点与圆的位置关系

合集下载

与圆有关的位置关系及切线定理

与圆有关的位置关系及切线定理

与圆有关的位置关系1、点与圆的位置关系如果圆的半径是r ,这个点到圆心的距离为d ,那么:(1)点在圆外⇔d >r ; (2)点在圆上⇔d =r ; (3)点在圆内⇔d <r ; 2、直线与圆位置关系的定义及有关概念(1)直线与圆有两个公共点,叫做直线与圆相交,这直线叫做圆的割线,公共点叫做交点. (2)直线和圆有一公共点时,叫做直线和圆相切,这直线叫做圆的切线,公共点叫做切点. (3)直线和圆没有公共点时,叫做直线和圆相离. 3、直线和圆的位置关系如果⊙O 的半径为r ,圆心O 到直线l 的距离为d ,那么 (1)直线l 和⊙O 相交⇔d <r ; (2)直线l 和⊙O 相切⇔d =r ; (3)直线l 和⊙O 相离⇔d >r ;典例精析例1:已知直线l :y =x -3和点A (0,3),B (3,0),设P 点为l 上一点,试判断P 、A 、B 是否在同一个圆上?例2:下列说法正确的是( )A. 过圆内接三角形的顶点的直线是圆的切线B. 若直线与圆不相切,则它和圆相交C. 若直线和圆有公共点,直线和圆相交D. 若直线和圆有唯一公共点,则公共点是切点例3:设直线l 到⊙O 的圆心的距离为d ,⊙O 的半径为R,并使20x R -+=,试根据关于x 的一元二次方程根的情况讨论l 与⊙O 的位置关系.3、圆和圆的位置关系⎧⎨⎩外离(没有公共点)(1)相离内含(包括同心圆) ()⎧⎨⎩外切(2)相切有一个公共点内切(3)相交(有两个公共点)注:两圆同心是两圆内含的一种特例.2、两圆的位置与两圆的半径、圆心距之间的数量关系 设两圆的半径分别为R 和r ,圆心距为d ,那么 (1)两圆外离⇒d >R +r (2)两圆外切⇒d =R +r (3)两圆相交⇒R -r <d <R +r(4)两圆内切⇒d =R -r (5)两圆内含⇒d <R -r典例精析例1:已知两个圆的半径分别为2、3,圆心距是d ,若两圆有公共点,则d 的取值范围为______. 例2:已知⊙O 1和⊙O 2内切,圆心距为7cm ,⊙O 1的半径为8cm ,求⊙O 2的半径.DC BA例4:如图:⊙M 的半径为8cm ,⊙N 的半径为6cm ,MN =10cm ,两圆相交于A 、B 两点,连接AB 与MN 交于点C ,求AB 的长为多少?与相切有关的性质 定理 1、切线的性质定理:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切点的直线必经过切点. 推论2:经过切点且垂直于切点的直线必经过圆心. 2、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线. 3、切线的判定方法(1)定义:和圆只有一个公共点的直线是圆的切线;(2)数量关系:和圆心的距离等于半径的直线是圆的切线;(证长度) (3)定理:过半径外端且与这条半径垂直的直线是圆的切线.(证角度) 两圆相切与相交的性质:(1)如果两圆相切,那么两圆的连心线经过切点;(2)两圆相交,连心线垂直平分相交圆的公共弦。

点、直线、圆与圆的位置关系

点、直线、圆与圆的位置关系
知识点一、平面内点和圆的位置关系
平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内
当点在圆外时,d>r;反过来,当d>r时,点在圆外。
当点在圆上时,d=r;反过来,当d=r时,点在圆上。
当点在圆内时,d<r;反过来,当d<r时,点在圆内。
例1.如图1,已知矩形ABCD的边AB=4cm,AD=3cm。
(1)△ABC的形状是______,理由是______。
(2)求证:BC平分∠ABE;
(3)若∠A=60°,OA=2,求CE的长.
(3)若将图10-1中的半径OB所在直线向上平行移动到⊙O外的CF处,点E是DA的延长线与CF的交点,其他条件不变,如图10-3,那么上述结论CD=CE还成立吗?为什么?
题型四、切线长定理的运用
15.如图11,在△ABC中,O是△ABC的内心,若∠A=50°,则∠BOC=______。
16.如图12,在△ABC中,∠C=90°,AC=8,AB=10,点P在AC上,AP=2,若⊙O的圆心在线段BP上,且⊙O与AB、AC都相切,则⊙O的半径是______。
题型二、切线的判定
12.如图8,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径。求证:AE与⊙O相切。
题型三、切线性质的应用及拓展
13.如图9,点P为⊙O外一点,PA为⊙O的切线,A为切点,OP交⊙O于点B,点C为优弧AMB上一点,若∠P=28°,求∠ACB的度数。
外离 d>R+r
外切 d=R+r
相交 R-r<d<R+r
内切 d=R-r
内含 0≤d<R-r(其中d=0,两圆同心)

