电路计算机电路仿真分析实验报告

合集下载

电路实验仿真实验报告

电路实验仿真实验报告

电路实验仿真实验报告电路实验仿真实验报告摘要:本实验通过电路仿真软件进行了一系列电路实验的仿真,包括电路基本定律验证、电路元件特性研究以及电路参数计算等。

通过仿真实验,我们深入理解了电路的工作原理和性能特点,并通过仿真结果验证了理论计算的准确性。

引言:电路实验是电子工程专业学生必修的一门重要课程,通过实际操作和观察电路的实际运行情况,加深对电路理论知识的理解。

然而,传统的电路实验需要大量的实验设备和实验器材,并且操作过程复杂,存在一定的安全风险。

因此,电路仿真技术的出现为电路实验提供了一种新的解决方案。

方法:本实验采用了电路仿真软件进行电路实验的仿真。

通过在软件中搭建电路原理图,设置电路元件参数,并进行仿真运行,观察电路的电压、电流等参数变化,以及元件的特性曲线等。

实验一:欧姆定律验证在仿真软件中搭建一个简单的电路,包括一个电源、一个电阻和一个电流表。

设置电源电压为10V,电阻阻值为100Ω。

通过测量电路中的电流和电压,验证欧姆定律的准确性。

仿真结果显示,电路中的电流为0.1A,电压为10V,符合欧姆定律的要求。

实验二:二极管特性研究在仿真软件中搭建一个二极管电路,包括一个二极管、一个电阻和一个电压表。

通过改变电阻阻值和电压源电压,观察二极管的正向导通和反向截止特性。

仿真结果显示,当电压源电压大于二极管的正向压降时,二极管正向导通,电压表显示有电压输出;当电压源电压小于二极管的正向压降时,二极管反向截止,电压表显示无电压输出。

实验三:RC电路响应特性研究在仿真软件中搭建一个RC电路,包括一个电阻、一个电容和一个电压源。

通过改变电阻阻值和电容容值,观察RC电路的充放电过程和响应特性。

仿真结果显示,当电压源施加一个方波信号时,RC电路会出现充放电过程,电压信号会经过RC电路的滤波作用,输出信号呈现出不同的响应特性。

实验四:电路参数计算在仿真软件中搭建一个复杂的电路,包括多个电阻、电容、电感和电压源。

电路计算机仿真实验报告

电路计算机仿真实验报告

电路计算机仿真分析实验报告实验一直流电路工作点分析和直流扫描分析一、实验目的1、学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。

2、学习使用Pspice进行直流工作点分析和直流扫描分析的操作步骤。

二、原理与说明对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。

PSPICE软件是采用节点电压法对电路进行分析的。

使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE的元件符号库绘制电路图并进行编辑、存盘。

然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。

需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电压方程的,因此,在绘制电路图时,一定要有参考节点(即接地点)。

此外,一个元件为一条“支路”(branch),要注意支路(也就是元件)的参考方向。

对于二端元件的参考方向定义为正端子指向负端子。

三、示例实验应用PSPICE求解图1-1所示电路个节点电压和各支路电流。

图1-1 直流电路分析电路图R2图1-2 仿真结果四、选做实验1、实验电路图(1)直流工作点分析,即求各节点电压和各元件电压和电流。

(2)直流扫描分析,即当电压源Us1的电压在0-12V之间变化时,求负载电阻R L中电流I RL随电压源Us1的变化曲线。

IPRINT图1-3 选做实验电路图2、仿真结果Is21Adc1.000AVs35Vdc3.200A R431.200A23.20VVs47Vdc1.200A 0VR142.800AIs32Adc 2.000A12Vdc2.800AIIPRINT3.200A10.60V 12.00V Is11Adc 1.000A18.80V 28.80V15.60V3.600VR222.800ARL13.200A18.80VVs210Vdc2.800A Is53Adc3.000AI42Adc图1-4 选做实验仿真结果3、直流扫描分析的输出波形图1-5 选做实验直流扫描分析的输出波形4、数据输出V_Vs1 I(V_PRINT2)0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+009.000E+00 2.300E+001.000E+012.400E+001.100E+012.500E+001.200E+012.600E+00从图1-3可以得到IRL与USI的函数关系为:I RL=1.4+(1.2/12)U S1=1.4+0.1U S1 (公式1-1)五、思考题与讨论:1、根据图1-1、1-3及所得仿真结果验证基尔霍夫定律。

