(完整版)模拟电子电路实验报告

合集下载

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告模拟电路实验报告引言:模拟电路是电子工程中的重要组成部分,通过对电子元件的组合和连接,可以实现信号的放大、滤波、调节等功能。

本次实验旨在通过实际操作,加深对模拟电路原理的理解,并掌握相关实验技巧。

实验一:放大电路在本实验中,我们使用了一个基本的放大电路,包括一个电压源、一个输入信号源、一个放大器和一个输出负载。

实验的目的是研究放大器的放大倍数和频率响应。

实验过程中,我们首先将输入信号源连接到放大器的输入端,然后将输出负载连接到放大器的输出端。

接下来,我们调节电压源的输出电压,观察输出信号的变化情况。

通过改变输入信号的频率,我们可以观察到放大器的频率响应。

实验结果显示,当输入信号的幅度较小的时候,放大器的输出信号与输入信号基本一致,放大倍数接近1。

然而,当输入信号的幅度较大时,放大器的输出信号会出现失真。

此外,我们还发现放大器的频率响应在不同的频率下有所差异,频率越高,放大倍数越小。

实验二:滤波电路滤波电路是模拟电路中常用的一种电路,通过选择性地通过或阻断特定频率的信号,实现对信号的滤波处理。

本实验旨在研究RC滤波电路的频率响应。

在实验中,我们使用了一个RC滤波电路,包括一个电容和一个电阻。

我们首先将输入信号源连接到滤波电路的输入端,然后将输出信号连接到示波器上进行观察。

接下来,我们改变输入信号的频率,观察输出信号的变化情况。

实验结果显示,当输入信号的频率较低时,滤波电路基本不对信号进行滤波处理,输出信号与输入信号相似。

然而,当输入信号的频率增加时,滤波电路开始对信号进行滤波,输出信号的幅度逐渐减小。

当输入信号的频率高于滤波电路的截止频率时,滤波电路几乎完全阻断了信号的传递。

实验三:调节电路调节电路是模拟电路中常用的一种电路,通过对电子元件的调节,实现对电压、电流等信号的调节。

本实验旨在研究调节电路的工作原理和调节范围。

在实验中,我们使用了一个调节电路,包括一个电位器和一个负载电阻。

电子电路仿真实验报告

电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。

实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。

2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。

(2)进行仿真实验,记录各个参数数据。

(3)分析实验结果,了解电源电路的工作原理和性能。

3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。

结果表明,当开关频率增加时,电路的效果也增强。

(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。

4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。

掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。

通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。

元件模拟电路实验报告(3篇)

元件模拟电路实验报告(3篇)

一、实验目的1. 理解并掌握基本模拟电路元件(电阻、电容、电感)的特性及其在电路中的作用。

2. 掌握模拟电路的测试方法,包括伏安特性曲线的测量、阻抗测量等。

3. 培养实验操作技能,提高分析问题、解决问题的能力。

二、实验原理1. 电阻元件:电阻元件是模拟电路中最基本的元件之一,其特性表现为对电流的阻碍作用。

电阻元件的伏安特性曲线为直线,其斜率即为电阻值。

2. 电容元件:电容元件的特性表现为储存电荷的能力。

电容元件的伏安特性曲线为非线性,其斜率与电容值和电压值有关。

3. 电感元件:电感元件的特性表现为储存磁场能量的能力。

电感元件的伏安特性曲线为非线性,其斜率与电感值和电流值有关。

4. 电路测试方法:伏安特性曲线的测量方法为在电路中施加一定的电压,测量通过电路的电流,然后绘制电压与电流的关系曲线。

阻抗测量方法为测量电路的电压和电流,然后根据欧姆定律计算电路的阻抗。

三、实验器材1. 电阻元件:R1、R2、R3(不同阻值)2. 电容元件:C1、C2、C3(不同容量)3. 电感元件:L1、L2、L3(不同电感值)4. 直流稳压电源5. 电压表6. 电流表7. 示波器8. 电路实验板四、实验步骤1. 测量电阻元件的伏安特性曲线(1)将电阻元件R1、R2、R3分别接入电路,测量通过电阻元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电阻元件的伏安特性曲线。

2. 测量电容元件的伏安特性曲线(1)将电容元件C1、C2、C3分别接入电路,测量通过电容元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电容元件的伏安特性曲线。

