电路仿真实验报告42016年度
电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
电路实验仿真实验报告

电路实验仿真实验报告电路实验仿真实验报告摘要:本实验通过电路仿真软件进行了一系列电路实验的仿真,包括电路基本定律验证、电路元件特性研究以及电路参数计算等。
通过仿真实验,我们深入理解了电路的工作原理和性能特点,并通过仿真结果验证了理论计算的准确性。
引言:电路实验是电子工程专业学生必修的一门重要课程,通过实际操作和观察电路的实际运行情况,加深对电路理论知识的理解。
然而,传统的电路实验需要大量的实验设备和实验器材,并且操作过程复杂,存在一定的安全风险。
因此,电路仿真技术的出现为电路实验提供了一种新的解决方案。
方法:本实验采用了电路仿真软件进行电路实验的仿真。
通过在软件中搭建电路原理图,设置电路元件参数,并进行仿真运行,观察电路的电压、电流等参数变化,以及元件的特性曲线等。
实验一:欧姆定律验证在仿真软件中搭建一个简单的电路,包括一个电源、一个电阻和一个电流表。
设置电源电压为10V,电阻阻值为100Ω。
通过测量电路中的电流和电压,验证欧姆定律的准确性。
仿真结果显示,电路中的电流为0.1A,电压为10V,符合欧姆定律的要求。
实验二:二极管特性研究在仿真软件中搭建一个二极管电路,包括一个二极管、一个电阻和一个电压表。
通过改变电阻阻值和电压源电压,观察二极管的正向导通和反向截止特性。
仿真结果显示,当电压源电压大于二极管的正向压降时,二极管正向导通,电压表显示有电压输出;当电压源电压小于二极管的正向压降时,二极管反向截止,电压表显示无电压输出。
实验三:RC电路响应特性研究在仿真软件中搭建一个RC电路,包括一个电阻、一个电容和一个电压源。
通过改变电阻阻值和电容容值,观察RC电路的充放电过程和响应特性。
仿真结果显示,当电压源施加一个方波信号时,RC电路会出现充放电过程,电压信号会经过RC电路的滤波作用,输出信号呈现出不同的响应特性。
实验四:电路参数计算在仿真软件中搭建一个复杂的电路,包括多个电阻、电容、电感和电压源。
电路实验仿真实验报告

1. 理解电路基本理论,掌握电路分析方法。
2. 掌握电路仿真软件(如Multisim)的使用方法。
3. 分析电路参数对电路性能的影响。
二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。
三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。
根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。
2. 当s = 0时,电路发生零输入响应。
3. 当s = jω时,电路发生零状态响应。
四、实验仪器与设备1. 电脑:用于运行电路仿真软件。
2. Multisim软件:用于搭建电路模型和进行仿真实验。
1. 打开Multisim软件,创建一个新的仿真项目。
2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。
3. 设置电路参数,如电阻R、电容C等。
4. 选择合适的激励信号,如正弦波、方波等。
5. 运行仿真实验,观察电路的响应波形。
6. 分析仿真结果,验证实验原理。
六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。
此时,电路的响应为电容的充电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。
(2)电容电流Ic先减小后增大,在t = 0时达到最大值。
(3)电路的时间常数τ = RC,表示电路响应的快慢。
2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。
此时,电路的响应为电容的放电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。
电子仿真实验报告doc

电子仿真实验报告篇一:电路仿真实验报告实验一电路仿真一、实验目的通过几个电路分析中常用定理和两个典型的电路模块,对Multisim的主窗口、菜单栏、工具栏、元器件栏、仪器仪表和一些基本操作进行学习。
二、实验内容1.叠加定理:在任何由线性元件、线性受控源及独立源组成的线性电路中,每一支路的响应都可以看成是各个独立电源单独作用时,在该支路中产生响应的代数和;2.戴维南定理:一个含独立源、线性受控源、线性电阻的二端电路N,对其两个端子来说都可以等效为一个理想电压源串联内阻的模型。
其理想电压源的数值为有源二端电路N的两个端子间的开路电压uoc,串联的内阻为N内部所有独立源等于零,受控源保留时两端子间的等效电阻Req,常记为R0;3.互易定理:对一个仅含线性电阻的二端口,其中,一个端口夹激励源,一个端口做响应端口。
在只有一个激励源的情况下,当激励与响应互换位置时,同一激励所产生的响应相同;4.暂态响应:在正弦电路中,电量的频率、幅值、相位都处于稳定的数值,电路的这种状态称为稳定状态。
电路从一种稳态向另一种稳态转换的过程称为过渡过程,由于过渡过程一般都很短暂,因此也称为暂态过程,简称暂态;5.串联谐振:该电路是一个由电阻、电容和电感串联组成,当激励源的频率达到谐振频率时,输出信号的幅值达到最大。
三、实验结果及分析1.叠加定理:①两个独立源共同作用时:②电压源单独作用时:③电流源单独作用时:2.戴维南定理:所以,根据戴维南定理可知,该电路的戴维南等效电阻Req=10.033/(781.609*10-6) =12.8 kΩ3.互易定理:当激励源与响应互换位置之后,该激励源所产生的响应不变。
4.暂态响应:①当电容C=4.7uF时,②当电容C=1uF时,对比①、②所对应的输出响应的波形图可以得知:电容容量减小之后,暂态过程所经历的时间变短了,波形上升沿河下降沿变陡了。
5.串联谐振:串联谐振电路的幅频特性曲线相频特性曲线四、问题与总结通过本次仿真实验,对电路课本上叠加定理、戴维南定理、互易定理以及暂态响应和串联谐振电路进行了相应的论证,同时对这几个简单的定理进行了相应的回顾与复习。
