主跨100米预应力砼连续梁桥的施工控制
长联大跨连续梁桥施工重点控制

长联大跨连续梁桥施工重点控制摘要:结合龙岩特大桥实际施工情况,介绍了长联大跨连续梁桥的临时固结支座、合拢钢支撑的设计,以及支座纵向预偏量、立模标高的计算原理,并采用MIDAS软件建模对线形控制作辅助分析。
关键词:长联大跨连续梁;施工控制1.前言连续梁桥一般采用悬臂挂篮分段施工,结构从悬臂静定结构到合拢转换成超静定结构,再到桥面铺装,经历的施工阶段多、体系转换次数多,施工情况复杂。
施工控制的目的是为了保证连续梁施工安全、顺利合拢、成桥状态良好(线形、内力)、后期使用安全可靠。
为达到目标,本文以龙岩特大桥为例,对长联大跨连续梁临时固结、支座纵向预偏量设置、合拢段施工、线形控制等几个关键方面的施工控制加以论述。
2.龙岩特大桥概况龙岩特大桥是新建龙(岩)厦(门)铁路上的一座特大连续梁桥,是龙厦铁路的重点控制工程之一。
桥全长1748.1m,其中17#~23#墩为一联(48+4×80+48)m长联大跨连续梁,设计时速200KM/h。
主梁为全预应力结构,20#墩顶设固定支座,其余墩顶设活动支座。
主梁采用挂篮悬浇,合拢顺序为:先边跨、后中跨、最后次中跨。
3.龙岩特大桥施工重点控制内容图1 临时固结支座3.1.2临时固结支座连续梁悬浇期间,在主墩墩顶和0#块间设临时固结,当处于最大悬臂施工状态时,临时固结承受着很大的竖向压力,同时还可能承受着由于两端荷载不匹配形成的不平衡收稿日期:2011-10-9弯矩。
本桥每墩设4个临时支座,截面尺寸为0.7m*1.5m,现浇C50混凝土,中部设一层5cm厚硫磺砂浆,墩顶及梁底混凝土内设钢筋网片加强,每个支座内设4根φ32精轧螺纹钢筋将梁体锚固,张拉力500 kN。
临时支座按正常和非正常情况考虑荷载[1]。
正常情况包括:①梁体不均匀,T构一边恒载增大5%,另一边恒载减少5%;②两端悬浇砼不同步,不平衡重取节段箱梁底板重;③施工机具偏载,一端100kN集中荷载,另一端空载;④风载不均匀,一边承受100%的风载,另一边空载;⑤悬浇块件动力系数 1.2。
连续梁施工监控方案-全文可读

前期结构计算分析 预告变位和立模标高
施工 测量 误差分析 修改计算参数 结构计算
主梁标高、悬臂端挠 度、有效预应力、温 度、弹性模量、收缩 徐变系数
主梁标高误差 预应力张拉误 差 弹性模量误差 温度影响 徐变影响 计算图式误差
施工控制流程图
2 自适应施工控制系统
3 参数识别
在本桥的施工控制中按照自适应控制思路,采用“最小 二乘法”进行参数识别和误差分析,利用实测数据与理论值 的对比,根据各参数对位移的影响矩阵,可以得到该参数的 实际值。
影响结构线形及内力的基本参数由很多个,需测定的
参数主要有:
(1) 混凝土弹性模量;(2) 预应力钢绞线弹性模量 ; (3) 恒载;(4) 混凝土收缩、徐变系数,按照规范采用 ; (5) 材料热胀系数;(6) 施工临时荷载;(7) 预应力 孔道摩阻系数;(8) 实际预应力的施加系数 。
6 线形监测
1. 误差控制标准
本桥施工控制的最终目标是:使成桥后的线形与设计成 桥线形的所有各点的误差均满足《客运专线桥涵工程施工 质量验收暂行标准》规定,成桥线形与设计线形误差在+ 1.5cm和-0.5cm之间,合拢误差在1.5cm以内。根据这一目 标,在每一施工步骤中制订了如下的误差控制水平:
