x f 是定义在)(上的函数,且R x f 对任意的,1)1(都有下列两式成立:)6(,1)()(.1)()1(;5)()5(g x x f x g x f x f x f x f 则若的值为变式训练4:设函数))((R x x f 为奇函数,),2()()2(,21)1(f x f x f f 则)5(f _____变式训练5:已知)(),(x g x f 都是定义在R 上的函数,对任意y x,满足)()()()()(y f x g y g x f y x f ,且0)1()2(f f ,则)1()1(g g =_________三、值域问题:例三、设函数f(x)定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f 总成立,且存在21x x ,使得)()(21x f x f ,求函数)(x f 的值域。
高考数学 抽象函数赋值与构造-含解析

专题1-5 抽象函数赋值与构造一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过的变换判定单调性;3、令式子中出现及判定抽象函数的奇偶性;4、换为确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试. ①若给出的是“和型”抽象函数,判断符号时要变形为:或;()()12−f x f x ()f x ()−f x x +x T () =+y x f ()()()()111212)(x f x x x f x f x f −+−=−()()()()221212)(x x x f x f x f x f +−−=−②若给出的是“积型”抽象函数,判断符号时要变形为:或. 三、常见的抽象函数模型1、可看做的抽象表达式;2、可看做的抽象表达式(且);3、可看做的抽象表达式(且);4、可看做的抽象表达式.2022新高考2卷T8 1.已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++−==,则221()k f k ==∑( )A .3−B .2−C .0D .12023新高考1卷T112.(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点2023·山东青岛·统考三模() =xy f ()()()112112x f x x x f x f x f −⎪⎪⎭⎫ ⎝⎛⋅=−()()()⎪⎪⎭⎫⎝⎛⋅−=−212212x x x f x f x f x f ()()()+=+f x y f x f y ()=f x kx ()()()+=f x y f x f y ()=xf x a 0>a 1≠a ()()()=+f xy f x f y ()log =a f x x 0>a 1≠a ()()()=f xy f x f y ()=af x x 重点题型·归类精讲1.设()f x 为定义在整数集上的函数,()11f =,()20f =,()10f −<,对任意的整数,x y 均有()()()()()11f x y f x f y f x f y +=−+−.则()55f =______.2023·山东滨州·三模2.(多选)已知连续函数()f x 对任意实数x 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,(1)2f =-,则以下说法中正确的是( ) A .f (0)=0B .f (x )是R 上的奇函数C .f (x )在[-3,3]上的最大值是6D .不等式()232()(3)4f x f x f x −<+的解集为213xx ⎧⎫<<⎨⎬⎩⎭安徽省皖江名校联盟2024届高三上学期10月第二次联考3.已知函数不是常数函数,且满足以下条件:①,其中;②,则( )A .0B .1C .2D .4.(多选)已知定义在R 上的函数()f x 满足()()()()()()()()2,02,01f xy f x f y f x f y f f f =−−+<≠,且()0f x >,则( ) A .()01f =B .()12f −=C .()()2f x f x −=D .()()f x f x −=5.已知函数及其导函数的定义域均为,对任意的,恒有,则下列说法正确的个数是( )①;②必为奇函数;③;④若,则.A .1B .2C .3D .42023·浙江嘉兴·统考模拟6.已知函数的定义域为,且,,则的值是( )A .9B .10C .11D .12(),y f x x =∈R ()()()()f a b f a b f a f b ++−=,a b ∈R ()10f =()2026f −=2−()f x ()f x 'R ,R x y ∈()()()()2f x y f x y f x f y ++−=()00f =()f x '()()00f x f +≥1(1)2f =202311()2n f n ==∑()f x R ()()()()31,00,f x x f x x ⎛⎫=∈−∞+∞ ⎪⎝⎭()()()2f x f y xy f x y ++=+()3f2023届江苏连云港校考7.已知函数,任意,满足,且,则的值为( )A .B .0C .2D .48.已知,都是定义在上的函数,对任意x ,y 满足,且,则下列说法正确的是( )A .B .函数的图象关于点对称C .D .若,则2023绍兴·高二期末9.已知函数的定义域为R ,且,为奇函数,,则( ) A . B . C .0 D .10.(多选)已知函数()f x 的定义域为R ,()()()f x y f x f y +=+,则( )A .()00f =B .()f x 是奇函数 C .0x =为()f x 的极小值点D .若()11f =,则()20232023f =11.(多选)设()f x 是定义在R 上的函数,对,x y ∀∈R ,有()()()()22f x y f x y f x f y +−−=++,且()00f ≠,则( )A .()()0f x f x −−=B .()()40f x f x +−=C .()()()()02420242f f f f ++++=−()f x x y R ∈,()()()()22f x y f x y f x f y +−=−()()1220f f ==,()()()1290f f f +++2−()f x ()g x R ()()()()()f x y f x g y g x f y −=−()()210f f −=≠()01f =()21g x +()1,0()()110g g +−=()11f =()202311n f n ==∑()f x ()()()28f x f x f ++=()21f x +1122f ⎛⎫= ⎪⎝⎭22112k kf k =⎛⎫−= ⎪⎝⎭∑11−12−212。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆邓丁瑞数学 例 5:(幂函数模型: y x ) 已知定义在 R 上的函数 f x 对任意 x, y R 均有 f xy f x f y ,且 当 x 1时, f x 1. (1) 证明: f 0 0 ; (2) 证明:函数 f x 在 R 上为奇函数; (3) 证明:函数 f x 在 R 上单调递增.
重庆邓丁瑞数学 例 3:(指数函数模型: y ax ) 已 知 定 义 域 为 R 的 函 数 f x 对 任 意 的 实 数 x, y R 均 有 f x y f x f y,且当 x 0 时, f x 1. (1) 证明: f 0 1; (2) 证明:当 x 0 时, 0 f x 1; (3) 证明:函数 f x 在 R 上单调递减.
重庆邓丁瑞数学 例 4:(对数函数模型: y loga x ) 已 知 定 义 在 0, 上 的 函 数 f x 对 任 意 的 x, y 0, 均 有 f xy f x f y,且当 x 1时, f x 0 . (1) 证明: f 1 0 ; (2) 证明:当 0 x 1时, f x 0 ; (3) 证明:函数 f x 在 0, 上为增函数.
重庆邓丁瑞数学
高一抽象函数模型常见考法总结
例 1:(正,反比例函数模型: y kx ) 已知函数 f x 对一切 x, y R ,都有 f x y f x f y,当 x 0 时, 有 f x 0. (1) 证明: f 0 0 ; (2) 证明:函数 f x 为奇函数; (3) 证明:函数 f x 在 R 上为减函数.
重庆邓丁瑞数学 例 2:(一次函数模型: y kx c ) 已知函数 f x 对一切 x, y R ,都有 f x y f x f y c ,且当 x 0 时, f x c . (1) 证明: f 0 c ; (2) 证明:函数 gx f x c 为奇函数; (3) 证明:函数 f x 在 R 上为增函数.