九年级点与圆的位置关系知识点

九年级点与圆的位置关系知识点

九年级点与圆的位置关系知识点我们生活中到处都是点和圆,而点与圆之间的位置关系是数学中非常重要的一个知识点。

在九年级的数学课程中,我们将学习点与圆的位置关系,探索它们之间的奥妙。

1. 点在圆内:当一个点位于一个圆的内部时,我们称它为圆的内点。

圆的内点与圆心之间的距离小于半径的长度。

这意味着,无论内点与圆的任何一点相连,线段的长度都小于半径。

这个性质对于我们判断几何图形的位置关系尤为重要。

2. 点在圆外:当一个点位于一个圆的外部时,我们称它为圆的外点。

圆的外点与圆心之间的距离大于半径的长度。

同样地,我们可以利用这个特性来推断几何图形的位置关系。

3. 点在圆上:当一个点位于一个圆上时,我们称它为圆的边点。

边点与圆心之间的距离等于半径的长度。

这意味着边点与圆心之间的连线就是圆的半径。

此外,边点还有一个特殊的性质,就是任何通过边点的直径都可以被边点所分成两段相等的弧。

4. 内切圆和外切圆:在九年级,我们还将学习内切圆和外切圆这两个重要的概念。

内切圆是指一个圆恰好与多边形的边相切,且圆的圆心位于多边形的内部。

外切圆则是指一个圆恰好与多边形的边相切,且圆的圆心位于多边形的外部。

通过这些概念,我们不仅可以研究多边形与圆的位置关系,还能够解决一些实际问题。

例如,我们可以利用内切圆和外切圆来设计最大面积或最小周长的形状。

5. 点与圆的判定问题:在九年级的数学课程中,我们还会学习如何判定一个点与一个已知圆的位置关系。

这需要我们掌握一些重要的定理和方法。

例如,切线定理可以帮助我们判断一个直线与圆的位置关系,弦切角定理则可以用来判断两条弧的位置关系。

此外,我们还可以使用勾股定理和三角形相似性来解决一些点与圆的位置关系问题。

在学习点与圆的位置关系时,我们不仅仅停留在理论层面,更要加强实际应用。

数学在现实生活中的应用非常广泛,点与圆的位置关系也不例外。

例如,我们可以利用圆与点的位置关系来设计游乐场、车辆行驶轨迹等等。

通过深入理解点与圆的位置关系,我们可以更好地认识和应用数学知识。

点与圆的位置关系

点与圆的位置关系
这种证明方法叫做反证法.
试试看!
用反证法证明(填空):在三角形的内角中, 至少有一个角大于或等于60° 已知:如图, ∠A,∠B,∠C是△ABC的内角
求证: ∠A,∠B,∠C中至少有一个角大 于或等于60度
假设所求证的结论不成立,即 B 证明 ∠A__60°, ∠B__60°,∠C__60° < < < 则 ∠A+∠B+∠C < 180度
圆外的点
圆上的点
圆内的点
平面上的一个圆,把平面上的点分成三类:圆上的 点,圆内的点和圆外的点。 圆的内部可以看成是到圆心的距离小于半径的的点的集 合 ; 圆 的 外 部 可 以 看 成 是 到圆心的距离大于半径的点的集合 。
典型例题
例:如图已知矩形ABCD的边AB=3厘米,AD=4厘 米
(1)以点A为圆心,3厘米为半径作 圆A,则点B、C、D与圆A的位置关系 如何? (B在圆上,D在圆外,C在圆外)
问:⊙O的半径6cm,当OP=6时, 点P在圆上 ;当OP <6 时点P 在圆内;当OP ≤6 时,点P不在 圆外。
画出由所有到已知点O的距离大于 或等于2CM并且小于或等于3CM的 点组成的图形。
O
O
问题:多少个点可以确定一个圆呢? 解决: 步骤1:过一点,可以画多少个圆?
步骤2:过两点,可以画多少个圆? 步骤3:过三个点,可以做多少个圆?
A
D
(2)以点A为圆心,4厘米为半径作圆A, 则点B、C、D与圆A的位置关系如何?
(B在圆内,D在圆上,C在圆外)
B
C
(3)以点A为圆心,5厘米为半径作圆A,则点B、C、 D与圆A的位置关系如何? (B在圆内,D在圆内,C在圆上)
问1:⊙O的半径10cm,A、B、C三点 到圆心的距离分别为8cm、10cm、 12cm,则点A、B、C与⊙O的位置关 系是: 点A在 圆内 ∵OA=8<10 ∴点A在圆内 点B在 圆上 ∵OB=10=10 ∴点B在圆上 点C在 圆外 ∵OC=12>10 ∴点C在圆外