挠度观测资料是控制成桥线形最主要的依据,线形监测 断面设在每一阶段的端部。
6 线形监测
6.3 观测时间与项目
为尽量减少温度的影响,挠度的观测安排在早晨太阳出 来之前进行,每个施工阶段的变形测试时间根据施工阶段 的进度来定。在整个施工过程中主要观测内容包括:
1 每阶段混凝土浇筑前的高程测量;
2 每阶段混凝土浇筑后、预应力张拉前的高程测量;
7.1 梁体 位移误差 分析
7 误差分析与识别
大跨度预应力混凝土连续梁桥的施工控制

图 1 大桥概图( 位 : 单 m)
大 桥设计 之 初按 常 规 的悬 臂 浇 筑施 工工 法 考 虑 ,
由于 1 1 ~1 在 支 架 上 施 工 的 立 模 高 程 必 须 先 于 7块 1 ( 际为 8 块 ) 工 前 予 以确 定 , 就 造 成 一 旦 0块 实 施 这 出现 1 0 块施 工完 毕后 1 1 高 程 差异 过 大 的 问 O 与 1块
内力 和变 位均 处 于不 断 的 变化 中 , 过设 置适 当 的预 通 拱度 值 , 结 构成 桥线 形 满 足 设 计 要 求 是施 工监 控 的 使主要 目的 , 当然保 证结 构 顺 利 合 龙 和 施 工 过程 安全 也 是监 控工 作 的重要 指标 。施 工工 序 的调 整均 会 引起结 构 内力 和线形 的变 化 。特别 是大 桥 采用悬 臂施 工 和支 架 施 工相 结 合 的施 工 方 式 在 国 内桥 梁 施 工 中 也 非 常
( 津 海 滨 大 道建 设 发 展 有 限 公 司 , 津 天 天 3 05 ) 0 4 7
摘 要 : 大跨 度预 应 力 混凝 土连 续梁桥 跨度 组合 为 ( 0-10-9 ) I原 计 划采 用常 规 的 悬臂 浇 筑 方 式 某 9 4 6 4 0 I, - - T 施 工。 受工期 的制 约 , 首先采 用加 大节段 长度 的 办法 以减 少悬臂施 工 节段数 目, 叉采 用 悬臂 施 工结合 后
大 跨 度 预 应 力 混 凝 土连 续 梁 桥 的 施 工 控 制
2 5
了设计 目标 。文 中对 这一 过程 进行 了简 要 的介绍 。
采 用 桥 梁有 限元 专 用程 序一 桥 梁博 士 V . 3 1进 行
仿 真计 算 与分 析 , 桥共 建立 主 梁单元 10个 , 时墩 全 0 临
对大跨连续梁桥施工遇到问题及其解决措施

对大跨连续梁桥施工遇到问题及其解决措施摘要:本文阐述了大跨连续梁桥悬臂浇筑施工质量监控的内容及方法,为同类桥梁的施工质量管理与监控提供一些参考。
关键词:连续梁桥悬臂法施工监控解决措施近年来,在大跨度连续梁桥施工中,一般采用自架设的悬臂浇筑施工方法,整个施工过程是一个结构逐渐形成,线形、应力不断变化的过程。
虽然可以采用各种分析方法计算出各施工阶段的预抛高、应力等,但在实际施工过程中,由于施工条件的变化、混凝土收缩徐变、制作误差、施工临时荷载、挂篮定位及变形、预应力束张拉、量测误差和环境干扰等因素必将使结构实际状态偏离设计状态。
如不及时有效地对系统加以控制和调整,随着主梁悬臂施工长度的增加,线形和内力可能会显著偏离设计目标。
桥梁施工监控可以有效的避免和消除桥梁实际状态与设计状态之间误差,保证结构安全,对桥梁的施工质量和运营状态起着重要作用。
一、工程概况某大桥主桥采用预应力混凝土连续箱梁,桥梁位于直线上,中跨跨中斜交角度为24度。
