电路仿真实验报告
电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
Multisim电路仿真实验报告

Multisim电路仿真实验报告精33张聪20130106571实验目的:熟悉电路仿真软件Muitisim的功能,掌握使用Muitisim进行输入电路、分析电路和仪表测试的方法。
2使用软件:NIMultisimstudentV12。
(其他版本的软件界面稍有不同)3预习准备:提前安装软件熟悉其电路输入窗口和电路的编辑功能、考察其元件库中元件的分类方式、工具栏的定制方法、仪表的种类、电路的分析方法等;预习实验步骤,熟悉各部分电路。
4熟悉软件功能(1)了解窗口组成:主要组建包括:电路图编辑窗口、主菜单、元件库工具条、仪表工具条。
初步了解各部分的功能。
(2)初步定制:定制元件符号:Options|Globalpreferences,选择Components标签,将SymbolStandard区域下的元件符号改为DIN。
自己进一步熟悉全局定制Options|Globalpreferences窗口中各标签中的定制功能。
(3)工具栏定制:选择:View|Toolbars,从显示的菜单中可以选择显示或者隐藏某些工具栏。
通过显示隐藏各工具栏,体会其功能和工具栏的含义。
关注几个主要的工具栏:Standard(标准工具栏)、View(视图操作工具栏)、Main(主工具栏)、Components(元件工具栏)、Instruments(仪表工具栏)、Virtual(虚拟元件工具栏)、Simulation(仿真)、Simulationswitch(仿真开关)。
(4)Multisim中的元件分类元件分两类:实际元件(有模型可仿真,有封装可布线)、虚拟元件(有模型只能仿真、没有封装不能布线)。
另有一类只有封装没有模型的元件,只能布线不能仿真。
在本实验中只进行仿真,因此电源、电阻、电容、电感等使用虚拟元件,二极管、三极管、运放和其他集成电路使用实际元件。
元件库的结构:元件库有三个:Masterdatabase(主库)、Corporatedatabase (协作库)和Userdatabase(用户库)。
电路仿真实验报告

Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用仿真手段对电路性能作较深入的研究。
2.实验内容实验19-1 基本单管放大电路的仿真研究(2)静态工作点理论上,由V E=1.2V得:I E=V E/(R E1+R E2)=1mA,I B=I E/(β+1)=16.39uA,I C=βI B=0.9836mA;U CE=Vcc- I C*Rc-V E=7.554V。
实测值I B =13.995uA,Ic=0.9916mA,U CE=7.521V;相对误差分别为14.63%,0.817%,0.438%(3)电压放大倍数理论值r be=1.886kΩ,Au=-14.0565实测值Au=-13.8476,相对误差1.486%(4)波特图观察电压放大倍数为Au=-13.8530,下限截止频率为17.6938Hz,上限截止频率为18.07MHz,带宽为18.07MHz。
(5)用交流分析功能测量幅频和相频特性。
(6)加大输入信号强度,观测波形失真情况。
失真度为31.514%(7)测量输入电阻、输出电阻。
测输入电阻:U rms=1.00mV,I rms=148nA,则输入电阻R i= U rms/I rms=6.757kΩ;测输出电阻:空载时U oO=14.0mV,带载时U oL=10.6mV,R L=10kΩ,则输出电阻R o=(U oO/U oL-1)* R L =3.208kΩ(8) 将R E1去掉,R E2=1.2kΩ,重测电压放大倍数,上下限截止频率及输入电阻,对比说明R E1对这三个参数的影响。
测得放大倍数Au=-95.2477,下限截止频率为105.7752Hz,上限截止频率为18.9111MHz,带宽为18.9110MHz,输入电阻R i=1.859kΩ。
由表易知,去掉R E1后电压放大倍数变大;上下截止频率都略有增加,通频带变宽;输入电阻变小。
电路实验仿真实验报告

电路实验仿真实验报告电路实验仿真实验报告摘要:本实验通过电路仿真软件进行了一系列电路实验的仿真,包括电路基本定律验证、电路元件特性研究以及电路参数计算等。
