倍长中线构造全等三角形
专题14 倍长中线法与截长补短法构造全等三角形(原卷版)

专题14倍长中线法与截长补短法构造全等三形模型一:倍长中线法构造全等三角形模型二:截长补短法构造全等三角形【典例分析】【模型一:倍长中线法构造全等三角形】△ABC 中,AD 是BC 边中线方式1到E ,使DE=AD ,连接BE方式2:间接倍长(1)作CF ⊥AD 于F,作BE⊥AD 的延长线于E(2)延长MD 到N,使DN=MD,连接CN【典例1】(2021春•吉安县期末)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小N延长边上(不一定是底边)的中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。
此法常用于构造全等三角形,利用中线的性质、辅助线、对顶角一般用“SAS ”证明对应边之间的关系。
(在一定范围中)明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL (2)求得AD的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.【变式1-1】(2021秋•肥西县期末)一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是()A.x>5B.x<7C.4<x<14D.2<x<7【变式1-2】如图,AE是△ABD的中线AB=CD=BD.求证:AB+AD>2AE;【变式1-3】(2021秋•齐河县期末)(1)方法呈现:如图①:在△ABC中,若AB=6,AC=4,点D为BC边的中点,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,可证△ACD≌△EBD,从而把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是(直接写出范围即可).这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在△ABC中,点D是BC的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F、点E 是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.【模型二:截长补短法构造全等三角形】∙截长:1.过某一点作长边的垂线;2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
倍长中线法构造全等三角形例题

倍长中线法构造全等三角形例题《倍长中线法构造全等三角形》一、引言在数学中,全等三角形是非常重要的概念,它们具有相同的三边和三角角度,但形状和位置可能有所不同。
而倍长中线法是构造全等三角形的一种重要方法。
本文将深入探讨倍长中线法的原理和应用,通过具体的例题来演示构造全等三角形的过程。
二、倍长中线法的原理1. 什么是倍长中线法?倍长中线法是指通过将三角形中的两条边分别延长相等的长度,然后连接延长后的两条边的中点,得到一个边长为原来中线的两倍的新三角形的方法。
2. 倍长中线法的原理当我们通过倍长中线法构造全等三角形时,我们实际上是借助了中线的性质。
在三角形中,连接一个顶点和对边中点的线段就是该对边的中线,中线的定义是连接三角形的一个顶点和边对面中点的线段。
对于一个三角形ABC来说,若D为AB的中点,那么有AD = BD,这就是中线的性质之一。
而倍长中线法利用了中线的这一性质,通过延长两条边相等的长度,再连接延长后的两条边的中点,可以构造出一条新的中线,新中线的长度是原中线的两倍。
这样就得到了一个边长为原三角形中线长度两倍的全等三角形。
三、倍长中线法构造全等三角形的例题现在,让我们通过具体的例题来演示倍长中线法对全等三角形的构造过程。
例题1:已知△ABC中,AB = 6cm, AC = 4cm,以AC为底边做三角形ACD,且AD = 6cm,BD = 4cm,连接BC并延长到E,使得CE = AB。
连接DE并延长到F,使得DF = AB。
证明△ADF≌△ABC。
解题步骤:1. 延长BC和DE我们根据题目要求,延长BC和DE,使得CE = AB,DF = AB。
2. 连接CD接下来,连接CD,得到三角形ACD。
3. 寻找AD和DB的中点我们在AD和DB上分别寻找其中点,分别记为G和H。
4. 连接GH连接GH,得到新的中线GH。
5. 观察三角形ADF和三角形ABC我们可以观察到,三角形ADF和三角形ABC中,AD = AB,DG = BH。
全等三角形倍长中线知识点