上部构造均为变截面单箱双室,垂直腹板。
单箱顶宽19.3m,底宽12.3m,翼缘板长3.5m,支点处梁高5m,跨中梁高2.5m,梁底缘按1.8次抛物线变化。
腹板变厚度80cm(支点)~40cm(跨中),底板变厚度75cm(支点)~25cm(跨中),顶板箱室内厚度25cm,悬臂端厚20cm,根部厚60cm。
设支点横隔梁,主墩顶处横隔梁厚度为200cm,梁端横隔梁厚度为150cm。
二、施工质量监控的主要内容施工监控主要有三方面的作用:①桥梁在建筑过程中,其变形控制在设计变形范围内,桥梁建成后,桥面标高及桥梁几何线形达到设计形状。
②使桥梁在建筑过程中和建成后,各控制截面内力达到合理的状态。
③在施工过程中保证桥梁的安全。
根据以上要求,本桥拟定监控主要内容包括以下几方面:施工挂篮静力荷载试验;混凝土弹模、容重、强度的测定;桥跨结构变形监测;结构截面的应力监测;截面温度监测等。
1、施工挂篮静力荷载试验挂篮荷载试验由监测单位配合施工单位进行,其目的是通过加载试验,实测挂篮的变形值,验证设计参数和承载能力,以指导施工,保证安全,为悬臂浇注施工高程控制提供参数,同时消除挂篮的塑性变形,改善挂篮的工作状况。
大跨度预应力混凝土连续梁桥施工控制的分析

面, 其 中主跨 支 点 与跨 中梁 高分 别 为9 . 5 m、 3 . 5 m, 此 外 梁高 变 化成 1 . 6 次 抛物 线 ; 箱 梁翼 缘单 侧宽 度为 4 m, 箱 梁底 板与 箱顶 宽度 分别为
工 装黎
大跨度预应力混凝土连续梁桥施工控制的分析
时飞 中铁 二十局集团二公司 1 2 2 6 0 9
【 擒耍l随着我国道路 网的逐步完善及各种高等级道路 的建设, 道路 桥梁结 构成桥线 形与工程设 计要求一 致。 下文主要对基于 自 使用控制 法 桥 梁的设计与施工技 术必 然承受更大的压力。 大跨度预应 力混凝土 连续梁 的桥 梁工程施 工控制进行讨 论 。
1 2 . 5 m、 2 0 . 5 m, 此 外除 中墩支 点位置 厚7 0 c m以外, 顶板厚度皆为3 5 m; 除 边墩 支点与中墩支 点附近 成8 0 c m线性 变化以 外, 箱梁 腹板厚 度皆取 5 0 c m。 此大 跨度连续 梁的变截面 预应力混 凝土连 续箱梁 为三向预应 力 体 系。
桥 是一种施工 难度较大、 施 工要求极 高的新型桥 梁, 其设计与施工技 术是 目 前桥梁工程界亟待攻 克的技 术难题 本文结合工程实例, 分析大跨度 预 应 力混 凝 土 连 续 梁桥 的施 工控 制 。 【 关键词 】大 跨度预应力混凝土连续梁桥 ; 施工控制; 自 适应控制法
针对 大跨 度预应 力混 凝土 连续 梁施 工的仿真计 算与分 析, 本 文引 入桥 梁有 限元专用程 序, 即桥 梁博士V3 . 1 , 其 中该桥 梁共设 1 0 0 个 主梁 单元 , 3 2 个 临时 墩单元 , 8 个挂 篮单元。 结合工程 的具体施 工工序 ( 见表
预应力连续梁施工控制

预应力连续梁施工控制摘要:预应力连续梁桥梁建设中的施工控制包括应力控制和线形控制两个内容,旨在保证桥梁建设质量合格和施工安全。
本文以石岐河特大桥为例,详细论述该桥建设过程中的预应力连续梁施工控制要点,并简述施工控制效果。
关键词:预应力连续梁;施工控制;监测;石岐河特随着桥梁施工技术、施工材料的发展,尤其是悬臂施工方法的出现,有效推动了大跨径桥梁的发展。