通过仿真实验,我们深入理解了电路的工作原理和性能特点,并通过仿真结果验证了理论计算的准确性。
引言:电路实验是电子工程专业学生必修的一门重要课程,通过实际操作和观察电路的实际运行情况,加深对电路理论知识的理解。
然而,传统的电路实验需要大量的实验设备和实验器材,并且操作过程复杂,存在一定的安全风险。
因此,电路仿真技术的出现为电路实验提供了一种新的解决方案。
方法:本实验采用了电路仿真软件进行电路实验的仿真。
通过在软件中搭建电路原理图,设置电路元件参数,并进行仿真运行,观察电路的电压、电流等参数变化,以及元件的特性曲线等。
实验一:欧姆定律验证在仿真软件中搭建一个简单的电路,包括一个电源、一个电阻和一个电流表。
设置电源电压为10V,电阻阻值为100Ω。
通过测量电路中的电流和电压,验证欧姆定律的准确性。
仿真结果显示,电路中的电流为0.1A,电压为10V,符合欧姆定律的要求。
实验二:二极管特性研究在仿真软件中搭建一个二极管电路,包括一个二极管、一个电阻和一个电压表。
通过改变电阻阻值和电压源电压,观察二极管的正向导通和反向截止特性。
仿真结果显示,当电压源电压大于二极管的正向压降时,二极管正向导通,电压表显示有电压输出;当电压源电压小于二极管的正向压降时,二极管反向截止,电压表显示无电压输出。
实验三:RC电路响应特性研究在仿真软件中搭建一个RC电路,包括一个电阻、一个电容和一个电压源。
通过改变电阻阻值和电容容值,观察RC电路的充放电过程和响应特性。
仿真结果显示,当电压源施加一个方波信号时,RC电路会出现充放电过程,电压信号会经过RC电路的滤波作用,输出信号呈现出不同的响应特性。
实验四:电路参数计算在仿真软件中搭建一个复杂的电路,包括多个电阻、电容、电感和电压源。
电路实验仿真实验报告

1. 理解电路基本理论,掌握电路分析方法。
2. 掌握电路仿真软件(如Multisim)的使用方法。
3. 分析电路参数对电路性能的影响。
二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。
三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。
根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。
2. 当s = 0时,电路发生零输入响应。
3. 当s = jω时,电路发生零状态响应。
四、实验仪器与设备1. 电脑:用于运行电路仿真软件。
2. Multisim软件:用于搭建电路模型和进行仿真实验。
1. 打开Multisim软件,创建一个新的仿真项目。
2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。
3. 设置电路参数,如电阻R、电容C等。
4. 选择合适的激励信号,如正弦波、方波等。
5. 运行仿真实验,观察电路的响应波形。
6. 分析仿真结果,验证实验原理。
六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。
此时,电路的响应为电容的充电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。
(2)电容电流Ic先减小后增大,在t = 0时达到最大值。
(3)电路的时间常数τ = RC,表示电路响应的快慢。
2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。
此时,电路的响应为电容的放电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。
Multisim电路仿真实验报告(实验1.2)

Multisim电路仿真实验报告(实验1.2)实验⼀1.电路图
1
2
电容c1和电阻R2交换后
3. 逻辑分析仪和字信号发⽣器的使⽤
实验⼆
1.
静态⼯作点分析
IBQ=12.954uA ICQ=2.727mA
结合电路图可知:UBQ=3.39196V,UCQ=6.54870V,所以三极管的放⼤倍数:β= ICQ/IBQ =210
2.估算出该电路的放⼤倍数Av
从仿真结果中得到:
Uo=1.94895V, Ui=0.014V.