3. 测量电感元件的伏安特性曲线(1)将电感元件L1、L2、L3分别接入电路,测量通过电感元件的电流和对应的电压值。

(2)根据测量的电压和电流值,绘制电感元件的伏安特性曲线。

4. 测量电路阻抗(1)将待测电路接入电路实验板,测量电路的电压和电流值。

(2)根据测量的电压和电流值,计算电路的阻抗。

模拟电路实验报告

模拟电路实验报告

模拟电路实验报告引言在当今电子科技快速发展的时代,模拟电路作为电子学的核心内容之一,具有非常重要的意义。

为了更好地理解和掌握模拟电路的基本原理和实验操作,我进行了一系列的模拟电路实验,并将在本报告中详细记录和总结这些实验的过程和结果。

实验一:二极管特性测量本实验旨在研究二极管的电流-电压特性曲线以及其稳定工作区间。

首先,我搭建了一个简单的电路,使用直流电压源和电阻串联连接二极管。

通过调整电压源的电压,记录了不同电压下二极管的电流,并绘制了电流-电压特性曲线。

从实验结果中我发现,二极管呈现出非线性的关系,且在正向偏置条件下,电流急剧增加,而在反向偏置时,电流非常微小。

这表明二极管可以作为电路中的开关元件使用。

实验二:放大电路设计与性能测试本实验主要研究了放大电路的基本设计原理和性能测试方法。

我首先根据输入信号和输出要求,选择了适当的放大电路拓扑结构,并设计了必要的电路参数。

然后,我搭建了实际的放大电路,使用函数发生器提供输入信号,并用示波器测量输出信号。

通过改变输入信号的频率和幅度,我分析了放大电路的频率响应和增益特性。

实验结果显示,该放大电路在设计要求范围内具有良好的性能。

实验三:滤波电路设计与特性分析滤波电路是模拟电路中常见的一种电路,用于滤除特定频率范围的信号。

本实验中,我设计并搭建了一个简单的低通滤波器电路。

通过改变输入信号的频率,我测试了滤波器在不同频率下的输出特性,并绘制了频率响应曲线。

实验结果表明,滤波器在截止频率以下具有较大的增益,而在截止频率以上则有较小的输出信号。

这证实了滤波电路能够将高频信号滤除保留低频信号。

实验四:直流稳压电源设计直流稳压电源在各种电子设备中都是必不可少的。

本实验中,我设计了一个基于稳压二极管的直流稳压电源电路,并进行了性能测试。

我将不同输入电压应用于电路,测量了输出电压的稳定性和纹波系数。

结果显示,该直流稳压电源在不同负载条件下能够保持较为稳定的输出电压,并且纹波系数较小。

模拟电子技术实验报告

模拟电子技术实验报告

模拟电子技术实验报告实验目的评估模拟电子技术的运用和实验结果的分析。

实验器材- 双踪示波器- 函数信号发生器- 直流稳压电源- 万用表- 电阻、电容等元器件实验步骤第一步:直流电压放大1. 按照电路图连接好电路,并将直流稳压电源输出设为10V。

2. 测量放大电路的直流放大倍数。

3. 将输入信号从0.1V逐渐增加到1V,并记录对应输出信号的电压值。

第二步:换流电路1. 按照电路图连接好电路,并将函数信号发生器的输出设为正弦波。

2. 测量换流电路的输出波形,并与输入波形进行比较。

第三步:集成运放1. 按照电路图连接好电路,并将输入信号设为三角波。

2. 测量集成运放输出波形,并与输入波形进行比较。

结果和分析1. 在直流电压放大实验中,测得电路的直流放大倍数为15.4倍,输出信号的失真略微增加。

这是因为理想的运放模拟电路在直流部分可以达到无穷大增益,但实际电路因为存在漏电、器件参数的不同导致实际相对稳定的直流增益不可能太高,而且正负电源电压限制了输出信号的动态范围。