预应力连续梁因技术成熟、施工简单、适应性强、结构性能好、变形小等优点而被广泛应用于大跨径桥梁建设中。
而在进行预应力连续梁施工中,必须做好施工控制,保证施工安全和质量。
1 预应力连续梁施工控制概述桥梁是交通的咽喉,在公路、铁路以及市政交通中发挥重要作用,而预应力连续梁桥则因其显著的优点而被广泛应用于大跨径桥梁中。
预应力连续梁的不同施工阶段的内力、变形情况不同,非常复杂,难以控制,为保证最终建设出来的桥梁与当初设计的一致性,必须加强施工各阶段的控制,加强结构参数、材料性能、施工环境等的监测,综合考虑各项因素对桥梁结构内力、变形的影响,进行系统的施工仿真模拟分析,配合实时监测系统,得出实测数据,调整误差,建设出高质量的预应力连续梁桥。
为保证安全施工,必须在施工中加强线形和受力控制。
实践经验证明:连续梁悬臂施工中,监测的实测数据与理论计算数据存在较大的差异,很多都会超出误差允许范围,必须加强施工监测,保证施工安全。
在高速公路、铁路迅速发展的今天,桥梁的设计使用年限有所增加,为保证施工安全、桥梁耐久性,行业标准中明确提出在施工各阶段加强施工控制,将某些监测点作为永久监测点,进行终身监测,并对监测数据进行科学合理研究,以此作为桥梁建设、维护、管理的主要数据资料,提高桥梁的安全性、耐久性和可靠性。
2 石岐河特大桥的预应力连续梁施工控制要点2.1 工程概况石岐河特大桥是广珠客运专线高速铁路ZH-3标段重点桥梁建设项目,全桥长4582.52m。
石岐河特大桥主桥上部结构采用跨径为60+4×110+60m的六跨预应力混凝土变截面箱型连续梁,桥面宽11.6m,设计为双线通车,最大通车速度为220km/h。
鲁泰特大桥100m连续梁边跨现浇段及合拢段施工

鲁泰特大桥100m连续梁边跨现浇段及合拢段施工摘要:随着我国公路、铁路建设的不断发展,桥梁建设也迅速发展起来,越来越多的桥梁施工方法应用到了施工当中,现浇悬臂施工预应力混凝土连续梁法便是其中一种,并得到了广泛的采用,而连续梁的合拢则为此法中关键工序之一,本文以工程实例并结合部分检算,讲述了边跨现浇及合拢的施工技术。
关键词:悬浇挂蓝边跨现浇段合拢0 引言连续梁悬臂现浇的施工方法能很好的应对跨度大、地势险峻、作业面受限等困难,而此作业方法中我们需要着重控制好合拢段的施工,下面结合我局施工的鲁泰特大桥的泰东河段来讲述边跨现浇及边跨合拢方法。
1 连续梁简况鲁泰特大桥泰东河段连续梁为(55+100+55)m双线预应力砼连续梁,跨越航道,施工工艺为挂蓝悬臂对称浇注。
全桥悬浇段共14×2=28对;普通块段及合拢段采用挂篮施工,0#及边跨采用支架现浇施工;合拢段3个,现浇段3个。
2 施工方法2.1 a15块(边跨)施工方案a15块长度为4.7m,节段梁高4.69m。
底板厚度由80cm过渡至120cm,腹板厚度由65cm过渡至105cm,顶板厚度由45cm过渡至85cm。
梁段砼体积为92.56m3,梁段重量为240.7t。
端支点处设置横隔板,厚度1.4m,横隔板设有人孔洞。
2.1.1 地基处理支架利用副墩承台和副墩墩顶做基础,墩顶范围以外支架直接搭设在承台上、搭设前清除承台上部土体,并对周围作业场地进行硬化,同时同步做好相应的排水。
2.1.2 外模及支架①副墩上连续梁侧顶帽边缘到边跨合拢段2.7m范围。