点与圆、直线与圆、圆与圆的位置关系

点与圆、直线与圆、圆与圆的位置关系

初三数学总复习点与圆、直线与圆、圆与圆的位置关系一:【课前预习】(一):【知识梳理】1.点与圆的位置关系:有三种:点在圆外,点在圆上,点在圆内.设圆的半径为r,点到圆心的距离为d,则点在圆外⇔d>r.点在圆上⇔d=r.点在圆内⇔d<r.2.直线和圆的位置关系有三种:相交、相切、相离.设圆的半径为r,圆心到直线的距离为d,则直线与圆相交⇔d<r,直线与圆相切⇔d=r,直线与圆相离⇔d>r3.圆与圆的位置关系(1)同一平面内两圆的位置关系:①相离:如果两个圆没有公共点,那么就说这两个圆相离.②若两个圆心重合,半径不同观两圆是同心圆.③相切:如果两个圆只有一个公共点,那么就说这两个圆相切.④相交:如果两个圆有两个公共点,那么就说这两个圆相交.(2)圆心距:两圆圆心的距离叫圆心距.(3)设两圆的圆心距为d,两圆的半径分别为R和r,则①两圆外离⇔d>R+r;有4条公切线;②两圆外切⇔d=R+r;有3条公切线;③两圆相交⇔R-r<d<R+r(R>r)有2条公切线;④两圆内切⇔d=R-r(R>r)有1条公切线;⑤两圆内含⇔d<R—r(R>r)有0条公切线.(注意:两圆内含时,如果d为0,则两圆为同心圆)4.切线的性质和判定(1)切线的定义:直线和圆有唯一公共点门直线和圆相切时,这条直线叫做圆的切线.(2)切线的性质:圆的切线垂直于过切点的直径.(3)切线的判定:经过直径的一端,并且垂直于这条直径的直线是圆的切线.(二):【课前练习】1.△ABC中,∠C=90°,AC=3,CB=6,若以C为圆心,以r为半径作圆,那么:⑴当直线AB与⊙C相离时,r的取值范围是____;⑵当直线AB与⊙C相切时,r的取值范围是____;⑶当直线AB与⊙C相交时,r的取值范围是____.2.两个同心圆的半径分别为1cm和2cm,大圆的弦AB与小圆相切,那么AB=() A.3 B.23 C.3 D.43.已知⊙O1和⊙O2相外切,且圆心距为10cm,若⊙O1的半径为3cm,则⊙O2的半径 cm.4.两圆既不相交又不相切,半径分别为3和5,则两圆的圆心距d的取值范围是() A.d>8 B.0<d≤2C.2<d<8 D.0≤d<2或d>85.已知半径为3 cm,4cm的两圆外切,那么半径为6 cm且与这两圆都外切的圆共有_____个.二:【经典考题剖析】1.Rt△ABC中,∠C=90°,∠AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心1.3 cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;③以点C为圆心,2.5cm长为半径的圆与AB相交.上述结论中正确的个数是()A.0个 B.l个 C.2个 D.3个2.已知半径为3cm,4cm的两圆外切,那么半径为6cm且与这两圆都外切的圆共有___个.3.已知⊙O1和⊙O2的半径分别为3crn和5 cm,两圆的圆心距是6 cm,则这两圆的位置关系是()A.内含 B.外离 C.内切 D.相交4.如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=4,OA=3,则cos∠APO的值为()3344A B C D....45535.如图,已知PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC度数是()A.70° B.40° C.50° D.20°三:【课后训练】1.在△ABC中,∠C=90°,AC=3cm,BC=4cm,CM是中线,以C为圆心,以3cm长为半径画圆,则对A、B、C、M四点,在圆外的有_________,在圆上的有________,在圆内的有________.2.已知半径为3 cm,4cm的两圆外切,那么半径为6 cm且与这两圆都外切的圆共有_________个.3.已知两圆的半径分别为3 cm和4 cm,圆心距为1cm,那么两圆的位置关系是() A.相离 B.相交 C.内切 D.外切4.如图,A、B是⊙上的两点,AC是⊙O的切线,∠B=65○,则∠BAC等于()A.35○B.25○C.50○D.65○5.已知两圆的圆心距是3,两圆的半径分别是方程x 2-3x+2=0的两个根,那么这两个圆的位置关系是( )A .外离B .外切C .相交D .内切6.如图,已知两同心圆,大圆的弦AB 切小圆于M ,若环形的面积为9π,求AB 的长.7.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,∠APB=90°,OP=4,求⊙O 的半径.8.如图,△ABO 中,OA= OB ,以O 为圆心的圆经过AB 中点C ,且分别交OA 、OB 于点E 、F .(1)求证:AB 是⊙O 切线;(2)若△ABO 腰上的高等于底边的一半,且AB=4 3 ,求 ECF的长9.如图,CB 、CD 是⊙O 的切线,切点分别为B 、D ,CD 的延长线与⊙O 的直径BE 的延长线交于A 点,连OC ,ED .(1)探索OC 与ED 的位置关系,并加以证明;(2)若OD =4,CD=6,求tan ∠ADE 的值.10.如图,⊙O 的半径为1,过点A(2,0)的直线切⊙O 于点B,交y 轴于点C (1)求线段AB 的长(2)求以直线AC 为图象的一次函数的解析式C O A B x y。