全等三角形倍长中线知识点全等三角形倍长中线是一个重要的几何概念,它涉及到三角形的一条特殊线段。
在本文中,我们将介绍什么是全等三角形倍长中线以及它的性质和应用。
全等三角形指的是具有相同边长和角度的两个三角形。
当两个三角形全等时,它们的对应边和对应角都相等。
倍长中线是指通过三角形的两个顶点和中点构造的线段。
具体来说,对于三角形ABC,倍长中线是通过顶点A和边BC的中点D构造的线段AD。
我们来看倍长中线的性质。
根据全等三角形的定义,我们可以得出以下结论:1. 在全等三角形中,倍长中线的长度相等。
也就是说,如果三角形ABC和三角形A'B'C'全等,那么线段AD的长度等于线段A'D'的长度。
2. 倍长中线将三角形分成两个面积相等的三角形。
具体来说,三角形ABC可以分成三角形ABD和三角形ACD,而且它们的面积相等。
接下来,我们来探讨倍长中线的应用。
倍长中线在解决几何问题时有着广泛的应用,特别是在证明全等三角形的过程中往往会用到倍长中线的性质。
以下是一些常见的应用场景:1. 证明两个三角形全等。
当我们需要证明两个三角形全等时,可以利用倍长中线的性质来进行推导。
通过比较倍长中线的长度和其他边长或角度的关系,可以判断出两个三角形是否全等。
2. 求解三角形的面积。
由于倍长中线将三角形分成两个面积相等的三角形,我们可以利用这个性质来求解三角形的面积。
通过计算倍长中线的长度和底边的长度,再利用面积公式,可以得到三角形的面积。
3. 寻找三角形的重心。
重心是三角形的一个重要特征点,它是三条三角形的中线的交点。
在全等三角形中,倍长中线和其他两条中线交于同一点,即重心。
因此,通过倍长中线可以确定三角形的重心。
总结起来,全等三角形倍长中线是一个重要的几何概念,它在解决几何问题时有着广泛的应用。
通过研究倍长中线的性质,我们可以判断两个三角形是否全等,求解三角形的面积,以及确定三角形的重心。
三角形全等专题倍长中线法

全等三角形根本剖断前提:1.三边对应相等(SSS).2.双方夹角对应相等(SAS).3.两角夹边对应相等(ASA).4.两角对边对应相等(AAS).5.直角三角形全等前提:①斜边及一向角边对应相等(HL);②一向角边及一锐角对应相等(ASA)或斜边及一锐角对应相等(AAS);③两直角边对应相等 (SAS).★留意:直角三角形全等,除边边边(SSS),边角边(SAS),角边角(ASA),角角边(AAS)对应相等外,还有直角边及斜边(HL).一向角边及一锐角(ASA).斜边及一锐角(AAS).两直角边(SS)等对应相等.除以上根本剖断外,全等三角形别的剖断前提:1.三条中线对应相等,两个三角形全等.2.三条高线对应相等,两个三角形全等.3.三条角等分线对应相等,两个三角形全等.4.两个角及第三个角的角等分线对应相等,两个三角形全等.5.两条边及第三条边上的中线对应相等,两个三角形全等.6.钝角三角形中,一钝角和其一邻边对应相等,钝角所对的较大边也相等,两个三角形全等.或双方及个中一边的对角(钝角)对应相等,两个三角形全等.(SSA)7.等腰三角形中,底边和顶角分离对应相等,两个等腰三角形全等.8.等腰直角三角形中,周长相等,两个等腰直角三角形全等.(因为等腰直角三角形三边之比为1:1:√2,故周长相等时,等腰直角三角形的对应角相等,对应边相等,故全等).9.等边三角形中,有一边对应相等,两个三角形全等.★特殊提醒:在三角形全等的剖断中,必定有边相等,必定没有AAA 和SSA(除非此角为钝角),这两种情形都不克不及独一肯定三角形的外形.三角形全等的性质:1.全等三角形的对应角相等.4. 全等三角形的对应边上的中线相等.角等分线相等.3.全等三角形面积周长相等.6.全等三角形的对应边上的高对应相等.等腰三角形的性质1.等腰三角形的两个底角度数相等(简写“等边对等角”).2.等腰三角形的顶角等分线,底边上的中线,底边上的高重合(简写“等腰三角形的三线合一性质”).3.等腰三角形的两底角等分线相等(两条腰上的中线相等,两条腰上的高相等).4.等腰三角形底边上的垂直等分线到两条腰的距离相等.5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半.6.等腰三角形底边上随意率性一点到两腰距离之和等于一腰上的高(等面积法证实).7.等腰三角形是轴对称图形(不是等边三角形的情形下),只有一条对称轴,顶角等分线地点的直线是它的对称轴,等边三角形有三条对称轴.8.等腰三角形的腰大于高.等腰三角形的腰的平方等于高的平方加底的一半的平方.初中三角形全等专题倍长中线法倍长中线法的界说:延伸中线,使所延伸部分与中线相等,然后往往须要衔接响应的极点,则对应角对应边都对应相等.经常应用于结构全等三角形.