电路仿真实验报告

本科实验报告实验名称:电路仿真实验1 叠加定理的验证1.原理图编辑:分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接;2. 设置电路参数:电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。
3.实验步骤:1)、点击运行按钮记录电压表电流表的值U1和I1;2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2;3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3;4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。
所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真:当电压源和电流源共同作用时,U1=-1.6V I1=6.8A.当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理实验2 并联谐振电路仿真2.原理图编辑:分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号;3.设置电路参数:电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。
信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。
4.分析参数设置:AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。
TRAN分析:分析5个周期输出节点为Vout的时域响应。
电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。
二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。
2.使用电路仿真软件进行简单电路的仿真设计。
3.基于仿真结果,根据实验内容进行电路设计和分析。
四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。
2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。
3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。
4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。
5.运行仿真,观察电路的响应曲线和频率特性。
6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。
7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。
8.根据实验要求,记录仿真结果并撰写实验报告。
五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。
根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。
通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。
根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。
我们还可以通过改变电路参数来观察电路的变化。
例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。
而增大电阻值则可以增加滤波器的阻带特性。
通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。
六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。
通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。
通过本次实验,我还发现了电路设计和分析的一些问题和挑战。
电路设计与仿真实验报告

电路设计与仿真实验报告
一、实验目的:
1:熟悉EWB软件环境
2:掌握EWB建立电路及仿真运行方法,能够测量电路的电压电流指标
二、实验原理:
原理图1
三、实验过程:
1:分别在Tool工具栏当中选中与原理图1相匹配的电源V1(12v),三个电阻R1(1 kΩ)、R2(3kΩ)、R3(3 kΩ)、一个接地线.
2:用鼠标将所有的元器件按照原理图连接起来(原理图1).然后插入一个电压表和一个电流表(图2).
图2
3:点击开始按钮,观察电压表和电流表示数.仔细分析.
四、实验结果与分析:
最后实验结果电压表电流表示数与实际电路的理论值完全一致(图3).但是在实验的过程中电压表的示数出现了一次负数,最后检查原因是因为正负极接反了. 这个电路既有串联也有并联,有理论分析可知,串联同电流.并联同电压.根据电压表的示数满足理论分析值.都等于电源的电压.
通过本次试验,初步了解如何用Multisim软件设计最基础的简单电
路,并掌握了部分小技巧.。
电路仿真实验报告

实验1 叠加定理的验证一、电路图二、实验步骤1.原理图编辑:分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(注意电流表和电压表的参考方向),并按上图连接;2.设置电路参数:电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为 10A。
3.实验步骤:1)、点击运行按钮记录电压表电流表的值U1和I1;2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2;3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3;根据电路分析原理,解释三者是什么关系并在实验报告中验证原理。