点与圆的位置关系

点与圆的位置关系

点与圆有关的位置关系一、点与圆的位置关系:点P与⊙O的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔;rd>点P在圆上⇔;rd=点P在圆内⇔.rd<注意:OP长是两个点之间距离,不是点到直线距离,P点到圆心距离与半径大小关系决定P点与圆的位置关系.过已知点画圆:(1)过已知一点画圆→可画无数个圆→圆心无规律可循;(2)过已知两点画圆→可画无数个圆→圆心在连接两点的线段垂直平分线上;(3)过不在同一直线上的三点画圆→只可画一个圆→圆心是连接两点的线段垂直平分线的交点. 三角形的外接圆:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,这个三角形叫做这个圆的内接三角形.三角形的外心:三角形三条边垂直平分线的交点.(1)三角形的外心到三角形三个顶点的距离相等.(2)锐角三角形的外心在三角形的内部,直角三角形的外心是三角形的斜边中点,钝角三角形的外心在三角形的外部,反之成立.任何一个三角形都有唯一的外接圆反证法定义:不是直接从原题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.反证法的一般步骤:(1)假设命题的结论不成立;(2)推理得出矛盾;(3)得出结论.类型1. 点与圆的位置关系例1.如图,在ABCRt∆中,∠C=900,BC=3cm,AC=4cm,以B为圆心,以BC为半径作⊙B,问点A,C及AB、AC的中点D、E与⊙B有怎样的位置关系?变式题:如图,在矩形ABCD中,AB=3,AD=4,以A为圆心,使B、C、D三点中至少有一个点在圆内,至少有一个点在圆外,求此圆半径R的取值范围.例3. 如图⊙O的直径为10,弦AB=8,P是弦AB上的一个动点,那么OP长的取值范围是多少?例4. 如图是某平原地区的三个村庄A 、B 、C ,现计划新建一个电站,为了使变电站到三个村庄的距离相等,请你帮助规划者确定变电站P 的位置.例5. 在等腰三角形ABC 中B,C 为定点,且AC=AB ,D 是BC 的中点,以BC 为直径作⊙D ,回答下列问题:(1)∠A 等于多少度时,点A 在⊙D 上? (2)∠A 等于多少度时,点A 在⊙D 内?(3)∠A 等于多少度时,点A 在⊙D 外?类型2. 证明几个点在同一个圆上例1. 如图,已知菱形ABCD 的对角线为AC 和BD ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,求证:E 、F 、G 、H 四个点在同一个圆上.例2. 如图,∠A=∠C=∠D =900,求证:A 、B 、C 、D 、E 在同一个圆上.类型3. 不在同一直线上的三点确定一个圆例1. (1)已知一个三角形的三边长分别为6cm 、8cm 、10cm ,则这个三角形外接圆面积等于 2cm .(2) 下列说法正确的是( )A. 经过三个点一定可以作圆B. 任意一个圆一定有内接三角形,并且只有一个内接三角形C. 任意一个三角形一定有一个外接圆,并且只有一个外接D. 三角形的外心到三角形各边距离相A B C D O H E G F A E B C D . A . B . C例2. 如图,∆ABC 中AB=AC=10,BC=12,求∆ABC 的外接圆半径.类型4. 反证法例1. 求证:经过同一直线上的三个点不能作出一个圆.例2. 求证:在一个三角形中,至少有一个内角小于或等于600.例3. 用反证法证明:圆内不是直径的两条弦不能互相平分.例4. 用反证法证明:已知,如图AB ∥CD ,CD ⊥EF ,垂足是N ,求证:AB ⊥EF.作业:填空题: 1.若⊙O 的半径为r ,点A 到圆心O 的距离为d ,当点A 在圆外时,d ______r ;当点A 在圆上时,d ______r ;当点A 在圆内时,d ______r .2.在△ABC 中,∠C =90°,AC =2cm ,BC =4cm ,CM 是中线,以C 为圆心,以cm 5长为半径画圆,则A 、B 、C 、M 四点在圆外的有点______,在圆上的有点______,在圆内的有点______.3.已知⊙O 的半径为1,点P 与O 的距离为d ,且方程x 2-2x +d =0有实数根,则P 在 ⊙O 的______.4.过一点A 可作______个圆,过两点A 、B 可作______个圆,且圆心在线段AB 的______上,过三点A 、B 、C ,当这三点______时能且只能作一个圆,且圆心在______上.5.等边三角形的边长为6cm ,则它的外接圆的面积为______.6.在Rt △ABC 中,已知两直角边的长分别为6cm 和8cm ,那么Rt △ABC 的外接圆的面积是7.锐角三角形的外心在______,直角三角形的外心在______,钝角三角形的外心在______. 选择题:8.两个圆的圆心都是O ,半径分别为r 1和r 2,且r 1<OA <r 2,那么点A 在( )(A)⊙r 1内 (B)⊙r 2外EF AC9.⊙O的半径r=10cm,圆心到直线L的距离OM=8cm,在直线L上有一点P,且PM=6,则点P( )(A)在⊙O内(B)在⊙O上(C)在⊙O外(D)可能在⊙O内也可能在⊙O外10.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是( )(A)点P在⊙O内(B)点P在⊙O上(C)点P在⊙O外(B)点P在⊙O上或在⊙O外11.三角形的外心是( )(A)三条中线的交点(B)三条中垂线的交点(C)三条高的交点(D)三条角平分线的交点解答题:12.如图1,使用直尺和圆规确定如图所示的破残轮片的圆心位置.图113.点P到⊙O上的点的最大距离是6cm,最小距离是2cm,求⊙O的半径.14.某商场有三个销量较大的柜台,经理想修建一个收银台,使得三个柜台到收银台的距离相等.如果三个柜台的位置如图2所示,那么如何确定收银台的位置?图2问题探究:15.已知:如图3,三个边长为2a个单位长度的正方形如图所示方式摆放.图①图②图③∴______为所求作的圆.∴______为所求作的圆.(1)画出覆盖图①的最小圆;(2)将图①中上面的正方形向右平移a个单位长度,得到图②,请用尺规作出覆盖新图形的最小圆(不写作法,保留作图痕迹);(3)可以利用图③,比较(1)和(2)中的两个圆的大小,通过计算简要说明理由.。