中线倍长法多用于结构全等三角形和证实边之间的关系以便利求个中一边的规模值.1.如图,在△ABC中,AC=5,中线AD=7,则AB边的取值规模是( )A.2<AB<12B.4<AB<12C.9<AB<19D.10<AB<19 答案:C解题思绪:延伸AD至E,使DE=AD,衔接CE,可先证实△ABD≌△E CD,则AB=CE,在△ACE中,依据三角形的三边关系,得AE-AC<CE<AE+AC,即9<CE<19.则9<AB<19.故选C.2.如图,已知CB.CD分离是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB等分∠DCE,则以上结论准确的是()A.①②④B.①③④C.①②③D.①②③④答案:A解题思绪:①准确,延伸CD至点F,使得DF=CD,衔接AF,可先证实△ADF≌△BDC,再证实△ACF≌△BEC,由这两个三角形全等可以得知②.④准确.由△ACF≌△BEC,得∠ACD=∠E,若要∠ACD=∠BCE,则需∠E=∠BCE,则需BC=BE,显然不成立,故③选项错误3.如图,点E是BC的中点,∠BAE=∠CDE,延伸DE到点F使得EF=DE,衔接BF,则下列说法准确的是()①BF∥CD②△BFE≌△CDE ③AB=BF ④△ABE为等腰三角形A.①②③B.②③④C.①③④D.①②③④答案:A解题思绪:可以先证实△BEF≌△CED,可以得到②准确,进而得到∠F=∠D,BF∥CD,①准确,又∵∠BAE=∠CDE=∠F,∴AB=BF,③准确.④不准确.4.如图,在正方形ABCD中,E为AB边的中点,G.F分离为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.1B.2C.3D.4 答案:C解题思绪:延伸FE交DA的延伸线于点M,则可证△AEM≌△BEF,再证实△GEM≌△GEF,可以得到GF=GM=GA+BF=3,答案选C5.如图,在△ABC中,点D.E为边BC的三等分点,则下列说法准确的有()①BD=DE=EC ②AB+AE>2AD ③AD+AC>2AE ④AB+AC>AD+AE A.1个 B.2个 C.3个 D.4个答案:D解题思绪:点D.E为边BC的三等分点,∴BD=DE=CE延伸AD至点M,AE 至点N,使得DM=AD,EN=AE,衔接,则可证实△ABD≌△MED,进而可得AB+AE>2AD,再证实△ADE≌△NCE,进而可得AD+AC>2AE,将两式相加可得到AB+AE+AD+AC>2AD+2AE,即AB+AC>AD+AE.∴①②③④均准确.6.下列命题:①有两个角和第三个角的等分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.个中准确的是()解答:解:①准确.可以用AAS或者ASA 剖断两个三角形全等;②准确.可以用“倍长中线法”,用SAS定理,断定两个三角形全等;如图,分离延伸AD.A′D′到E.E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC =∠B′A′C′,∴△BAC≌△B′A′C′.③不准确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.点评:本题考核了全等三角形的剖断办法;要依据选项供给的已知前提逐个剖析,剖析时看是否相符全等三角形的剖断办法,留意SSA 是不克不及判得三角形全等的.。
北师大版数学七升八暑假作业专题复习提升专题六 倍长中线构造全等三角形(含答案)

北师大版数学七升八暑假作业专题复习提升-专题六倍长中线构造全等三角形中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造.类型倍长中线构造全等三角形1. 在△ABC中,AB=7,AC=3,则BC边的中线AD的取值范围是.2. 在△ABC中,AB=10,AC=6,则BC边上的中线AD的取值范围是.3.如图,在△ABC中,∠ABC=45∘,AD,BE分别为BC,AC边上的高,AD,BE相交于点F.下列结论:①∠FCD=45∘;②AE=EC;③S△ABF:S△AFC=AD:FD;④若BF=2EC,则△FDC的周长等于AB的长.正确结论的序号是.4.如图,AD为△ABC中BC边上的中线(AB>AC).(1)求证:AB−AC<2AD<AB+AC;(2)若AB=8cm,AC=5cm,求AD的取值范围.5. 如图,已知AD是△ABC的中线,过点B作BE⊥AD,垂足为E.若BE=6,求点C到AD的距离.6.