为了提高工效保证安全,结合分部实际,支架直接支撑在副墩承台上,下部采用贝雷钢架、上部采用碗扣脚手架、中间采用i25b工字钢过渡,细微高度通过顶部顶托调节。
贝雷钢架设六层,上面第一层横桥向,靠近主墩侧设三排单层贝雷片,靠经副墩侧设双排单层贝雷片,其余从下到上奇数层順桥向布置五组双排单层贝雷片、长度3m,偶数层横桥向布置三组双排单层贝雷片、长度12m,贝雷顶层上铺设i25b 工字钢,工字钢上焊钢筋头,碗扣脚手钢管插在焊好的钢筋上、上口通过顶托与模板系统连接,碗扣脚手钢管φ48×3.5,底、腹板下立杆间距60cm×30cm、翼缘板下立杆间距60cm×60cm,横杆步距底腹板下60cm、翼缘板下120cm。
大跨径预应力砼连续梁桥施工控制技术探讨

到 了广 泛 的 应 用 ,为 了保证 桥 梁 施 工 质量 和 桥 梁 施 工 安 全 , 梁 施 工 控 制 必 响桥 梁 结 构 状 态 的 各 种 因素 ,对 桥 梁 每 一 个 施工 阶段 形成 前 后 的状 , 桥 不可少。
构安全可靠性 已成 为当今社会普遍 关注 的问题。 为保证桥梁结构运 式 应 变 计 ( 用铁 丝绑 扎在 主 梁 的纵 向钢 筋 的上 ) 行 应 力测 试 和 施 工 进 营的安全性、 可靠 性、 耐久性 、 行车舒 适性等 , 乃至建 设精品工程 , 实 控制。测量上采取加密测量次数 、 变量分段累计 的方法。 计算总应力 施桥梁 的施工控制 , 是桥梁 建设 不可缺 少的重 要内容 。 要在连续梁桥 时 ,先算 出每一工况荷载变化前后的阶段应 力,然后 累计算 出总应 施工的过程 中进行控制 , 并预 留长期 观测点 , 将会给桥梁创造长期安 力 ,分 析 后 可 知 施 工 各 阶 段 箱 梁控 制 截 面 混凝 土 应 力均 在 设 计 限值 全 监 测 的条 件 , 而 给桥 梁 营 运 阶段 的养 护 工 作 提供 科 学 的 、 靠 的 要 求 范 围 内。 从 可 数据 , 为桥 梁安全使用提供 可靠保证 。 322 变 形 控 制 箱 梁 挠 度 变 形 关 系 到 悬 臂 浇 筑 箱 梁 能 否 顺 合 .- 2 大 跨 径 预 应 力 砼 连 续 梁 桥 施 工 控 制 的 内容 、 法 和控 制 流 程 拢 及 合 拢 后 箱 梁 内的 重 分 布 内 力 的 大 小 。在 施 工 过 程 中主 要 对 主 梁 方
大 跨径 预 应 力砼 连 续 梁 桥 施 工控 制 技 术 探 讨
刘 国庆 周 安 平 (. 1江苏燕宁 公路工程技术有限公司 2江苏省交建设 的飞速发展 , 大跨径预应 力混凝土连 续梁桥得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主跨100米预应力砼连续梁桥的施工控制100米预应力砼连续梁桥的施工控制摘要:本文叙述了主跨100米预应力砼连续梁桥的施工控制过程。
关键词:预应力砼,梁桥施工,控制一、工程概述颍河特大桥属阜阳至合肥高速公路上一座大型桥梁,位于颍上县颍河闸上游2km处,全桥长1338.44m。
本桥所跨河流为颍河,为满足航道规划及跨堤要求,主跨采用100m变截面预应力混凝土箱梁,跨堤孔采用50m变截面连续箱梁。
主桥上部为(60+100+60)m三跨PC变截面连续箱梁,位于半径R=7810.822m的平曲线上。