2. 在换流电路实验中,我们通过不同的电容选择和欧姆电阻配合,完成了信号的正弦波变换成半波直流脉冲的效果。

但由于电路的非线性和欧姆电阻的不稳定,导致了输出信号有一定的失真和频率降低的现象。

3. 在集成运放实验中,我们实现了三角波的变幻成矩形波的目的。

理论上,集成运放的输入阻抗无限大,输出阻抗无穷小,所以输出信号理论上等于输入信号。

而实际中,集成运放输出信号会受到负载、电源电压波动等因素的影响,导致实际输出信号与理论信号有一定偏差。

总结通过本次模拟电子技术实验,我们学习了基本的模拟电路设计和调试方法,深入理解了运放的基本原理,对模拟电子技术的应用和实验结果的分析有了更深入的认识。

北京交通大学模拟电子电路实验报告

北京交通大学模拟电子电路实验报告

《模拟电子技术》课程实验报告集成直流稳压电源的设计语音放大器的设计集成直流稳压电源的设计一、实验目的1、 掌握集成直流稳压电源的设计方法。

2、 焊接电路板,实现设计目标3、 掌握直流稳压电源的主要性能指标及参数的测试方法。

4、 为下一个综合实验——语音放大电路提供电源。

二、技术指标1、 设计一个双路直流稳压电源。

2、 输出电压 Uo = ±12V , 最大输出电流 Iomax = 1A 。

3、 输出纹波电压 ΔUop-p ≤ 5mV , 稳压系数 S U ≤ 5×10-3 。

4、 选作:加输出限流保护电路。

三、实验原理与分析直流稳压电源的基本原理直流稳压电源一般由电源变压器T 、整流滤波电路及稳压电路所组成。

基本框图如下。

各部分作用:1、电源变压器:降低电压,将220V 或380V 的电网电压降低到所需要的幅值。

2、整流电路:利用二极管的单向导电性将电源变压器输出的交流电压变换成脉动的直流电压,经整流电路输出的电压虽然是直流电压,但有很大的交流分量。

直流稳压电源的原理框图和波形变换整流 电路U iU o滤波 电路 稳压 电路电源 变压器 ~3、滤波电路:利用储能元件(电感、电容)将整流电路输出的脉动直流电压中的交流成分滤出,输出比较平滑的直流电压。

负载电流较小的多采用电容滤波电路,负载电流较大的多采用电感滤波电路,对滤波效果要求高的多采用电容、电感和电阻组成的复杂滤波电路。

单向桥式整流滤波电路不同R L C的输出电压波形4、稳压电路:利用自动调整的原理,使输出电压在电网电压波动和负载电流变化时保持稳定,即输出电流电压几乎不变。

常用的稳压电路有两种形式:一是稳压管稳压电路,二是串联型稳压电路。

二者的工作原理有所不同。

稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。

它一般适用于负载电流变化较小的场合。

《模拟电子线路实验》实验报告

《模拟电子线路实验》实验报告

《模拟电子线路实验》实验报告实验报告一、实验目的通过模拟电子线路实验,掌握电子线路的基本原理和实验技巧,加深对电子线路的理论知识的理解。

二、实验设备实验中使用的设备有:示波器、万用表、信号发生器、电阻、电容、二极管等。

三、实验原理电子线路由电源、电阻、电容、电感、二极管等元件组合而成。

在电子线路中,电源提供电流,电流通过线路中的元件实现信号的处理和传递。

电阻限制电流的流动,电容储存电荷,电感储存磁场,二极管具有导通(正向偏置)和截止(反向偏置)的特性。

四、实验内容本次实验的实验内容主要包括以下几个方面:1.电阻的测量和串并联的实验(1)利用示波器和万用表对不同电阻值的电阻进行测量,并分析测量值和标称值之间的差异;(2)在电路中连接不同的电阻,并观察并分析串联和并联对电阻阻抗的影响。

2.电容的充放电实验(1)利用信号发生器输出方波信号,通过一个电阻将方波信号传到一个电容上进行充放电;(2)通过示波器观察电容充放电波形,分析电容的充放电过程。

3.二极管的直流分压和交流放大实验(1)利用电源和电阻构建一个二极管直流分压电路,通过示波器观察电路输出;(2)通过信号发生器产生正弦波信号,通过二极管放大电路增大信号幅度,并通过示波器观察放大后的信号。

五、实验结果1.电阻的测量和串并联的实验经测量,不同电阻的测量值与标称值相差较小,误差在可接受范围内。

串联电阻的总阻抗等于各个电阻之和,而并联电阻的总阻抗等于各个电阻的倒数之和。

2.电容的充放电实验通过示波器观察到电容的充放电过程,放电过程是指电容器通过一个电阻将储存的电荷逐渐释放,电压逐渐下降的过程;充电过程是指电容器内的电压逐渐增加,直到与输入信号的幅度相等,并保持恒定的过程。