某校数学课外兴趣小组活动时,老师提出如下问题:【探究】如图1,在△ABC中,若AB=8,AC=6,点D是BC的中点,试探究BC 边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法:延长AD到点E,使DE=AD,连接BE.请补充完整证明“△ADC≌△EDB”的推理过程.(1)求证:△ADC≌△EDB.证明:∵延长AD到点E,使DE=AD,连接BE.在△ADC和△EDB中,AD=ED(已作),∠ADC=∠EDB(), CD=BD(中点定义),∴△ADC≌△EDB().(2)探究得出AD的取值范围是.【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AC=BF.求证:∠BFD=∠CAD.7. 【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,在△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法:延长AD到点E,使DE=AD,连接BE,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A. SSSB. SASC. AAS(2)求得AD的取值范围是.A. 6<AD<8B. 6≤AD≤8C. 1<AD<7D. 1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.试说明AC=BF.(1)【方法学习】数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下解决方法(如图2).①延长AD到点M,使得DM=AD;②连接BM,通过三角形全等把AB,AC,2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB−BM<AM<AB+BM,从而得到AD的取值范围是.【方法总结】上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以说明.(3)【深入思考】如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE =∠CAF=90∘,试判断线段AD与EF的数量关系,并加以说明.答案专题六倍长中线构造全等三角形类型倍长中线构造全等三角形1.2<AD<52.2<AD<83.①③④4.(1)证明:如图,延长AD至点E,使AD=DE,连接BE.在△ACD 和△EBD 中,{DC =BD ,∠ADC =∠BDE ,AD =DE ,∴△ACD≌△EBD (SAS),∴AC =BE (全等三角形的对应边相等).在△ABE 中,由三角形的三边关系可得AB−BE <AE <AB +BE ,即AB−AC <2AD <AB +AC .(2) 解:∵AB =8cm ,AC =5cm ,∴8−5<2AD <8+5,∴32<AD <132.5.解:如图,过点C 作CF ⊥AD ,交AD 的延长线于点F .∵BE ⊥AD ,CF ⊥AD ,∴∠BED =∠CFD .∵AD 是△ABC 的中线,∴BD =CD .在△BED 和△CFD 中,{∠BED =∠CFD ,∠BDE =∠CDF ,BD =CD ,∴△BED≌△CFD (AAS),∴BE =CF .∵BE =6,∴CF =6,∴ 点C 到AD 的距离为6.(1) 对顶角相等; SAS(2) 1<AD <7(3) 证明:如图,延长AD 到点H ,使DH =AD ,连接BH .由(1)得△ADC≌△HDB,∴BH=AC,∠BHD=∠CAD.∵AC=BF,∴BH=BF,∴∠BFD=∠BHD,∴∠BFD=∠CAD.(1)B(2)C(3)解:如图,延长AD到点M,使AD=DM,连接BM.∵AD是△ABC的中线,∴CD=BD.∵在△ADC和△MDB中,{DC=DB,∠ADC=∠MDB,DA=DM,∴△ADC≌△MDB(SAS),∴BM=AC,∠CAD=∠M.∵AE=EF,∴∠CAD=∠AFE.∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM=AC,即AC=BF.(1)1<AD<7(2)解:AC//BM,且AC=BM.理由:由(1)知,△MDB≌△ADC,∴∠M=∠CAD,AC=BM,∴AC//BM.(3)EF=2AD.理由:如图,延长AD到点M,使得DM=AD,连接BM.由(1)知,△BDM≌△CDA(SAS),∴BM=AC.∵AC=AF,∴BM=AF.由(2)知:AC//BM,∴∠BAC+∠ABM=180∘.∵∠BAE=∠FAC=90∘,∴∠BAC+∠EAF=180∘,∴∠ABM=∠EAF.在△ABM和△EAF中,{AB=EA,∠ABM=∠EAF,BM=AF,∴△ABM≌△EAF(SAS),∴AM=EF.∵AD=DM,∴AM=2AD.∵AM=EF,∴EF=2AD.。