从⽽估算出该电路的放⼤倍数:Av=139
对两电路的带负载能⼒进⾏⽐较
3.1
由以上两个仿真图可知,放⼤电路2⽐放⼤电路1带负载能⼒更强。
⽽放⼤电路的带负载能⼒受其输出电阻影响,输出电阻越⼩,带负载能⼒越强。
由后⾯的计算可知放⼤电路2的输出电阻更⼩,因⽽其带负载能⼒⽐放⼤电路1强。
因此仿真实验结果符合理论要求。
3.2 对电路1和2分别作温度扫描分析
3.3 测试电路1和2
的输⼊和输出阻抗
电路1
输⼊电阻的测试电路图及测试结果
电路1输出电阻的测试电路图及测试结果由以上实验结果算出电路1的输⼊阻抗1264kΩ,输出阻抗为1.92kΩ
电路2
输⼊电阻的测试电路图及测试结果
电路2输出电阻的测试电路图及测试结果
由以上实验结果算出电路1的输⼊阻抗5.9kΩ,输出阻抗为4.8Ω
放⼤电路1是放⼤电路2的电流串联负反馈形式,电流串联负反馈的作⽤是增⼤输⼊输出电阻。
电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。
二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。
2.使用电路仿真软件进行简单电路的仿真设计。
3.基于仿真结果,根据实验内容进行电路设计和分析。
四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。
2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。
3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。
4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。
5.运行仿真,观察电路的响应曲线和频率特性。
6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。
7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。
8.根据实验要求,记录仿真结果并撰写实验报告。
五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。
根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。
通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。
根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。
我们还可以通过改变电路参数来观察电路的变化。
例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。
而增大电阻值则可以增加滤波器的阻带特性。
通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。
六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。
通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。
通过本次实验,我还发现了电路设计和分析的一些问题和挑战。
电工实验报告-基本电路的仿真实验

xxxx大学信控学院实验报告课程名称:电工技术与电子技术实验成绩:实验名称:基本电路的仿真实验班级: 3 姓名:学号:实验日期:教师签字:实验二十九基本电路的仿真实验——仿真实验一一、实验目的1.熟悉EWB仿真软件的使用2.学会用EWB仿真软件分析交流电路,并利用仿真仪器观察RLC电路的频率特性3.通过EWB仿真,观察RC电路的暂态过程及微分电路和积分电路的工作波形二、实验内容与步骤1.RC暂态电路观察并记录电路的充电、放电波形,测量充电时间常数和放电时间常数(1)Timebase=0.5s/div, ChannelA=5V/Div, ChannelB=5V/Div放电常数=200ms,充电常数=1.17s改变电路参数,观察时间常数对电容充放电波形的影响。
(2)Timebase=1.00s/ds, ChannelA=5V/Div, ChannelB=5V/Div(增大Timebase)放电常数=200ms,充电常数=1.15s(3)Timebase=0.2s/dv, ChannelA=5V/Div, ChannelB=5V/Div(减小Timebase)放电常数=205ms,充电常数=1.27s(4)Timebase=0.5s/dv, ChannelA=10V/Div, ChannelB=5V/Div(增大ChannelA)放电常数=220ms,充电常数=1.27s(5)Timebase=0.5s/dv, ChannelA=2V/Div, ChannelB=5V/Div(减小ChannelA)放电常数=220ms,充电常数=1.27s2. 微分电路观察并记录微分电路的输入、输出电压波形,标出输出脉冲的周期和幅值。