3.二极管的直流分压和交流放大实验通过示波器观察到二极管直流分压电路的输出近似为输入信号的一半。

在交流放大实验中,增加了二极管和电容,使得输入信号的幅度得以增大,实现了信号的放大。

六、实验总结通过本次实验,我深入了解了电子线路的基本原理和实验技巧。

(完整word版)模电实验 模拟运算电路

(完整word版)模电实验 模拟运算电路

实 验 报 告一、 实验目的1.研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2.了解运算放大器在实际应用时应考虑的一些问题。

二、实验仪器1、THM-3A 模拟电路实验箱2、SS-7802A 双踪示波器3、MVT-172D 交流数字毫伏表4、数字万用电表5、集成运算放大器μA741×16、电阻10K ×4;100K ×3;1M Ω×17、电容器10μ×1三、原理摘要本实验采用的集成运放型号为μA741(或F007),引脚排列如图8-1所示,它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正、负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十千欧的电位器并将滑动触头接到负电源端。

⑧脚为空脚。

图8-1 μA741管脚图1.集成运放在使用时应考虑的一些问题(1)输入信号选用交、直流量均可, 但在选取信号的频率和幅度时,应考虑运放的频响特性和输出幅度的限制。

做线性运算电路实验时,要注意输入电压的取值应保证运放工作在线性区。

运放工作在线性区与输入电压有关;运放只有工作在深度负反馈时才工作在线性区;当运放工作在非线性区时,输出电压保持不变,其值取决于电源电压,且略小于电源电压。

μA741的输出最大值约在12-13V 左右。

(2)调零。

调零时,将输入端接地,调零端接入电位器R W ,用直流电压表测量输出电压U 0,细心调节R W ,使U 0为零(即失调电压为零)。

(3)消振。

一个集成运放自激时,表现为即使输入信号为零, 亦会有输出,使各种运算功能无法实现,严重时还会损坏器件。

在实验中,可用示波器监视输出波形。

2.理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益 A ud =∞、 输入阻抗 r i =∞、 输出阻抗 r o =0、 带宽 f BW =∞ 失调与漂移均为零等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一晶体管共射极单管放大器一、实验目的1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3、熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。

图2-1 共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算CC B2B1B1B U R R R U +≈U CE =U CC -I C (R C +R E ) 电压放大倍数beLC Vr R R βA // -=输入电阻R i =R B1 // R B2 // r be 输出电阻 R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大C EBE B E I R U U I ≈-≈器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I =≈算出I C (也可根据CCCC C R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。

为了减小误差,提高测量精度,应选用内阻较高的直流电压表。

2) 静态工作点的调试放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。

静态工作点是否合适,对放大器的性能和输出波形都有很大影响。

如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。

这些情况都不符合不失真放大的要求。

所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。

如不满足,则应调节静态工作点的位置。

(a) (b)图2-2 静态工作点对u O波形失真的影响改变电路参数U CC、R C、R B(R B1、R B2)都会引起静态工作点的变化,如图2-3所示。

但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。

图2-3 电路参数对静态工作点的影响最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。

所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。

如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

2、放大器动态指标测试放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。

1) 电压放大倍数A V的测量调整放大器到合适的静态工作点,然后加入输入电压u i,在输出电压u O不失真的情况下,用交流毫伏表测出u i和u o的有效值U i和U O,则iV U U A =2) 输入电阻R i 的测量为了测量放大器的输入电阻,按图2-4 电路在被测放大器的输入端与信号源之间串入一已知电阻R ,在放大器正常工作的情况下, 用交流毫伏表测出U S 和U i ,则根据输入电阻的定义可得R U U U RU U I U R i S iR i i i i -===图2-4 输入、输出电阻测量电路测量时应注意下列几点:① 由于电阻R 两端没有电路公共接地点,所以测量R 两端电压 U R 时必须分别测出U S 和U i ,然后按U R =U S -U i 求出U R 值。

② 电阻R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取R 与R i 为同一数量级为好,本实验可取R =1~2K Ω。

3) 输出电阻R 0的测量按图2-4电路,在放大器正常工作条件下,测出输出端不接负载 R L 的输出电压U O 和接入负载后的输出电压U L ,根据O LO LL U R R R U +=即可求出L LOO 1)R U U (R -= 在测试中应注意,必须保持R L 接入前后输入信号的大小不变。

4) 最大不失真输出电压U OPP 的测量(最大动态范围)如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。

为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节R W (改变静态工作点),用示波器观察u O ,当输出波形同时出现削底和缩顶现象(如图2-5)时,说明静态工作点已调在交流负载线的中点。

