[VIP专享]模拟电路仿真实验报告

合集下载

电子电路仿真实验报告

电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。

实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。

2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。

(2)进行仿真实验,记录各个参数数据。

(3)分析实验结果,了解电源电路的工作原理和性能。

3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。

结果表明,当开关频率增加时,电路的效果也增强。

(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。

4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。

掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。

通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。

电路仿真与实践实验报告第一次试验报告

电路仿真与实践实验报告第一次试验报告

电路仿真与实践实验报告第一次试验一、实验要求1.分析第二章到第七章例题中电路的功能与仪表2.分析课后习题3.10,7.6,7.8二、实验环境Windows XP Multisim 11三、仿真内容与步骤1、第二章1)测试晶体管输出特性曲线电路仪表:IV-Analysis2)音频放大器仿真电路器件:电阻、电容、晶体管、场效应管、交流电源、直流电源3)音频放大电路仪表:信号发生器、示波器4)共源极场效应放大电路器件:场效应管、电阻、电容2、第三章1)+5V稳压电路仪表:LM7805、V oltmeter2)添加多页连接器的+5V稳压电路器件:78053)+15V稳压电路仪表:LM7815、V oltmeter4)添加多页连接器的+15V稳压电路器件:78155)-15V稳压电路仪表:LM7915、V oltmeter6)添加多页连接器的-15V稳压电路仪表:LM79157)+5V稳压电路仪表:lm7805、V oltmeter8)数字钟晶振时基仿真电路仪表:示波器3、第四章1)100进制升降计数器安捷伦示波器输出显示仪表:Agilent 54622D示波器2)测试晶体管输出特性曲线电路仪表:IV图示仪3)仪表:Tektronic TDS 2024型数字示波器4)正弦波产生电路仪表:Agilent33120A函数发生器、Oscilloscope示波器5)Agilent33120A函数发生器产生按指数上升函数仪表:Agilent33120A函数发生器、Oscilloscope示波器6)10位倒计时仪表:Agilent 示波器7)测量直流电压比率电路仪表:Agilent万用表8)共发射极三极管放大电路仪表:波特图仪9)电流探针应用电路仪表:电流探针、Oscilloscope示波器10)仪表:函数信号发生器、Oscilloscope示波器11)仪表:静态探针DescriptionBox设置12)显示李沙育图形仪表:Oscilloscope示波器13)用逻辑分析仪观察字信号发生器的输出仪表:Logic Analyzer、Word Generator14)电路功能电路输出Y=AB+AB’+BC仪表:逻辑转换仪15)频率计应用仪表:频率计16)混频电路仪表:频谱分析仪17)三极管放大电路仪表:失真分析仪18)信号运算电路仪表:四通道示波器19)用Tektronic TDS 2024型数字示波器完成FFT运算仪表:Tektronic TDS 2024型数字示波器20)测量电路功率与功率因数仪表:瓦特表、万用表21)数字万用表测电压仪表:数字万用表22)RF仿真电路仪表:网络分析仪23)字信号发生器产生循环二进制数仪表:字信号发生器4、第五章1)BJT Analyzer2)Impedance Meter阻抗表3)Microphone,示波器4)Signal Analyzer,示波器5)Signal Generator,示波器6)Microphone,speaker7)Signal Generator,示波器5、第七章1)电路功能:振荡器电路2)电路功能:参数扫描分析3)电路功能:传递函数分析4)电路功能:单一频率交流分析5)电路功能:傅里叶分析6)电路功能:交流分析7)电路功能:灵媒度分析8)电路功能:零-极点分析9)电路功能:蒙特卡罗分析10)电路功能:批处理分析11)电路功能:失真分析12)电路功能:瞬态分析13)电路功能:温度扫描分析14)电路功能:线宽分析仪表:Ammter,示波器15)电路功能:噪声分析16)电路功能:噪声系数分析17)电路功能:直流工作点分析18)电路功能:直流扫描分析19) 电路功能:最坏情况分析6、习题3.10电路波形图实验发现:当三角波幅值大时,所得到的正弦波密集,频率高。

电路仿真实验报告

电路仿真实验报告

Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

2.实验内容实验19-1 基本单管放大电路的仿真研究(2)静态工作点理论上,由V E=1.2V得:I E=V E/(R E1+R E2)=1mA,I B=I E/(β+1)=16.39uA,I C=βI B=0.9836mA;U CE=Vcc- I C*Rc-V E=7.554V。

实测值I B =13.995uA,Ic=0.9916mA,U CE=7.521V;相对误差分别为14.63%,0.817%,0.438%(3)电压放大倍数理论值r be=1.886kΩ,Au=-14.0565实测值Au=-13.8476,相对误差1.486%(4)波特图观察电压放大倍数为Au=-13.8530,下限截止频率为17.6938Hz,上限截止频率为18.07MHz,带宽为18.07MHz。