PC箱梁由单箱单室箱形截面组成,箱梁根部梁高5.5m,跨中梁高2.2m;箱梁顶板宽13.30m,底板宽7.0m,翼缘板悬臂长为3.15m,箱梁梁高按二次抛线线型变化。
箱梁横桥向顶板设2%的横坡,主桥箱梁采用纵、横两向预应力体系。
主桥连续箱梁双幅分别独立采用挂篮悬臂浇筑法施工,各单T箱梁除0号块外分为16对梁段,对称平衡悬臂逐段浇筑施工。
技术标准设计汽车荷载:公路一I级;设计车速:120km/h;地震基本烈度:地震基本烈度为VI 度,按VII设防;设计洪水频率:1/300;通航标准:桥位处颍河段规划为V-(3)级航道。
二、施工控制的内容和目的桥梁施工控制的目的是确保施工中结构的安全和确保结构形成后的形状和内力状态符合设计要求。
对于悬臂施工的预应力砼连续梁桥结构来说,施工控制就是根据施工监测所得的结构参数真实值进行施工阶段的仿真分析,确定出每个悬臂浇筑阶段的立模标高,并在施工过程中根据施工监测的成果对误差进行分析、预测和对下一节段的立模标高进行调整,以此来保证成桥后桥面线型、合拢段两悬臂端标高的相对偏差不大于规定值,以及结构内力状态符合设计要求。
三、施工控制的分析计算大跨径预应力混凝土连续梁桥的施工采用分阶段逐步完成的悬臂施工方法时,结构的最终形成必须经历一系列的施工过程,对施工过程中每个阶段进行详细的变形计算和受力分析,是桥梁施工控制最基本的内容之一。
为了达到施工控制的目的,我们必须首先通过计算来确定桥梁结构施工过程中每个阶段的受力和变形的理想状态,以此为依据来控制施工过程中每个阶段的结构行为,使其最终成桥的线型和受力状态满足受力要求。
1、分析计算方法及计算模型根据设计图的内容,对全桥总体结构建立能反映施工荷载的有限元模型,对该桥进行了正装分析,得到各阶段主梁变形状态。
计算模型中根据悬臂施工梁段的划分、支点、跨中、截面变化点等控制截面将全桥划分为68个梁单元,69个结点。
2、分析计算的结构设计参数大多数情况下,采用规范设计参数计算的结构内力和位移均比实测值大,这对设计是偏于安全的,但对于结构施工控制来说是不容忽视的偏差,因为它将直接影响到成桥后结构线型及内力是否符合设计要求。
此次分析计算的设计参数取用原则是:结构设计参数的取值尽量和实际相吻合;对于主要的可以测定的参数,则用试验数值;难以测定的则依照设计规范,根据以往的工程经验进行修正。
项目设计参数主梁采用C50号砼,混凝土容重2.49吨/立方米,混凝土弹性模量为3.55104Mpa,线膨胀系数=110-5,混凝土材料的收缩徐变特性全部按照规范规定取值。
计算考虑外界为野外一般条件,每个悬臂现浇梁段的加载龄期7天。
在施工过程中,混凝土加载龄期等参数可能与实际情况不符,将根据实际情况对计算参数进行调整。
预应力采用钢绞线束施加,钢绞线弹性模量取 1.95105Mpa,钢绞线采用ASTMA416-92标准270级低松弛钢绞线,公称直径15.24mm,公称面积140mm2,抗拉标准强度1860Mpa。
单个锚具回缩值6mm,孔道摩阻系数u=0.225,孔道偏差系数k=0.0015。
其中混凝土的弹性模量,钢绞线的弹性模量取自现场材料的取样试验。
3、施工阶段的划分本桥采用悬臂浇筑方法施工,在施工过程中,设置了临时约束,在计算中除了考虑设置永久支座外,在悬臂施工期间设置了4个临时竖向约束,以模拟实际施工的临时约束。
本次计算实际共划分为20个施工阶段和1个运营阶段,严格和实际施工状态相对应。