圆与圆的位置关系

圆与圆的位置关系

题型三: 与两圆相切有关的问题 例2:求与圆x2+y2-2x=0外切且与直线 x 3 y 0 相切于点 (3, 3) 的圆的方程. 分析:先设出圆的方程(x-a) 2+(y-b) 2=r2 (r>0),利用 题设条件,得到关于a、b、r的三个方程,解方程组 求得a,b,r即可.
分析:因两圆的交点坐标同时满足两个圆的方程,联立方程组消去x2项、y2项,即 得两圆的两个交点所在的直线方程.利用勾股定理可求出两圆公共弦长.
解:(1) 联立方程得
2 2 ① x y 4 0 2 2 x y 4 x 4 y 12 0 ②
① - ② 得: x y 2 0 ③
2 方程④根的判别式 =(-2) -4 1 ( 3)
16 0
所以,方程④有两个不相等的实数根,则方程组有两组不同的实数 解,因此圆C1与圆C2相交。
2 2 2 2 例2:已知圆C1: x y 2 x 8 y 8 0 圆C2: x y 4 x 4 y 2 0


解:设所求圆的方程为 (x-a)2+(y-b) 2=r2 (r>0), 将x2+y2-2x=0化为标准形式(x-1) 2+y2=1,由题意可得
规律技巧:本题利用了待定系数法,设出所求圆的方程,根 据圆与圆相切,圆与直线相切的条件列出关于a,b,r的 方程组求解.
变式训练2:以(3,-4)为圆心,且与圆x2+y2=64内切的圆的 方程. 解:设所求圆的半径为r, 2 2 3 ( 4) | 8 r |, 则 ∴r=3或r=13, 故所求圆的方程为 (x-3) 2+(y+4) 2=9或(x-3) 2+(y+4) 2=169.