电路实验仿真实验报告

电路实验仿真实验报告

1. 理解电路基本理论,掌握电路分析方法。

2. 掌握电路仿真软件(如Multisim)的使用方法。

3. 分析电路参数对电路性能的影响。

二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。

三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。

根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。

2. 当s = 0时,电路发生零输入响应。

3. 当s = jω时,电路发生零状态响应。

四、实验仪器与设备1. 电脑:用于运行电路仿真软件。

2. Multisim软件:用于搭建电路模型和进行仿真实验。

1. 打开Multisim软件,创建一个新的仿真项目。

2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。

3. 设置电路参数,如电阻R、电容C等。

4. 选择合适的激励信号,如正弦波、方波等。

5. 运行仿真实验,观察电路的响应波形。

6. 分析仿真结果,验证实验原理。

六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。

此时,电路的响应为电容的充电过程。

通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。

(2)电容电流Ic先减小后增大,在t = 0时达到最大值。

(3)电路的时间常数τ = RC,表示电路响应的快慢。

2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。

此时,电路的响应为电容的放电过程。

通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。

Multisim电路仿真实验报告(实验1.2)

Multisim电路仿真实验报告(实验1.2)

Multisim电路仿真实验报告(实验1.2)实验⼀1.电路图
1
2
电容c1和电阻R2交换后
3. 逻辑分析仪和字信号发⽣器的使⽤
实验⼆
1.
静态⼯作点分析
IBQ=12.954uA ICQ=2.727mA
结合电路图可知:UBQ=3.39196V,UCQ=6.54870V,所以三极管的放⼤倍数:β= ICQ/IBQ =210
2.估算出该电路的放⼤倍数Av
从仿真结果中得到:
Uo=1.94895V, Ui=0.014V.
从⽽估算出该电路的放⼤倍数:Av=139
对两电路的带负载能⼒进⾏⽐较
3.1
由以上两个仿真图可知,放⼤电路2⽐放⼤电路1带负载能⼒更强。

⽽放⼤电路的带负载能⼒受其输出电阻影响,输出电阻越⼩,带负载能⼒越强。

由后⾯的计算可知放⼤电路2的输出电阻更⼩,因⽽其带负载能⼒⽐放⼤电路1强。

因此仿真实验结果符合理论要求。

3.2 对电路1和2分别作温度扫描分析
3.3 测试电路1和2
的输⼊和输出阻抗
电路1
输⼊电阻的测试电路图及测试结果
电路1输出电阻的测试电路图及测试结果由以上实验结果算出电路1的输⼊阻抗1264kΩ,输出阻抗为1.92kΩ
电路2
输⼊电阻的测试电路图及测试结果
电路2输出电阻的测试电路图及测试结果
由以上实验结果算出电路1的输⼊阻抗5.9kΩ,输出阻抗为4.8Ω
放⼤电路1是放⼤电路2的电流串联负反馈形式,电流串联负反馈的作⽤是增⼤输⼊输出电阻。

电路仿真实验报告

电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。

二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。

2.使用电路仿真软件进行简单电路的仿真设计。

3.基于仿真结果,根据实验内容进行电路设计和分析。

四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。

2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。

3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。

4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。

5.运行仿真,观察电路的响应曲线和频率特性。

6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。

7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。

8.根据实验要求,记录仿真结果并撰写实验报告。

五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。

根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。

通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。

根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。

我们还可以通过改变电路参数来观察电路的变化。

例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。

而增大电阻值则可以增加滤波器的阻带特性。

通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。

六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。

通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。

通过本次实验,我还发现了电路设计和分析的一些问题和挑战。

Multisim电路仿真实验报告

Multisim电路仿真实验报告

Multisim电路仿真实验报告谢永全1 实验目的:熟悉电路仿真软件Multisim的功能,掌握使用Multisim进行输入电路、分析电路和仪表测试的方法。

2使用软件:NI Multisim student V12。

(其他版本的软件界面稍有不同)3 预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。

4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。

初步了解各部分的功能。

(2)初步定制:定制元件符号:Options|Global preferences,选择Components标签,将Symbol Standard区域下的元件符号改为DIN。