施工阶段内容116阶段安放临时支座,利用支架现浇0#块和1#块,张拉预应力束。
利用挂篮依次悬臂浇筑2#16#号块,并依次张拉相应的预应力束。
1719阶段支架现浇段19#块,安装边跨合拢段刚性联结,浇筑边跨17#块,张拉相应的预应力束,边跨合拢。
20阶段浇筑中跨18#块,张拉相应的预应力束,中跨合拢。
21运营阶段4、施工荷载的分析在预应力砼连续梁桥的悬臂施工中,挂篮和模板机具设备重对结构的内力和变形的影响很大,所以在计算分析中,必须考虑施工荷载主要是挂篮的影响。
在悬臂浇筑过程中,混凝土的重量不断增加,使挂篮设备上的伸臂发生弹性变形,它使底模板前端的标高也发生同样的变形,类似的变形将同样的发生在以后各阶段的施工中,这种变形在挂篮拆除后却不能得到恢复。
因此在各节点的预拱度值中,均应计入这个影响,但是也可以利用可调整的吊带来解决。
当浇筑2号段混凝土挂篮设备一般分成两截,分别固定在(或者部分地落在)已完成的悬臂阶段上,由于挂篮具有一定的静载,尤其在大跨度桥梁的悬臂施工中,挂篮设备的重心距离悬臂梁的根部的力臂较大,使结构发生变形,但在挂篮拆除后,又使原来的变形得到恢复。
此次计算分析充分考虑了施工荷载的影响,在计算分析中模拟了挂篮的安装和拆除,以及挂篮前进的工况,挂篮的计算重量为900KN(其值由施工单位实测得到)。
5、悬臂施工的挠度计算在桥梁悬臂施工的控制中,最困难的任务之一就是施工挠度的计算与控制。
我们所采用的分析软件BRCAD5.1和BSAS的系统会根据不同阶段的受力状态自动考虑混凝土的收缩徐变影响、预加力的影响、温度变化的影响以及支座沉降的影响,其中混凝土收缩徐变的计算考虑了各阶段混凝土应力变化的影响,在预应力损失的计算中,对每个阶段内每个截面上的每组钢束都分别进行了计算。
对于桥梁长期荷载作用下的总挠度的计算,还必须考虑二期恒载和活载的作用所产生的挠度。
综合考虑各种因素后,将各影响参数输入软件中,由软件自动算出各施工阶段每一梁段的挠度,合拢时的挠度,合拢后二期恒载作用下的挠度,以及活载作用下的挠度。
通过计算分析发现,在施工阶段对结构内力和变形影响较大的设计参数主要为梁的自身静载、预应力钢绞线的有效预应力;材料的弹性模量E和剪切模量G、施工临时荷载、挂篮、混凝土的收缩与徐变变形的性能以及混凝土加载龄期的变化对变形影响较大,其它的参数影响较小。
6、施工阶段立模标高的确定在主梁的悬臂浇筑过程中,梁段立模标高的合理确定,是关系到主梁的线型是否平顺,是否符合设计的一个重要问题,如果在确定立模标高时考虑的因素比较符合实际,而且加以正确的控制,则最终桥面线型较好。
否则,最终桥面线型会与设计线型有较大的偏差。
众所周知,立模标高并不等于设计中桥梁建成后的标高,总要设置一定的预拱度,以抵消施工中产生的各种变形(竖向挠度)。
其计算公式如下:Hlmi=Hsji+f1i+f2i+f3i+f4i+f5i+fgi式中:Hlmi――i阶段立模标高;Hsji――i阶段设计标高;f1i――由本阶段及后续施工阶段梁段自重在i阶段产生的挠度总和;f2i――由张拉阶段及后续施工阶段预应力在i阶段引起的挠度;f3i――施工期间混凝土收缩、徐变在i阶段引起的挠度;f4i――施工临时荷载在i阶段引起的挠度;f5i――活载作用加上运营期间的收缩徐变引起的挠度;(实际监控计算中是按跨中预拱度取L/1000,其余各点预拱度按二次抛物线拟合)fgi――挂篮变形值其中挂篮的变形值是根据挂篮加载试验确定的,f1i、f2i、f3i、f4i、f5i在前进分析和倒退分析计算中已经加以考虑。