点和圆的位置关系

点和圆的位置关系

24.2.1 点和圆的位置关系教学内容1.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.不在同一直线上的三个点确定一个圆.3.三角形外接圆及三角形的外心的概念.4.反证法的证明思路.教学目标1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r及其运用.2.理解不在同一直线上的三个点确定一个圆并掌握它的运用.3.了解三角形的外接圆和三角形外心的概念.4.了解反证法的证明思想.复习圆的两种定理和形成过程,并经历探究一个点、两个点、•三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆.接下去从这三点到圆心的距离逐渐引入点P•到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题.重点:点和圆的位置关系的结论:不在同一直线上的三个点确定一个圆其它们的运用.难点:讲授反证法的证明思路.关键:由一点、二点、三点、•四点作圆开始导出不在同一直线上的三个点确定一个圆.教学过程一、复习引入(学生活动)请同学们口答下面的问题.1.圆的两种定义是什么?2.你能至少举例两个说明圆是如何形成的?3.圆形成后圆上这些点到圆心的距离如何?4.如果在圆外有一点呢?圆内呢?请你画图想一想.老师点评:(1)在一个平面内,线段OA绕它固定的一个端点O旋转一周,•另一个端点A所形成的图形叫做圆;圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形.(2)圆规:一个定点,一个定长画圆.(3)都等于半径.(4)经过画图知,圆外的点到圆心的距离大于半径;•圆内的点到圆心的距离小于半径.二、探索新知1、由上面的画图以及所学知识,我们可知:设⊙O的半径为r,点P到圆心的距离为OP=d则有:点P在圆外⇒d>r点P在圆上⇒d=r点P在圆内⇒d<r反过来,也十分明显,如果d>r⇒点P在圆外;如果d=r⇒点P在圆上;如果d<r⇒点P在圆内.因此,我们可以得到:设⊙O的半径为r,点P到圆的距离为d,则有:点P在圆外⇔d>r点P在圆上⇔d=r点P在圆内⇔d<r这个结论的出现,对于我们今后解题、判定点P是否在圆外、圆上、圆内提供了依据.2、研究确定圆的条件:(学生活动)经过一点可以作无数条直线,经过二点只能作一条直线,那么,经过一点能作几个圆?经过二点、三点呢?请同学们按下面要求作圆.(1)作圆,使该圆经过已知点A,你能作出几个这样的圆?(2)作圆,使该圆经过已知点A、B,你是如何做的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?(3)作圆,使该圆经过已知点A、B、C三点(其中A、B、C三点不在同一直线上),•你是如何做的?你能作出几个这样的圆?老师在黑板上演示:(1)无数多个圆,如图1所示.(2)连结A、B,作AB的垂直平分线,则垂直平分线上的点到A、B的距离都相等,都满足条件,作出无数个.其圆心分布在AB的中垂线上,与线段AB互相垂直,如图2所示.AlBACDOGF(1) (2) (3)(3)作法:①连接AB、BC;②分别作线段AB、BC的中垂线DE和FG,DE与FG相交于点O;③以O为圆心,以OA为半径作圆,⊙O就是所要求作的圆,如图3所示.在上面的作图过程中,因为直线DE与FG只有一个交点O,并且点O到A、B、C•三个点的距离相等(中垂线上的任一点到两边的距离相等),所以经过A、B、C三点可以作一个圆,并且只能作一个圆.即:也就是,经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.3、经过同一条直线上的三个点能作出一个圆吗?如图,假设过同一直线L上的A、B、C三点可以作一个圆,设这个圆l1P的圆心为P ,那么点P 既在线段AB 的垂直平分线L 1,又在线段BC 的垂直平分线L 2,•即点P 为L 1与L 2点,而L 1⊥L ,L 2⊥L ,这与我们以前所学的“过一点有且只有一条直线与已知直线垂直”矛盾.所以,过同一直线上的三点不能作圆.4、总结反证法的定义步骤在某些情景下,反证法是很有效的证明方法.例如:92页我们要证明AB ∥CD ,那么∠1=∠2.5、例1.某地出土一明代残破圆形瓷盘,如图所示.为复制该瓷盘确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心.分析:圆心是一个点,一个点可以由两条直线交点而成,因此,只要在残缺的圆盘上任取两条线段,作线段的中垂线,交点就是我们所求的圆心. 作法:三、巩固练习教材P93 练习1、2、3、4.四、归纳总结(学生总结,老师点评) 本节课应掌握:1、点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d ,则;;.P d r P d r P d r ⇔>⎧⎪⇔=⎨⎪⇔<⎩点在圆外点在圆上点在圆内 2.不在同一直线上的三个点确定一个圆. 3.三角形外接圆和三角形外心的概念. 4.反证法的证明思想. 5.以上内容的应用. 五、布置作业1.教材P101 复习巩固 1、2、3.课题检测一、选择题.1.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;•③圆有且只有一个内接三角形;④三角形的外心是各边垂直平分线的交点;⑤三角形的外心到三角形三边的距离相等;⑥等腰三角形的外心一定在这个三角形内,其中正确的个数有(• )A.1 B.2 C.3 D.42.如图,Rt△ABC,∠C=90°,AC=3cm,BC=4cm,则它的外心与顶点C的距离为().A.2.5 B.2.5cm C.3cm D.4cmB ACACDO3.如图,△ABC内接于⊙O,AB是直径,BC=4,AC=3,CD平分∠ACB,则弦AD长为()A.522 B.52C2 D.3二、填空题.1.经过一点P可以作_______个圆;经过两点P、Q可以作________•个圆,•圆心在_________上;经过不在同一直线上的三个点可以作________个圆,•圆心是________的交点.2.边长为a的等边三角形外接圆半径为_______,圆心到边的距离为________.3.直角三角形的外心是______的中点,锐角三角形外心在三角形______,钝角三角形外心在三角形_________.三、综合提高题.1.如图,⊙O是△ABC的外接圆,D是AB上一点,连结BD,并延长至E,连结AD,•若AB=AC,∠ADE=65°,试求∠BOC的度数.B CO2.如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图24-49所示,A、B、C•为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,•要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

35.1 点与圆的位置关系教学目标:1、掌握点与圆的三种位置关系及这三三种位置关系对应圆的半径与点到圆心距离之间数量关系、2、经历探索点与圆三种位置关系,体会数学分类讨论思考问题的方法、 教学重点: 用数量判定点与圆的位置关系、教学难点: 判定点与圆的位置关系、 教学过程:一、创设问题情境 1、足球运动员踢出的地滚球在球场上滚动,再其穿越中间圆形区域的过程中,足球与这个圆的位置关系呢?2、代号为"白沙"的台风经过了小岛A 。

在每一时刻,台风所侵袭的区域总就是以其中心为圆心的一个圆。

小岛在遭受台风袭击前后,她与台风的侵袭区域有什么不同的位置关系呢?二、合作探索1.点与圆有几种不同的位置关系?您还能举出类似的的实例不? 点与圆有三种位置关系:点在圆内,点在圆上,点在圆外。