自己进一步熟悉全局定制Options|Global preferences窗口中各标签中的定制功能。

(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。

通过显示隐藏各工具栏,体会其功能和工具栏的含义。

关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments (仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulation switch(仿真开关)。

(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。

另有一类只有封装没有模型的元件,只能布线不能仿真。

在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。

元件库的结构:元件库有三个:Master database(主库)、Corporate database(协作库)和User database(用户库)。

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告_范文模板及概述

multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。

在这里,我们将引入Multisim的使用以及电路仿真实验报告。

Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。

通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。

1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。

在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。

在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。

接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。

最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。

1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。

通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。

同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。

希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。

2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。

它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。

使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。

2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。

电路分析基础 实验一:电路仿真软件Multisim的快速入门实验报告

电路分析基础 实验一:电路仿真软件Multisim的快速入门实验报告

电路分析基础实验一:电路仿真软件
Multisim的快速入门实验报告
本实验旨在介绍电路仿真软件Multisim的基本操作和使
用方法。

在实验中,我们将绘制简单的电路图并进行仿真分析,掌握Multisim中基本虚拟仪器的使用方法,以及分析正弦波
信号的方法。

首先,在电路工作区中,我们需要放置电源、接地、电阻和连接导线等元器件,并进行相应标注。

然后,使用菜单栏中的仿真分析命令进行直流工作点仿真,选定需要分析的变量并记录仿真结果。

接下来,我们将使用虚拟仪器进行仿真分析。

将虚拟万用表和电流探头按电路原理图连接,进行仿真分析,并记录虚拟万用表显示结果。

为了进一步分析电路,我们将仿真分析电路原理图中的直流电源从0~24V变化过程中,电流的变化情况。

使用菜单栏
中的参数扫描命令设置相关参数,进行仿真分析,观察并记录结果。

最后,我们将使用Multisim绘制电路原理图,并运用虚
拟信号发生器和示波器进行仿真分析正弦波信号,观察并记录虚拟示波器显示的输入输出信号波形。

通过本实验的研究,我们可以熟悉Multisim的基本操作,掌握绘制电路图及仿真电路的方法,以及基本虚拟仪器的使用方法。

同时,我们也能够分析正弦波信号的方法,为今后的电路设计和分析打下基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路计算机仿真分析实验报告学院:电气工程学院班级: xx级电气xx班学号: xxxxxxxxxxxxx姓名: xxx20xx年xx月xx日预备实验 Orcad Pspice的基本操作一、实验目的熟悉Orcad Pspice的操作和分析过程二、实验内容1、了解pspice的启动,电路图的绘制;2、修改元器件的标号和参数;3、设置分析功能;4、仿真前的准备工作;5、仿真过程;6、了解库、库元件;7、了解分析设置的方法。

实验一直流电路工作点分析和直流一、实验目的1、学习使用PSPICE软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。