输出脉冲的周期=1.0000.ms幅值V1=10.0000V,V2=7.0765V3.积分电路观察并记录积分电路的输入、输出电压波形,标出输出波形的最大值和最小值。
波形VB最大值=6.1940V,周期1.0000ms4.单相交流RLC串联电路电路截图:(输出频率3kHz—6kHz)(1)在谐振曲线上读出谐振频率f0,下限截止频率f L和上限截止频率f H,并计算谐振电路的通频带F0=4.260kHz fl=4.116kHz f2=4.391kHz通频带f=0.131kHz谐振曲线:(2) 改变电阻R=100 ,观察幅频特性的变化,再读出谐振频率f0、下限截止频率f L和上限截止频率f H,计算通频带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机原理及接口技术电路仿真实验报告实验一:独立式键盘与LED显示示例例4—17:功能:数码管的数据端与P0口引脚采用正序,试编写程序,分别实现功能:上电后数码管显示“P”,按下任何键后,显示从“0”开始每隔1秒加1,加至“F”后,数码管显示“P”,进入等待按键状态。
Keil编程:电路图:初始状态时:3秒后:程序:TEMP EQU 30HORG 0000HJMP STARTORG 0100HSTART:MOV SP,#5FHMOV P0,#8CHMOV P3,#0FFH NOKEY:MOV A,P3CPL AJZ NOKEYMOV TEMP,P3CALL D10msMOV A,P3CJNEA,TEMP,NOKEYMOV R7,#16MOV R2,#0LOOP:MOV A,R2MOVDPTR,#CODE_P0MOVCA,@A+DPTRMOV P0,AINC R2SETB RS0CALL D_1SCLR RS0DJNZ R7,LOOPJMP STARTD_1S:MOV R6,#100D10:CALL D10msDJNZ R6,D10RETD10ms:MOV R5,#10D1ms:MOV R4,#249DL:NOPNOPDJNZ R4,DLDJNZ R5,D1msRETCODE_P0:DB0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8HDB80H,90H,88H,83H,0C6H,0A1H,86H,8EHEND例4—18:功能:执行程序时,先显示“P”1、按键K0按下后,数码管显示拨动开关S3~S0对应的十进制值;2、按键K1按下后,P0口数码管显示拨动开关S3~S0对应的十六进制值;3、按键K2按下后,P2口数码管显示拨动开关S3~S0对应的十六制值;4、按键K3按下后,数码管显示拨动开关S3~S0状态对应的ASCII码。
Keil编程:电路图:K0按下,S0~S3闭合时:K1按下,S0~S3闭合:K2按下,S0~S3闭合:K3按下,S0~S3闭合:程序:ORG 0000HJMP STARTORG 0100H START:MOV SP,#5FHMOV P0,#8CHMOV P3,#0FFH KEY0:JB P3.0,KEY1CALL D10msJNB P3.0,$MOV A,P3CPL AANL A,#0F0HSWAP ADA APUSH ACCANL A,#0FHMOV DPTR,#CODE_P2MOVC A,@A+DPTRMOV P2,APOP ACCANL A,#0F0HSWAP AMOV DPTR,#CODE_P0MOVC A,@A+DPTRMOV P0,AJMP KEY0KEY1:JB P3.1,KEY2CALL D10msJNB P3.1,$MOV A,P3CPL AANL A,#0F0HMOV DPTR,#CODE_P0MOVC A,@A+DPTRMOV P0,AMOV P2,#0FFHJMP KEY0KEY2:JB P3.2,KEY3CALL D10msJNB P3.2,$MOV A,P3CPL AANL A,#0F0HSWAP AMOV DPTR,#CODE_P2MOVC A,@A+DPTRMOV P2,AMOV P0,#0FFHJMP KEY0KEY3:JB P3.3,KEY0CALL D10msJNB P3.3,$MOV A,P3CPL AANL A,#0F0HSWAP APUSH ACCCLR CSUBB A,#0AHPOP ACCJC LPLP:ADD A,#30HPUSH ACCANL