2.如图表示点与圆的三种位置关系。

点P 在⊙O 内 点P 在⊙O 上 点P 在⊙O 外3、在您画出的三幅图中,分别测量点到圆心的距离d,并与圆的半径的r 大小进行比较、6.归纳与概括: 点在圆内 d<r 点在圆上 d=r 点在圆外 d>r三、典型例题1、 例:如图,在△ABC 中,∠C=90°,AB=5㎝,BC=4㎝,以A 为圆心 ,以3㎝为半径画圆,请您判断:(1) 点C 与⊙A 的位置关系(2) 点B 与⊙A 的位置关系(3) AB 的中点D 与⊙A 的位置关系PO2、练习:P36四、回顾与反思:点与圆的三种位置关系及这三三种位置关系对应圆的半径与点到圆心距离之间数量关系、五、作业:P36 1、2、335、2 直线与圆的位置关系教学目标:1使学生掌握直线与圆的三种位置以及位置关系的判定与性质。

2培养学生用运动变化的观点,去观察图形,研究问题的能力。

3渗透类比、分类、化归、数形结合的思想,指导相应的学习方法,使学生不仅学会数学,而且会学数学教学重点:掌握直线与圆的三种位置关系的性质与判定教学难点:如何引导学生发现隐含在图形中的两个数量d与r并加以比较。

教学过程:一、复习引入我们已经研究了点与圆的位置关系,回忆一下有几种情况?就是怎样判定各个位置关系的?点与圆的位置关系就是用什么方法研究?(演示投影或放录像)今天我们将借鉴这些方法与经验共同探讨在同一平面内“直线与圆的位置关系”(板书课题)二、探索、学习新知识1、直线与圆的位置关系①利用投影演示直线与圆的运动变化过程,要求学生观察,圆与直线的位置关系在哪些方面发生了变化?设法引导观察“公共点个数”的变化。

Ⅰ没有公共点Ⅱ有唯一公共点Ⅲ有两个公共点,②引导学生思考:Ⅰ直线与圆有三个(或三个以上)的公共点不?为什么?Ⅱ通过刚才的研究,您认为直线与圆的位置关系可分为几种类型?分类的标准各就是什么?③在此基础上,揭示直线与圆的位置关系的定义(板书)④提问:Ⅰ有人说:“直线与圆有一个公共点时,叫做直线与圆相切”,您说这句话对不?为什么?引导学生对照定义,揭示唯一的含义。

Ⅱ有人说:“当直线与圆相离时,直线与圆一定没有公共点”,您说对不?为什么?引导学生认识凡定义都可反过来作判定2、直线与圆的位置关系的判定与性质引导1:通过刚才的研究我们已经知道,借助公共点的个数可以判定,直线与圆的位置关系,那么请同学们思考一下,能否象判定点与圆的位置关系那样,用数量关系来判定直线与圆的位置关系呢?引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪些量呢?说出您的思考过程?引导3:如何用图形来反映半径与圆心到直线的距离,这两个量呢?(投影)引导4:如何由数量关系并结合观察图形判定相应的位置关系呢?从而板书判定(略)引导5:如何证明d>r 直线与圆相离(投影片)引导6:运用数量关系判定“直线与圆的位置关系”以及“点与圆的位置关系”有何区别与联系呢?引导7:以上三个判定,反过来成立不?为什么?由此得出性质。

3、指导学习方法小组讨论以下问题:(后全班交流,教师引导)①通过学习,对于如何研究图形之间的位置关系有何收获体会?②在运数量关系判定直线与圆的位置关系时,运用了“圆心到直线的距离”这一概念,回忆它的发现过程,对您有何启发?③通过比较数量关系判定“点与圆的位置关系”与“直线与圆的位置关系”的联系,您有何启发?(放投影片)4、巩固练习(投影片)(1)填表(2)填空:(a)⊙o与直线l至少有一个公共点,则半径r与d的关系d≤r(b)⊙o的半径为5cm,A在直线l上,且oA=5cm,则l与⊙o的关系相交或相切(c)⊙o直径为5cm,o到直线l的距离为4cm,则l与⊙o的关系相离(d)已知圆的半径就是8cm,若圆心到直线的距离分别就是①3cm②8cm③13cm,那么直线与圆的位置分别就是相交、相切、相离5、变式练习(投影片)(2)△ABC中,AB=5cm,BC=4cm,AC=3cm,Rt△若以C为圆,2cm长为半径画⊙C,则⊙C与AB的位置关系就是相离,若要使AB与⊙C相切,则⊙C的半径应就是2.4cm。

变式1:若以C为圆心,4cm长为半径画⊙C呢?(相交)这时直线AB叫什么?(割线)要使直线成为⊙C 的割线,⊙C的半径应在什么范围内取值?(r>2.4cm)相离呢?(r<2.4cm)变式2:若以A为圆心,3cm长为半径画⊙A,那么⊙A的切线就是哪条直线?(BC)并指出切点(C),并观察切线。

BC相对于⊙A半径AC的位置特点。

三:小结1、直线与圆的位置关系的定义,性质,判定。

(放投影片,巩固练习<1>的表格)。

2、研究图形之间位置关系的方法:常常通过观察图形的运动变化去发现其本质特征。

3、明确类比,联想就是学习数学常用的方法,体会本节得教学中渗透的数学思想、分类、化归、数学结合等。

四:作业:P39 练习2 P40 3、4、5、6五:课后思考:(放投影片)⑴垂直于半径的直线就是圆的切线不?⑵过半径外端的直线就是圆的切线不?⑶过半径的一端且垂直于半径的直线就是圆的切线不?⑷过半径的外端垂直于半径的直线就是圆的切线不?板书设计:35、3探索切线的性质教学目标:1、使学生掌握切线的识别方法,并能初步运用它解决有关问题。