三、实验数据:四、实验数据处理:U2 + U3 = + = = U3I2 + I3 = + = = I1五、实验结论:由电路分析叠加原理知:由线性电路、线性受控源及独立源组成的电路中,每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的的电流或电压的代数和。
本次实验中,第一组各数据等于第二组与第三组各对应实验数据之和,与叠加原理吻合,验证了叠加原理的正确性,即每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的的电流或电压的代数和。
实验2 并联谐振电路仿真一、电路图:二、实验步骤:1.原理图编辑:分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,并按上图连接;2.设置电路参数:将交流分析量值设置为5V,电压源V1设置为5V,频率设为500Hz,设置电阻R1=10Ω,电阻R2=2KΩ,电感L1=,电容C1=40uF。
并如图所示对电容上方的线名称改为“out”。
3.分析参数设置:(1)AC分析①类型设置仿真→分析→交流分析。
②参数设置起始频率设为1Hz,停止频率设为100MHz,扫描类型为十倍频程,每十倍频程点数设为10,垂直刻度设为线性,其他保持默认,单击“确定”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电路仿真实验报告实验一直流电路工作点分析和直流扫描分析一、实验目的(1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。
(2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。
二、原理与说明对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。
Pspice软件是采用节点电压法对电路进行分析的。
使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。
存盘。
然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。
三、实验示例1、利用Pspice绘制电路图如下2、仿真(1)点击Psipce/New Simulation Profile,输入名称;(2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。
点击确定。
(3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。
(4)如原理图无错误,则显示Pspice A/D窗口。
(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。
四、选做实验1、直流工作点分析,即求各节点电压和各元件电压和电流。
2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化曲线。
曲线如图:直流扫描分析的输出波形3、数据输出为:V_Vs1 I(V_PRINT1)0.000E+00 1.400E+001.000E+00 1.500E+002.000E+00 1.600E+003.000E+00 1.700E+004.000E+00 1.800E+005.000E+00 1.900E+006.000E+00 2.000E+007.000E+00 2.100E+008.000E+00 2.200E+009.000E+00 2.300E+001.000E+012.400E+001.100E+012.500E+001.200E+012.600E+00从图中可得到IRL与US1的函数关系为:IRL=1.4+(1.2/12)US1=1.4+0.1US1五、思考与讨论1、根据仿真结果验证基尔霍夫定律根据图1-1,R1节点:2A+2A=4A,R1,R2,R3构成的闭合回路:1*2+1*4-3*2=0,满足基尔霍夫定律。
2、由图1-3可知,负载电流与1S U呈线性关系,3R I=1.4+(1.2/12) 1S U=1.4+0.11S U,式中1.4A表示将1S U置零时其它激励在负载支路产生的响应,0.11S U表示仅保留1S U,将其它电源置零(电压源短路,电流源开路)时,负载支路的电流响应。
3、若想确定节点电压Un1随Us1变化的函数关系,应如何操作?应进行直流扫描,扫描电源Vs1,观察Un1的电压波形随Us1的变化,即可确认其函数关系!4、若想确定电流Irl随负载电阻RL的变化的波形,如何进行仿真?将RL的阻值设为全局变量var,进行直流扫描,观察电流波形即可。
六、实验心得1、由实验图形和数据可知实验中的到的曲线满足数据变化规律,得到的函数关系式是正确的。
2、通过仿真软件可以很方便的求解电路中的电流电压及其变化规律。
实验二戴维南定理和诺顿定理的仿真一、实验目的(1)进一步熟悉仿真软件中绘制电路图,初步掌握符号参数、分析类型的设置。
学习Probe窗口的简单设置。
(2)加深对戴维南定理与诺顿定理的理解。
二、原理与说明戴维南定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电压源与电阻的串联的支路来代替,该电路的电压等于原网络的开路电压,电阻等于原网络的全部独立电压源置零后的输入电阻。
诺顿定理指出,任一线性有源一端口网络,对外电路来说,可以用一个电流源与电导的并联的支路来代替,该电路的电流等于原网络的短路电流,电导等于原网络的全部独立电源置零后的输入电导。
三、实验内容(1)测量有源一端口网络等效入端电阻和对外电路的伏安特性。
其中U1=5V,R1=100Ω,U2=4V,R2=50Ω,R3=150Ω。
(2)根据任务1中测出的开路电压,输入电阻组成等效有源一端口网络,测量其对外电路的伏安特性。
(3)根据任务1中测出的短路电流,输入电阻组成等效有源一端口网络,测量其对外电路的伏安特性。