A,#0FHMOV DPTR,#CODE_P2MOVC A,@A+DPTRMOV P2,APOP ACCANL A,#0F0HSWAP AMOV DPTR,#CODE_P0MOVC A,@A+DPTRMOV P0,AJMP KEY0D10ms:MOV R5,#10D1ms:MOV R4,#249DL:NOPNOPDJNZ R4,DLDJNZ R5,D1msRETCODE_P0:DB0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8HDB80H,90H,88H,83H,0C6H,0A1H,86H,8EHCODE_P2:DB03H,9FH,25H,0DH,99H,49H,40H,1FHDB01H,09H,11H,0C1H,63H,85H,61H,71HEND实验二:矩阵式键盘与LED显示示例例4—19功能:执行程序时,在P0口数码管显示“P”,然后根据所按的按键在P2口数码管显示对应十六进制键号。
Keil编程:电路图:按下开关7时:按下开关B时:程序:LNUM EQU 30HORG 0000HJMP STARTORG 0100H START:MOV SP,#5FHMOV LNUM,#4MOV P0,#8CHCLR F0ST1:CALL MAKEYJNB F0,ST1ANL A,#0FHMOV DPTR,#CODE_P2MOVC A,@A+DPTRMOV P2,AJMP START MAKEY:CALL KEYHNJNZ HAVEJMP NRET HAVE:CALL D10msCALL KEYHNJNZ TRUEJMP NRET TRUE:MOV R1,#0EFHMOV R4,#0 SCAN:MOV A,R1MOV P1,AMOV A,P1JB ACC.0,L1MOV A,#0JMP KEYNUML1:JB ACC.1,L2MOV A,#4JMP KEYNUML2:JB ACC.2,L3MOV A,#8JMP KEYNUML3:JB ACC.3,NEXTMOV A,#0CHKEYNUM:ADD A,R4PUSH ACCUPKEY:CALL KEYHNJNZ UPKEYPOP ACCSETB F0JMP HRETNRET:CLR F0HRET:RETNEXT:INC R4MOV A,R1DJNZ LNUM,NDONEJMP NRETNDONE:RL AMOV R1,AJMP SCANKEYHN:MOV P1,#0FHMOV A,P1CPL AANL A,#0FHRETD10ms:MOV R5,#10D1ms:MOV R4,#249DL:NOPNOPDJNZ R4,DLDJNZ R5,D1msRETCODE_P2:DB03H,9FH,25H,0DH,99H,49H,40H,1FHDB01H,09H,11H,0C1H,63H,85H,61H,71HEND例4—20功能:执行程序时,在P0口数码管显示“P”,然后根据所按的按键在P2口数码管显示对应十六进制键号。
Keil编程:电路图:开关5按下时:开关C按下时:程序:ORG 0000HJMP MAINORG 0100H MAIN:MOV SP,#5FHMOV P0,#8CHCLR F0ST1:CALL MAKEYJNB F0,ST1MOV A,R3MOV DPTR,#CODE_P2MOVC A,@A+DPTRMOV P2,AJMP MAIN MAKEY:CALL KEYHNJNZ HAVEJMP NRET HAVE:CALL D10msCALL KEYHNJNZ TRUEJMP NRET TRUE:CPL AANL A,#0FHMOV B,AMOV P1,#0F0HMOV A,P1ANL A,#0F0HKEYNUM:ORL B,AMOVDPTR,#KEY_TABMOV R3,#0SCTAB:MOV A,R3MOVC A,@A+DPTRCJNE A,B,NEXTPUSH ACCUPKEY:CALL KEYHNJNZ UPKEYPOP ACCSETB F0JMP HRETNRET:CLR F0HRET:RETNEXT:INC R3JMP SCTABKEYHN:MOV P1,#0FHMOV A,P1CPL AANL A,#0FHRETD10ms:MOV R5,#10D1ms:MOV R4,#249DL:NOPNOPDJNZ R4,DLDJNZ R5,D1msRETKEY_TAB:DB0EEH,0DEH,0BEH,7EH,0EDH,0DDH,0BDH,7DHDB0EBH,0DBH,0BBH,7BH,0E7H,0D7H,0B7H,77HCODE_P2:DB03H,9FH,25H,0DH,99H,49H,40H,1FHDB01H,09H,11H,0C1H,63H,85H,61H,71HEND。