2、学习用PSPICE进行直流工作点分析和直流扫描分析的操作步骤。

二、实验原理对于电阻电路,可以用直观法(支路电流法、节点电压法、回路电流法)列写电路方程,求解电路中各个电压和电流。

PSPICE软件是采用节点电压法对电路进行分析的。

使用PSPICE软件进行电路的计算机辅助分析时,首先在capture环境下编辑电路,用PSPICE的元件符号库绘制电路图并进行编辑、存盘。

然后调用分析模块、选择分析类型,就可以‘自动’进行电路分析了。

需要强调的是,PSPICE软件是采用节点电压法“自动”列写节点电压方程的。

因此,在绘制电路图时,一定要有参考节点(即接地点)。

三、实验操作步骤1、电路1R2图1(1)建立电路A、启动Orcad Capture,新建工程Proj1,选项框选择Analog or Mixed A/D。

类型选择为create a blank project。

B、在原理图界面上点击Place/Part或右侧快捷键。

C、首先增加常用库,点击Add Library,将常用库添加进来。

本例需添加Analog(包含电阻、电容等无源器件),Source(包含电压源、电流源等电源器件),special(包含虚拟打印机等器件)。

在相应的库中选取电阻R,电流源IDC。

点取Place/GND选取0/Source以放置节点(每个电路必须有一个零节点)。

D、移动元器件到适当位置,右键单击器件进行适当旋转,点击Place/Wire或快捷键将电路连接起来如图1所示。

E、双击元器件或相应参数修改名称和值。

F、在需要观察的位置放置探针。

G、保存原理图。

(2)仿真A、点击Pspice/New Simulation Profile,输入名称;B、在弹出的窗口中Basic Point是默认选中,必须进行分析的。

点击确定。

C、点击Pspice/Run(快捷键F11)或工具栏相应按钮。

D、如原理图无错误,则显示Pspice A/D窗口。

在本例中未设置其它分析,窗口无显示内容,关闭该窗口。

E、在原理图窗口中点击V,I工具栏按扭,图形显示各节点电压和各元件电流值如图1所示。

2、电路2(选做实验)图2(1)建立电路按与1(1)相同的操作步骤如图2所示电路建立电路。

(2)仿真步骤同1(2)。

仿真结果如图2所示。

(3)直流扫描分析A、单击Pspice/Edit Simulation Profile,打开分析类型对话框,以建立分析类型。

对直流电路的扫描分析要选择‘DC Sweep’。

选中后,打开下一级对话框‘直流扫描分析参数表’,并设置为:‘Sweep Var.Type’选择‘Voltage Source’;‘Sweep Type’选择‘Linear’;‘Name’选择‘V S1’;‘Start Value’输入‘0’,‘End Value’输入‘12’,‘Increment’输入‘0.5’。

B、运行Pspice的仿真计算程序,进行直流扫描分析。

C、对于图2电路,电压源U1的电压已设置在0~12之间变化,显示的波形就是负载电阻R L的电流I RL随V1变化的波形,见图3。

5.968A5.964A5.960A5.956A5.952A0V2V4V6V8V10V12V -I(R3)V_Vs1图3D、为了得到数值的结果,从“Special”库取“Iprint”(电流打印机),把它串联到测量点上。

将“Iprint”的属性设置为“dc=I(R L)”,其余项缺省。

当在“直流扫描分析参数”中设置的分析参数“Increment”为“1”时,运行仿真。

在Capture窗口单击Pspice/View Output File,可得数据输出。

所得数据如下所示V_Vs1 I(V_PRINT2)0.000E+00 5.954E+001.000E+00 5.955E+002.000E+00 5.956E+003.000E+00 5.957E+004.000E+005.958E+005.000E+00 5.959E+006.000E+00 5.960E+007.000E+00 5.961E+008.000E+00 5.962E+009.000E+00 5.963E+001.000E+01 5.964E+001.100E+01 5.965E+001.200E+01 5.966E+00E、从图可以得到I RL与V1的函数关系为I RL=1.4+(1.2/12) V1=1.4+0.1 V1(公式1-1)四、实验结果分析1、由仿真结果验证基尔霍夫定律对于电路1,设4V和6V所对应的结点分别为1和2。

对于中间的一个回路有:4*1+1*2-3*2=0,即基尔霍夫电压定律成立。

对于结点1有:2+2-4=0,即基尔霍夫电流定律成立。

实验二戴维南定理和诺顿定理的仿真一、实验目的:(1)进一步熟悉Pspice仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。

学习Probe窗口的简单设置。

(2)加深对戴维南定理和诺顿定理的理解。

二、实验原理戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻串联的支路来代替,该电压源的电压Us等于原网络的开路电压Uoc,电阻Ro等于原网络的全部独立电源置零后的输入电阻Req。

三、实验内容1、测量有源一端口网络等效入端电阻Req和对外电路的伏安特性。

2、根据任务1中测出的开路电压Uoc、输入电阻Req,组成等效的有源一端口网络,测量其对外电路的伏安特性。

3、根据任务1中测出的短路电流Isc、输入电阻Req,组成等效的有源一端口网络,测量其对外电路的伏安特性。

四、实验步骤1、在Capture环境下绘制和编辑电路,电路如图1所示。

PARAMETERS:v ar = 1k图12、为测量原网络的伏安特性,图1中的RL是可变电阻。

为此,RL的阻值要在“PARAM”中定义一个全局变量var,同时把RL的阻值也设为该变量{var}。

3、为测电路的开路电压Uoc及短路电流Isc,设定为分析类型为“DC Sweep ”,扫描变量为全局变量var,并具体设置线性扫描的起点为1P,终点为1G,步长为1MEG。