初中数学模型1-倍长中线模型构造全等三角形

• ∴△EFD≌ △HFD(AAS) • ∴EF=FH • 在△BDE和△CDH中,
• DE=DH • ∠1=∠2
• BD=DC • ∴△BDE≌△CDH(SAS) • ∴BE=CH • 在△CFH中,由三角形三边关系定理得:CF+CH>
FH • ∵CH=BE,FH=EH • ∴BED
• 解析: • 延长AM到D,使MD=AM,连CD • ∵AM是BC边上的中线, • ∴BM=CM • 又AM=DM,∠AMB=∠CMD • ∴△ABM≌△DCM,∴AB=CD • 在△ACD中,则AD< AC+CD • 即2AM<AC+AB • 即结论成立。
例3
• 如图,在△AB C中,AD交BC于点D,点E是BC 的中点,EF∥AD交CA的延长线于点F,交EF于 点G,若BG=CF,求证:AD为△ABC的角平分线.
倍长中线模型构造全等三角形
专题说明
• 倍长中线是指加倍延长中线,使所延长部分与中 线相等,然后往往需要连接相应的顶点,则对应 角对应边都对应相等。常用于 构造全 等三角形。 中线倍长法多用于构造全等三角形和证明边之间 的关系(通常用“SAS”证明)(注:一般都是原 题已经有中线时用,不太会有自己画中线的时 候)。
知识总结
• 题干中出现三角形一边的中线(与中点有关的线 段),或中点,通常考虑倍长中线或 类中线,构 造全等三角形.把该中线延长一倍,证明三角形全 等,从而运用全等三角形的有关知识来解决问题 的方法.
主要思路:倍长中线(线段)造全等
A
A
B
C
D
B
C
D
E
在△ABC中 AD是BC边中线; 延长AD到E, 使DE=AD,连接BE;
• BD=DE, • ∠ADB=∠CDE
八年级数学全等三角形--倍长中线法经典例题

倍长中线法知识网络详解:中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(对顶角)倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。
【方法精讲】常用辅助线添加方法——倍长中线△ABC中方式1:延长AD到E,AD是BC边中线使DE=AD,连接BE方式2:间接倍长作CF⊥AD于F,延长MD到N,作BE⊥AD的延长线于使DN=MD,连接BE 连接CN经典例题讲解:例1:△ABC中,AB=5,AC=3,求中线AD的取值范围例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE过D 作DG//AC例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠BABFDEC例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE自检自测:1、如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证,AD 平分∠BAE.2、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论.E D ABF EAB C3、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+4、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.第 14 题图DF CBEADABCMTE。
倍长中线模型,构造全等证明线段或角之间的关系

倍长中线模型,全等三角形搭桥,难题分析讲解三角形是初中数学里最基本的几何图形,而其边上,又是很常见的条件。
当涉及三角形问题时,常采用延长中线一倍的办法,即倍长中线法,实现角和线段的转化,以此来作辅助线解题。
好处是通过此法构造全等三角形继而得到平行,也可以证明三角形全等,可将分散的条件集中在一个三角形内解题,常常出奇制胜,化腐朽为神奇。
且看模型,和模型产生的基本结论.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(其中有对顶角相等)例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围。
分析:延长AD 至E ,使ED=AD ,连接BE ,见模型1,可证△ABD 与△ECD 全等,把AB 边转移到EC 上了,再看△AEC ,用第三边大于两边之差小于两边之和可解。