(5)用交流分析功能测量幅频和相频特性。

(6)加大输入信号强度,观测波形失真情况。

失真度为31.514%(7)测量输入电阻、输出电阻。

测输入电阻:U rms=1.00mV,I rms=148nA,则输入电阻R i= U rms/I rms=6.757kΩ;测输出电阻:空载时U oO=14.0mV,带载时U oL=10.6mV,R L=10kΩ,则输出电阻R o=(U oO/U oL-1)* R L =3.208kΩ(8) 将R E1去掉,R E2=1.2kΩ,重测电压放大倍数,上下限截止频率及输入电阻,对比说明R E1对这三个参数的影响。

测得放大倍数Au=-95.2477,下限截止频率为105.7752Hz,上限截止频率为18.9111MHz,带宽为18.9110MHz,输入电阻R i=1.859kΩ。

由表易知,去掉R E1后电压放大倍数变大;上下截止频率都略有增加,通频带变宽;输入电阻变小。

模电仿真实验报告

模电仿真实验报告

模电仿真实验报告模电仿真实验报告引言模拟电子技术是电子工程中的重要分支,通过对电子电路的仿真实验,可以更好地理解和掌握电路的工作原理和性能特点。

本实验旨在通过模电仿真实验,探索和研究电路的性能参数及其相互关系,提高对电路的理论与实际应用的认识。

实验目的本次模电仿真实验的主要目的是研究和分析RC电路的频率响应特性,并通过仿真实验验证理论计算结果的准确性。

具体目标如下:1. 理解RC电路的基本原理和频率响应特性;2. 通过仿真实验测量RC电路的频率响应曲线,并与理论计算结果进行对比分析;3. 掌握模电仿真软件的基本操作和参数设置。

实验原理RC电路是由电阻(R)和电容(C)组成的一种基本电路,其频率响应特性是指电路在不同频率下对输入信号的响应程度。

根据理论计算,RC电路的频率响应曲线呈现低通滤波特性,即在低频时通过输入信号的幅度较大,而在高频时则衰减较快。

实验步骤1. 搭建RC电路:根据实验要求,选择合适的电阻和电容值,搭建RC电路。

2. 设置仿真参数:打开模电仿真软件,选择合适的电源和信号源,设置仿真参数。

3. 仿真实验:通过模电仿真软件进行RC电路的频率响应仿真实验,记录实验数据。

4. 数据分析:根据实验数据,绘制RC电路的频率响应曲线,并与理论计算结果进行对比分析。

5. 结果总结:总结实验结果,评价实验的准确性和实用性。

实验结果与分析根据实验步骤和原理,我们进行了RC电路的频率响应仿真实验,并得到了实验数据。

通过数据分析和计算,我们绘制了RC电路的频率响应曲线,并与理论计算结果进行了对比。

实验数据显示,随着频率的增加,RC电路的输出幅度逐渐减小,符合低通滤波特性。

而理论计算结果与实验数据吻合较好,验证了理论计算的准确性。

实验总结通过本次模电仿真实验,我们深入了解了RC电路的频率响应特性,并通过仿真实验验证了理论计算结果的准确性。

同时,我们也掌握了模电仿真软件的基本操作和参数设置,为今后的模电实验和电路设计提供了基础。

模拟电路实训报告

模拟电路实训报告

模拟电路实训报告实验一常用电子仪器的使用一、实验目的1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。

2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。

二、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。

它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。

实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。

接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。

信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。

图1-1 模拟电子电路中常用电子仪器布局图1、示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。

现着重指出下列几点:1)、寻找扫描光迹将示波器y轴显示方式置“y1”或“y2”,输入耦合方式置“gnd”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。

②触发方式开关置“自动”。

③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。

(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。

)2)、双踪示波器一般有五种显示方式,即“y1”、“y2”、“y1+y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。

“交替”显示一般适宜于输入信号频率较高时使用。

“断续”显示一般适宜于输入信号频率较底时使用。

3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的y通道。

4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。

电路仿真实验报告

电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。

二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。

2.使用电路仿真软件进行简单电路的仿真设计。

3.基于仿真结果,根据实验内容进行电路设计和分析。

四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。

2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。

3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。

4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。

5.运行仿真,观察电路的响应曲线和频率特性。

6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。

7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。

8.根据实验要求,记录仿真结果并撰写实验报告。

五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。

根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。

通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。

根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。

我们还可以通过改变电路参数来观察电路的变化。

例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。

而增大电阻值则可以增加滤波器的阻带特性。

通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。

六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。

通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。

通过本次实验,我还发现了电路设计和分析的一些问题和挑战。

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告
实验名称:模拟电路实验
实验目的:
1. 了解模拟电路的基本原理和设计方法。