4、启动分析后,系统自动进入Probe窗口。

增加一坐标轴,分别在两轴上加I(RL)和V(RL:2)。

扫描结果如图2所示。

var0V0.1GV 0.2GV 0.3GV 0.4GV 0.5GV 0.6GV 0.7GV 0.8GV 0.9GV1.0GVABS(V(RL:2))0V 2.0V 4.0VSEL>>ABS(I(RL))0A 100mA200mA图2分别激活显示电流和电压的坐标轴,显示电流和电压的最大值。

测得最大值即短路电流Isc=130mA ,V(RL:2)最大值即Uoc 为3.5455V 。

则入端电阻Req=3.5455/0.13=27.273Ω。

5、回到Capture 界面,按测得的等效参数修改电路参数图3所示。

RLn {v ar}ar}RLd {v ar}5v图36、重新设定扫描参数,扫描变量仍为全局变量var ,线性扫描的起点为1P ,终点为10K ,步长为10K 。

重新启动分析,进入Probe 窗口。

增加两面三刀个坐标轴,,设置横轴为V(RL:2),并分别在三个纵轴上加I(RL)、I(RLd)和I(RLn)变量。

显示结果如图4所示。

V(RL:2)0V0.4V 0.8V 1.2V 1.6V 2.0V 2.4V 2.8V 3.2V 3.6VI(RLn)-200mA-100mA 0ASEL>>I(RLd)-200mA-100mA0AI(RL)-200mA-100mA0A图4显示坐标值列表,点击I(RL)、I(RLd)和I(RLn)前面的小方块,数值列表中将显示相应坐标中的坐标值。

用鼠标拖动十字交叉线,可显示不同电压时的相应电流值。

五、实验结果分析根据仿真结果(如图4所示)可知,图3中的三个电路对于负载电阻来说,其伏安特性是基本一致的,从图可以看出,三个图的短路电流均约为130mA 、开路电压均约为3.5455V 及斜率均约为-27.273。

即三个电路的外特性相同,对外是等效的。

由此可知戴维南定理和诺顿定理的正确性。

实验三 正弦稳态电路分析和交流扫描分析一、实验目的学习用PSPICE 进行正旋稳态电路的分析和正旋稳态电路的交流扫描分析。

二、实验原理对于正弦稳态电路,可以用相量法列写电路方程(支路电流法、节点电压法、回路电流法),求解电路中各个电压和电流的振幅(有效值)和初相位(初相角)。

PSPICE 软件是用相量形式的节点电压法对正弦稳态电路进行分析的。

三、实验操作过程(1)正弦稳态分析。

实验电路图为图1。

IPRINTIPRINTC110u图1A、在capture环境下编辑电路,电源采用vac,LI-VALUE,L2-VALUE位感抗,COUPLE位耦合系数。

B、设置仿真,AC sweep type选择 Linear, sweep parameters设置为——START FREQ 输入 1592 ,END FREQ也是1592,total pts输入1。

C、运行,在PROBE窗口显示交流扫描分析结果。

在两个回路中分别设置电流打印机标志符,得到数值的结果。

FREQ IM(V_PRINT1)IP(V_PRINT1)IR(V_PRINT1)II(V_PRINT1)1.592E+032.268E-03 8.987E+01 5.145E-06 2.268E-03FREQ IM(V_PRINT2)IP(V_PRINT2)IR(V_PRINT2)II(V_PRINT2)1.592E+032.004E+00 8.987E+01 4.546E-03 2.004E+00(2)选做实验A、电路如图2,对正旋稳态电源进行计算机辅助分析,求出各元件的电流。

图2B、仿真,得到结果如图3所示60A40A20A0A0.8KHz 1.6KHz 2.4KHz-I(R1)-I(R2)-I(R3)-I(R4)-I(L1)-I(R5)-I(C1)Frequency图3C、电路如图4,电容可调,试着分析电容多大时,电路功率因数为1。

相关文档
最新文档