四、实验步骤(1)在Capture环境下绘制编辑电路,包括原件、连线、输入参数和设置节点等。
分别编辑原电路、戴维南等效电路和诺顿等效电路。
(2)为测量原网络的伏安特性,Rl是可变电阻。
为此,Rl的阻值要在“PARAM”中定义一个全局变量var同时把Rl的阻值野设为该变量{var}。
(3)设定分析类型为“DC Sweep“,扫描变量为全局变量var,并具体设置线性扫描的起点为IP,终点为IG,步长为IMEG。
(4) 系统启动分析后,自动进入Probe窗口。
重新设定扫描参数,扫描变量仍为全局变量var,线性扫描的起点为1,终点为10k,步长为100。
重新启动分析,进入Probe窗口。
选择Plot=>Add Plot增加两个坐标轴,选择Plot=>X Axis Settings=>Axis Variable,设置横轴为V(RL:2),选择Trace=>Add 分别在三个轴上加I(RL)、I(RLd)和I(RLn)变量。
显示结果如图。
200mA100mASEL>>0A-I(R9)200mA100mA0A-I(RLd)200mA100mA0A0V0.4V0.8V 1.2V 1.6V 2.0V 2.4V 2.8V 3.2V 3.6V -I(RLn)V(R9:2)五、思考与讨1、戴维南定理和诺顿定理的使用条件是什么?戴维南定理和诺顿定理只适用于线性元件。
六、实验结果1、经过计算出等效参数,将原电路等效成戴维南电路和诺顿电路,进行实观察。
2、由曲线可分析得知戴维南等效电路和诺顿等效电路的试验曲线与原电路基本相同,由此可以说明戴维南定理和诺顿定理的正确性。
实验三正弦稳态电路分析和交流扫描分析一.实验目的(1)学习用Pspice进行正弦稳态电路的分析。
(2)学习用Pspice进行稳态电路的交流扫描分析。
(3)熟悉含受控源电路的联接方法。
二.原理与说明在电路中已经学过,对于正弦稳态电路,可以用向量法列写电路方程(之路电流法.节点电压法,回路电流法。
),求解电路中各个电压和电流的振幅(有效值)和初相位(初相角)。
Pspice软件是用向量形式的节点电压法对正弦稳态电路进行分析的。
三.实验示例(1)正弦稳态分析。
以图示电路为例,其中正弦电源的角频率为10Krad/s,要求计算两个回路中的电流。
a.在capture环境下编辑电路,互感用符号“XFRM-LINER表示。
参数设置如下:L1-VALUE ,L2-VALUE为感抗,COUPLE为耦合系数。
b.设置仿真,打开分析类型对话框,对于正弦电路分析要选择ACSweep。
单击该按钮后,可以打开下一级对话框交流扫描分析参数表,设置具体的分析参数。
对于图示的电路,设置为:ACSweep Type选择为Linear,Sweep Parameters设置为----Start Freq(起始频率)输入1592,End Freq(终止频率)也输入1592,Total Pts(扫描点数)输入1.c.运行软件仿真计算程序,在Probe窗口显示交流扫描分析的结果。
d.为了得到数值的结果,可以在两个回路中分别设置电流打印机标识符。
如图所示,其中电流打印机标识符的属性设置分别为I(R1)和I(C1),设置项有(AC,MAG,REAL,PHASE,IMAG).即得到仿真的结果输出。
. FREQ IM(V_PRINT1)IP(V_PRINT1)IR(V_PRINT1)II(V_PRINT1)1.592E+032.268E-03 8.987E+01 5.145E-06 2.268E-03FREQ IM(V_PRINT2)IP(V_PRINT2)IR(V_PRINT2)II(V_PRINT2) 1.592E+03 2.004E+00 8.987E+01 4.546E-03 2.004E+00C110u四.选做实验(1)以给出的实验例题和实验步骤,用Pspice 独立的做一遍,给出仿真结果。
(2)对正弦稳态电路进行计算机辅助分析,求出各元件的电流,电路如图所示,其中电压源Us=100cos (1000t )V ,电流控制电压源的转移电阻是20欧姆。
100C11000uFrequency80Hz159Hz239HzI(R1)I(R2)I(R3)I(R4)I(R5)I(C1)I(L1)0A 20A40A60A实验方法:进行交流扫描,扫描频率为1000/(2*3.14)=159.2Hz ,得到几个电流值的点。
(4) 电路如图,Us=220cos (314t )V 。
电容是可调的,其作用是为了提高电路的功率因数。
试分析电容为多大值时,电路的功率因数为1.220Vac 0VdcC1{v ar}PARAMET ERS:对电容的值设置全局变量,进行扫描,观测流过电源的电流,当电流最小时所得的电容就是使功率因数为1时的电容。
仿真结果如下:var05u10u15u20u25u30uI(V1)1.4A1.6A1.8A2.0A(14.340u,1.5773)根据仿真结果可以得出,当电容为14.34uf 时,电流最小为1.6733A 。
五、思考与讨论1.为了提高功率因数,常在感性负载上并联电容器,此时增加了一条电流之路,但电路的总电流却减小了,此时感性元件上的电流和功率却不变。
2.提高线路的功率因数只采用并联电容的方法,而不采用串联法是因为串联会改变感性负载上的电流,增加了电路的总功率。
并联的电容不是越大越好,电容过大反而会使功率因数减小。
实验四 一阶动态电路的研究一. 实验目的(1) 掌握Pspice 编辑动态电路、设置动态元件的初始条件、掌握周期激励的属性及对动态电路仿真的方法。
(2) 理解一阶RC 电路在方波激励下逐步实现稳态充放电的过程。
(3) 理解一阶RL 电路在正弦激励下,全响应与激励接入角的的关系。
二.原理与说明电路在一点条件下有一定的稳定状态,当条件改变,就要过渡到新的稳定状态。
从一种稳定状态转到另一种新的状态往往不能跃变,而是需要一定的过渡过程的,这个物理的过程就称为电路的过渡过程。
电路的过渡过程往往是短暂的,所以电路的过渡过程中的工作状态成为暂态,因而过渡过程又称为暂态过程。
三.实验示例(1)分析图示RC 串联电路在方波激励下的全响应。
其中方波激励图如图所示,电容的初始电压为2V (电容Ic 设为2V )。