2、通过对定理的猜想与证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.3、培养学生自主探究,勇于发现,善于解决问题的能力。

教学重点切线的性质探究教学难点方法的理解及实际运用教学用具:多媒体课时:一课时教学过程(一)复习情境导入:1、复习、回顾直线与圆的三种位置关系.2、请学生判断直线与圆的位置关系.学生判断的过程,提问:您就是怎样判断出图中的直线与圆相切的?根据学生的回答,继续提出问题:如何界定直线与圆就是否只有一个公共点?教师指出,根据切线的定义可以识别一条直线就是不就是圆的切线,但有时使用定义识别很不方便,为此我们还要学习识别切线的其它方法.(板书课题)(二)实践与探索1、分别指出下面各圆中圆与直线m就是哪一种位置关系?圆心与直线m的距离d与半径r间有何关系:2、根据圆的判定定理,一条直线要成为圆的切线,需要具备哪两个条件?答:1、性质定理的证明:如图:如果直线AT就是⊙o的切线,A为切点,那么AT与半径OA一定垂直不?切线的性质定理:圆的切线垂直于经过切点的半径2、性质定理的推论:推论1:经过圆心且垂直于切线的直线必过切点推论2:经过切点且垂直于切线的直线必过圆心预备练习:1、已知:如图:在△ABC中,AC与⊙O相切于点C,BC过圆心),∠BAC=63°,求∠ABC的度数。

2、已知:如图:AB就是⊙O的弦,AC切⊙于点A,且∠BAC=54°,求∠OBA的度数。

例:如果在地球赤道上空同样高度的位置上放置等距的三颗地球同步通信卫星,使卫星发射的信号刚好能够覆盖全部赤道,那么卫星高度应就是什么 (地球半径R≈6370km)分析:我们把赤道瞧成一个圆,同样高度且等距的三颗卫星的信号刚好覆盖全部赤道,等同于一个等边三角形的三边与赤道所在的圆都相切练习:课本P43作业:小结:1、切线的性质定理:圆的切线垂直于经过切点的半径2、性质定理的推论:推论1:经过圆心且垂直于切线的直线必过切点推论2:经过切点且垂直于切线的直线必过圆心35、4切线的判定教学目标:1、了解切线的概念,探索切线与过切点的半径之间的关系。

2、探索并掌握识别切线的方法。

3、增强学生应用数学的意识,逐步培养学生的创新意识。

教学重点:切线的判定定理教学难点:切线判定定理的理解及实际运用教法方法:1、在教学中,组织学生自主观察、分析,深刻理解切线的判定定理与性质定理及其推论,并归纳切线的几种判定方法与切线的性质;2、在教学中,以“理解定理——归纳概括——应用”为主线,开展在教师组织下,以学生为主体,活动式教学.教学用具:多媒体课时:一课时教学过程:一、新课导入1、直线与圆的位置关系有几种?2、雨天转动雨伞,观察水珠顺着什么方向飞出?这就就是我们今天要研究的直线与圆相切的情况。

二、讲解新课1、切线的判定画⊙O及半径OA,画一条直线l过半径OA的外端点,且垂直于OA,观察直线与圆有几个交点?仅有一个交点,即直线l与⊙O相切。

结论:经过半径外端,且垂直于这半径的直线就是圆的切线。

请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可不?总结切线的识别方法:⑴直线与圆只有一个交点,⑵d=r时就就是切线,⑶过半径外端且垂直与半径。

2、三角形的内切圆试一试:一张三角形铁皮,如何在它上面截一个面积最大的圆形铁皮。

分析:画圆应先定圆心,后定半径。

在△ABC内只需作各内角的平分线交于点I,以I为圆心,I到AB的距离为半径作圆,则⊙I必与△ABC的三条边都相切。

与三角形各边相切的圆叫做三角形的内切圆。

三角形的内切圆的圆心叫做三角形的内心。

这个三角形叫做圆的外切三角形。

内心就就是三角形三条内角平分线的交点。

内心与外心类比:名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形的内部.内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三边的距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.三、知识巩固:例1、判断:(1)经过半径外端的直线就是圆的切线. (2)垂直于半径的直线就是圆的切线.(3)过直径的外端并且垂直于这条直径的直线就是圆的切线. (4)与圆有一个公共点的直线就是圆的切线. 采取学生抢答的形式进行,并要求说明理由,例2、如图,已知直线AB经过⊙O上的点A,且AB=OA,∠OBA=45°直线AB就是⊙O的切线不?为什么?例3、如图,线段AB经圆心O,交⊙O与点A、C,∠BAD=∠B≡30°边BD交圆与点D,BD就是⊙O的切线不?为什么?例4、如图,半径3㎝的⊙O切AC与B,AB=3㎝,BC=3,则∠AOC度数就是。

相关文档
最新文档