然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出U O (有效值),则动态范围等于0U 22。

或用示波器直接读出U OPP 来。

图 2-5 静态工作点正常,输入信号太大引起的失真5) 放大器幅频特性的测量放大器的幅频特性是指放大器的电压放大倍数A U 与输入信号频率f 之间的关系曲线。

单管阻容耦合放大电路的幅频特性曲线如图2-6所示,A um 为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的2/1倍,即0.707A um 所对应的频率分别称为下限频率f L 和上限频率f H ,则通频带 f BW =f H -f L放大器的幅率特性就是测量不同频率信号时的电压放大倍数A U。

为此,可采用前述测A U的方法,每改变一个信号频率,测量其相应的电压放大倍数,测量时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。

此外,在改变频率时,要保持输入信号的幅度不变,且输出波形不得失真。

6) 干扰和自激振荡的消除参考实验附录3DG 9011(NPN)3CG 9012(PNP)9013(NPN) 图 2-6 幅频特性曲线图2-7晶体三极管管脚排列三、实验设备与器件1、+12V直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、直流毫安表7、频率计 8、万用电表9、晶体三极管3DG6×1(β=50~100)或9011×1 (管脚排列如图2-7所示)电阻器、电容器若干四、实验内容实验电路如图2-1所示。

各电子仪器可按实验一中图1-1所示方式连接,为防止干扰,各仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接在公共接地端上。

1、调试静态工作点接通直流电源前,先将R W调至最大,函数信号发生器输出旋钮旋至零。

接通+12V电源、调节R W,使I C=2.0mA(即U E=2.0V),用直流电压表测量U B、U E、U C及用万用电表测量R B2值。

记入表2-1。

表2-1 I C=2mA测量值计算值U B(V)U E(V)U C(V)R B2(KΩ)U BE(V)U CE(V)I C(mA)2、测量电压放大倍数在放大器输入端加入频率为1KHz的正弦信号u S,调节函数信号发生器的输出旋钮使放大器输入电压U i 10mV,同时用示波器观察放大器输出电压u O波形,在波形不失真的条件下用交流毫伏表测量下述三种情况下的U O值,并用双踪示波器观察u O和u i的相位关系,记入表2-2。

表2-2 Ic=2.0mA U i= mVR C(KΩ)R L(KΩ) U o(V) A V观察记录一组u O和u1波形2.4 ∞1.2 ∞2.4 2.43、观察静态工作点对电压放大倍数的影响置R C=2.4KΩ,R L=∞,U i适量,调节R W,用示波器监视输出电压波形,在u O不失真的条件下,测量数组I C和U O值,记入表2-3。

表2-3 R C=2.4KΩ R L=∞ U i=mVI C(mA) 2.0U O(V)A V测量I C时,要先将信号源输出旋钮旋至零(即使U i=0)。

4、观察静态工作点对输出波形失真的影响置R C=2.4KΩ,R L=2.4KΩ, u i=0,调节R W使I C=2.0mA,测出U CE值,再逐步加大输入信号,使输出电压u0足够大但不失真。

然后保持输入信号不变,分别增大和减小R W,使波形出现失真,绘出u0的波形,并测出失真情况下的I C 和U CE值,记入表2-4中。

每次测I C和U CE值时都要将信号源的输出旋钮旋至零。

表2-4 R C=2.4KΩ R L=∞ U i=mVI C(mA) U CE(V) u0波形失真情况管子工作状态2.05、测量最大不失真输出电压置R C=2.4KΩ,R L=2.4KΩ,按照实验原理2.4)中所述方法,同时调节输入信号的幅度和电位器R W,用示波器和交流毫伏表测量U OPP及U O值,记入表2-5。

表2-5 R C=2.4K R L=2.4K*6、测量输入电阻和输出电阻置R C=2.4KΩ,R L=2.4KΩ,I C=2.0mA。

输入f=1KHz的正弦信号,在输出电压u o不失真的情况下,用交流毫伏表测出U S,U i和U L记入表2-6。

保持U S不变,断开R L,测量输出电压U o,记入表2-6。

表2-6 I c=2mA R c=2.4KΩ R L=2.4KΩ*7、测量幅频特性曲线取I C=2.0mA,R C=2.4KΩ,R L=2.4KΩ。

保持输入信号u i的幅度不变,改变信号源频率f,逐点测出相应的输出电压U O,记入表2-7。

表2-7 U i= mVf l f o f n为了信号源频率f取值合适,可先粗测一下,找出中频范围,然后再仔细读数。

相关文档
最新文档