2. 学会使用测试仪器测量电路的电压、电流和功率。

3. 掌握常见的模拟电路元件的特性和使用方法。

实验步骤:
1. 实验仪器准备:示波器、函数发生器、电压表、电流表、电阻箱等。

2. 搭建电路:根据实验要求,搭建所需的模拟电路。

例如,可以搭建一个简单的放大电路或滤波电路。

3. 测试电路:先使用示波器观察电路的输入输出波形,确定电路正常工作。

4. 测量电压和电流:连接电压表和电流表,测量各个元件的电压和电流。

5. 记录测量数据:将测量到的电压和电流数据记录下来,作为实验数据。

6. 分析数据:根据实验数据,计算电路的功率、增益等参数,并进行分析。

7. 总结实验:根据实验结果,总结实验的目的、过程和结论,并提出改进意见。

实验结果:
1. 经过测量和分析,得到了电路的输入输出特性、增益和频率响应等数据。

2. 绘制了电路的输入输出波形图和频率特性曲线。

3. 根据实验结果,总结了电路的工作原理和特点,并提出了改进建议。

实验结论:
通过本次实验,我们深入了解了模拟电路的工作原理和设计方法。

模拟电路在信号处理、放大和滤波等方面具有重要的应用价值。

掌握了模拟电路的测量方法和分析技巧,对以后的电路设计和故障排除有很大帮助。

Multisim模拟电路仿真实验报告

Multisim模拟电路仿真实验报告

一、实验目的1.认识并了解Multisim的元器件库;2.学习使用Multisim绘制电路原理图;3.学习使用Multisim里面的各种仪器分析模拟电路;二、实验内容【基本单管放大电路的仿真研究】1.仿真电路如图所示。

2.修改参数,方法如下:双击三极管,在Value选项卡下单击EDIT MODEL;修改电流放大倍数BF为60,其他参数不变;图中三极管名称变为2N2222A*;双击交流电源,改为1mV,1kz;双击Vcc,在Value选项卡下修改电压为12V;双击滑动变阻器,在Value选项卡下修改Increment值为0.1% 或更小。

三、数据计算1.由表中数据可知,测量值和估算值并不完全相同。

可以通过更精细地调节滑动变阻器,使V E更接近于1.2V.2.电压放大倍数测量值A u =−13.852985 ;估算值A u =−14.06 ;相对误差=−13.852985−(−14.06)−14.06×100% =−1.47%由以上数据可知,测量值和估算值并不完全相同,可能的原因有:1) 估算值的计算过程中使用了一些简化处理,如动态分析时视电容为短路,r be =300+(β+1)∙26I E等与仿真电路并不完全相同。

2) 仿真电路的静态工作点与理想情况并不相同,也会影响放大倍数。

3. 输入输出电阻验相同的原因外(不再赘述),还有:万用表本身存在电阻。

4.去掉R E1后,电压放大倍数增大,下限截止频率和上限截止频率增大,输入电阻减小。

说明R E1减小了放大倍数,增大了输入电阻。

四、感想与体会电子实验中,估算值与仿真值、仿真值与实际测量值往往并不完全一致。

在设计电路时可以通过估算得到大致的判断,再在电脑中进行仿真,最后再实际测量运行。

用电脑仿真是很必要的,一方面可以及早发现一些简单错误,防止功亏一篑,另一方面还可以节省材料和制作时间。

但必须考虑实际测量与仿真的不同之处,并应以实测值为准。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的
(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

二、实验内容
1.晶体管放大器
共射极放大器
(1)新建一个电路图(图1-1),步骤如下:
①按图拖放元器件,信号发生器和示波器,并用导线连接好。

②依照电路图修改各个电阻与电容的参数。

③设置信号发生器的参数为Frequency 1kHz,Amplitude 10mV,选择正弦波。

④修改晶体管参数,放大倍数为40,。

(2)电路调试,主要调节晶体管的静态工作点。

若集电极与发射极的电压差不在电压源的一半上下,就调节电位器,直到合适为止。

(3)仿真
图1-1
(↑图1)
(↓图2)
2.集成运算放大器
差动放大器
差动放大器的两个输入端都有信号输入,电路如图1-2所示。

信号发生器1设置成1kHz、10mV的正弦波,作为u i1;信号发生器2设置成1kHz、20mV的正弦波,作为u i2。

满足运算法则为:u0=(1+R f/R1)*(R2/R2+R3)*u i2-(R f/R1)*u i1
仿真图如图3
图1-2
图3
3.波形变换电路
检波电路
原理为先让调幅波经过二极管,得到依调幅波包络变化的脉动电流,再经过一个低通滤波器,滤去高频部分,就得到反映调幅波包络的调制信号。

电路图如图1-4,仿真结果如图4.
图1-4 调幅波检波电路
图4 调幅波检波电路仿真结果
三、结果分析
参数不同所得的波形不同,太大或太小都会失真。

四、仿真中遇到的问题
仿真中,Channel A的波看起来一直是一条直线,检查连线没有错误,更改参数也没有变化,微调Scale也看不出差别,此时继续调Scale,调到一定程度会看到波形。

五、使用Multisim的体会
我觉得Multisim这个软件主要有以下优点:
1) 基本器件库较全,如电源、电阻、三极管等等不仅有,而且有很多的种类。

2) 比较符合现实,我发现很多电路元件是可以自己制定其运行情况的(如可以把三极管设置成漏电等)这样在实际中更具有实用性。

3) 仿真结果与现实很接近。

个人觉得,软件真的实用性很强,可以在实验室以外的地方完成在实验室里要做的事,并且还能够使我们进一步加深对电路元件的理解。

相关文档
最新文档