此立模标高计算公式简单,概念清楚,使用方便,而且实际使用效果很好。
7、分析计算主要结果通过计算结果分析可知,箱梁在悬臂施工过程中,轴力、弯矩曲线较为顺畅,施工阶段截面上下缘均为压应力,而且都在规范允许的范围之内。
在运营阶段,正常使用极限状态下箱梁应力基本上处于全截面受压状态,而且满足规范要求。
其它荷载组合除了部分几个截面顶板或底板出现很小拉应力(最大不超过0.5MPa),箱梁应力基本上处于全截面受压状态,箱梁的应力满足规范要求。
各个施工阶段的挠度曲线很顺畅。
挠度的变化也很正常。
四、施工控制的参数识别和现场测试1、参数的识别结构设计参数的变化能导致桥梁结构内力的变化和形状的改变,因此我们在大跨度桥梁的施工控制中,必须对设计参数进行识别和修正。
不同的设计参数对结构状态的影响程度是不同的。
总的说来,对于连续梁主要的设计参数有以下几个方面:(1)结构几何形态参数:主要是桥梁结构的跨径、高跨比、线型等,它们表征了结构的形状和结构最初的状态。
(2)截面特征参数:截面的面积、抗弯惯性矩等。
(3)与时间有关的参数:温度、混凝土龄期、收缩徐变是随着时间而变化的参数。
(4)荷载参数:主要是结构构件自重力、施工临时荷载和预加力。
(5)材料参数:主要是指材料的弹性模量E和剪切模量G,对于混凝土材料来说,这两个参数有一定的波动,在桥梁的施工控制中要对其进行识别。
这五类设计参数在同一座桥梁的施工控制中并不是每一个设计参数对桥梁结构状态的影响都是一样的,因此我们要对设计参数进行辨别,一方面要确定设计参数的实际值,另一方面要辨别对结构状态影响较大的设计参数即主要参数,为了达到这个目的,对设计参数的识别,总的来讲,有两种方法和手段:其一,通过现场测量来确定设计参数的值。
这主要是结构几何形态参数、截面特征参数和材料特征参数,它们可以通过现场测量方法或试验测量手段来确定。
其二,通过结构计算分析来确定主要设计参数,也就是设计参数敏感性分析方法。
在这里我们主要采用的是第一种方法。
2、现场测试为了确保施工控制的顺利实施,施工过程中各项技术参数的准确测定至关重要,它是进行施工控制的必要初始参数,它为施工的计算提供了实测依据,是最终实现施工控制目的的最关键的一步。
这次我们主要现场测试的内容如下:(1)应力观测:在大桥上部结构的控制截面布置应力测点,以观察在施工过程中这些截面的应力变化与应力分布情况。
然后把结果及时反馈给设计人员,和计算结果相比较,在计入误差和变量调整后由设计人员分析以后每阶段乃至竣工后结构的实际状态,同时可以根据当前施工阶段向前计算至竣工,预计今后施工可能出现的状态并预报下一阶段当前一安装构件或即将安装的构件是否出现不满足强度要求的状态,以确定是否在本施工阶段对可调变量实施调整。
经现场测试,各施工阶段被测梁段的应力值和计算分析的结果相吻合,应力变化没有出现异常。
(2)挠度观测:挠度观测资料是控制成桥线型最主要的依据,根据以往的经验,在每个施工段的断面上上布置五个高程观测点1、2、3、4、5,顺序是从上游至下游排列,以桥梁中心线划分,间距为6米+3.5米+0米+3.5米+6米,控制点3为桥梁中线点,这样不仅可以测量箱梁的挠度,同时可以观察箱梁是否发生扭转变形。