【归纳总结】1. 三角形的三边关系是求线段范围的常用方法.2. 出现中线时,常考虑倍长中线构造全等三角形,实现线段的转化.例 2:已知在△ABC 中,AD 是 BC 边上的中线, E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF延长ED 至G ,使GD=ED ,利用SAS 可证△BED与△CGD 全等,把BE 转移到GC 上,∠G=∠1,由已知BE=AC ,得到GC=AC ,由等腰三角形性质可知∠G=∠3,通过∠G 传递,得到∠2=∠3,得证AF=EF例3:已知:如图,在△ABC 中,AB ≠AC ,D 、E 在BC 上,且DE=EC ,过D 作DF//BA 交AE 于点F ,DE=AC ,求证:AE 平分∠BAC证明:如图,延长FE 到G ,使EG=EF ,连接CG .在△DEF 和△CEG 中,∵ ,∴△DEF ≌△CEG . ∴DF=GC ,∠DFE=∠G .∵DF ∥AB ,∴∠DFE=∠BAE .∵DF=AC ,∴GC=AC .∴∠G=∠CAE .∴∠BAE=∠CAE .即AE 平分∠BAC⎪⎩⎪⎨⎧==FG FE CEG =∠DEF ∠EC ED例4:如图;在△ABC中,AB=AC,延长AB到D,使得BD=AB,取AB的中点E,连结CD和CE,求证:CD=2CE证明:延长CE至F,使EF=CE,则CF=2CE易证△ACE≌△BFE,∴AC=BF=AB=BD,∠ABF=∠BAC∴∠DBC=∠ACB+∠BAC=∠ABC+∠ABF=∠FBC∴△BCF≌△BCD(SAS)∴CD=CF=2CE【融会贯通】1、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倍长中线构造全等三角
形
-CAL-FENGHAI.-(YICAI)-Company One1
巧添辅助线——倍长中线
【夯实基础】
例:ABC
∆中,AD是BAC
∠的平分线,且BD=CD,求证AB=AC
方法1:作DE⊥AB于E,作DF⊥AC于F,证明二次全等方法2:辅助线同上,利用面积
方法3:倍长中线AD
【方法精讲】常用辅助线添加方法——倍长中线
△ABC中
AD到E,
AD是BC边中线,
连接BE
方式2
⊥AD于F,
AD的延长线于
连接
【经典例题】
例1:△ABC中,AB=5,AC=3,求中线AD的取值范围
提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边
例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE
方法1:过D作DG∥AE交BC于G,证明ΔDGF≌ΔCEF
方法2:过E作EG∥AB交BC的延长线于G,证明ΔEFG
方法3:过D作DG⊥BC于G,过E作EH⊥BC
证明ΔBDG≌ΔECH
2
3
例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交
AC 于F ,求证:AF=EF 提示:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形
例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.
求证:AE 平分BAC ∠
提示: 方法1:倍长AE 至G ,连结DG
方法2:倍长FE 至H ,连结CH
例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 提示:倍长AE 至F ,连结DF 证明ΔABE ≌ΔFDE (SAS )
进而证明ΔADF ≌ΔADC (SAS )
【融会贯通】
1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论
提示:延长AE 、DF 交于G
证明AB=GC 、AF=GF 所以AB=AF+FC
B 第 1 题图 A B F D E
C
4
2、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+
提示:
方法1:在DA 上截取DG=BD ,连结EG 、FG 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF 所以BE=EG 、CF=FG
利用三角形两边之和大于第三边
方法2:倍长ED 至H ,连结CH 、FH 证明FH=EF 、CH=BE
利用三角形两边之和大于第三边
3、已知:如图,ABC 中,C=90,CMAB 于M ,AT 平分BAC 交CM 于D ,交BC 于T ,过D 作DE
提示:过T 作TN ⊥AB 于N
证明ΔBTN ≌ΔECD
第 14 题图
D F
C
B E
A
D A B C
M T E。