北师大版高一数学必修2试卷及答案

合集下载

最新高一数学题库 北师大版高一数学必修2试卷及答案

最新高一数学题库 北师大版高一数学必修2试卷及答案

高一数学必修2考试卷十二厂中学 屈丽萍一、选择题(本大题共12小题,每小题5分,共60分)1、已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.则该几何体的体积为( )(A )48 (B )64 (C )96 (D )1922、已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB |=( )A 、|x 1-x 2|B 、|y 1-y 2|C 、 x 2-x 1D 、 y 2-y 13.棱长都是1的三棱锥的表面积为( )B.4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对5、已知正方体外接球的体积是323π,那么正方体的棱长等于 ( D ) (A) (B)3 (C)3 (D)36、若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m 7、如图,在正方体1111ABCD A B C D -中,E F G H ,,,分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( )A F D BC G E 1BH 1C 1D1AA.45° B.60° C.90° D.120°8、方程(x-2)2+(y+1)2=1表示的曲线关于点T (-3,2)的对称曲线方程是: ( )A 、 (x+8)2+(y-5)2=1B 、(x-7)2+(y+4)2=2C 、 (x+3)2+(y-2)2=1D 、(x+4)2+(y+3)2=29、已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为: ( )A 、7B 、-5C 、3D 、-110、方程x 2+y 2-x+y+m=0表示圆则m 的取值范围是 ( )A 、 m ≤2B 、 m<2C 、 m<21D 、 m ≤2111、过直线x+y-2=0和直线x-2y+1=0的交点,且垂直于第二直线的直线方程为 ( )A 、+2y-3=0B 、2x+y-3=0C 、x+y-2=0D 、2x+y+2=012、圆心在直线x=y 上且与x 轴相切于点(1,0)的圆的方程为: ( )A 、(x-1)2+y 2=1B 、(x-1)2+(y-1)2=1C 、(x+1)2+(y-1)2=1D 、(x+1)2+(y+1)2=1二、填空题:(每小题5分,共20分)13、直线x=2y-6到直线x=8-3y 的角是 。

北师大版高中数学必修第二章测试题及答案

北师大版高中数学必修第二章测试题及答案

高一年级数学学科必修一(第二章)质量检测试卷 (斗鸡中学)一. 一、选择题:共10个小题,每小题6分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 下列判断正确的是( )A 函数22)(2--=x xx x f 是奇函数 B 函数()(1f x x =-是偶函数C 函数()f x x =+D 函数1)(=x f 既是奇函数又是偶函数2 若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( ) A)23(-f >)252(2++a a f B )23(-f <)252(2++a a fC)23(-f ≥)252(2++a a f D )23(-f ≤)252(2++a a f3 已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A 2a ≤-B 2a ≥-C 6-≥aD 6-≤a4 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( )A {}|303x x x -<<>或B {}|303x x x <-<<或C {}|33x x x <->或D {}|3003x x x -<<<<或5 已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( )A 2-B 4-C 6-D 10-6 已知函数()()0f x x a x a a =+--≠,()()()2200x x x h x x x x ⎧-+>⎪=⎨+≤⎪⎩,则()(),f x h x 的奇偶性依次为( )A 偶函数,奇函数 奇函数,偶函数C 偶函数,偶函数D 奇函数,奇函数7.若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( )A (],40-∞B [40,64]C (][),4064,-∞+∞UD [)64,+∞8 已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A 3a ≤-B 3a ≥-C 5a ≤D 3a ≥9. 下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2()2f x ax bx =++与x 轴没有交点,则280b a -<且0a >;(3) 223y x x =--的递增区间为[)1,+∞;(4) 1y x =+和y =表示相等函数其中正确命题的个数是( )A 0B 1C 2D 310 某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题:本题共4小题,每小题4分,满分16分,请把答案填在题中横线上 1 设()f x 是R 上的奇函数,且当[)0,x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =_____________________2 若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是3 已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=_____4 若1()2ax f x x +=+在区间(2,)-+∞上是增函数,则a的取值范围是____________三、解答题1 求下列函数的定义域(本小题共三小题,每小题4分,总分12分)(1)y = (2)11122--+-=x x x y(3)xx y ---=111112(本小题满分12分)判断一次函数,b kx y +=反比例函数x ky =,二次函数c bx ax y ++=2的 单调性3 判断下列函数的奇偶性(本小题满分12分)(1)()22f x x =+- (2)[][]()0,6,22,6f x x =∈--U4 (本小题满分12分)已知函数()f x 的定义域为()1,1-,且同时满足下列条件: (1)()f x 是奇函数; (2)()f x 在定义域上单调递减;(3)2(1)(1)0,f a f a -+-<求a 的取值范围5 (本小题满分12分)已知函数[]2()22,5,5f x x ax x =++∈-① 当1a =-时,求函数的最大值和最小值; ② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数6 (本小题满分14分)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值参考答案一选择题1C 2 C 3 B 4 D 5 D 6 .D 7 .C 8 . A 9. A 10.B 二填空题 1(1x 2 0a >且0b ≤ 372 4 1(,)2+∞三 解答题1 解:当0k >,y kx b =+解:(1)∵8083,30x x x +≥⎧-≤≤⎨-≥⎩得∴定义域为[]8,3-(2)∵222101011,110x x x x x x ⎧-≥⎪-≥=≠=-⎨⎪-≠⎩得且即∴定义域为{}1-(3)∵0111021101011x x x x x x x x x x ⎧⎪⎧⎪⎪-≠⎪<⎪⎪⎪⎪-≠≠-⎨⎨-⎪⎪⎪⎪≠-≠⎪⎪-⎩⎪-⎪-⎩得∴定义域为11,,022⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭U 2. :当0k >,y kx b =+在R 是增函数,当0k <,y kx b =+在R 是减函数; 当0k >,ky x =在(,0),(0,)-∞+∞是减函数, 当0k <,ky x =在(,0),(0,)-∞+∞是增函数;当0a >,2y ax bx c =++在(,]2b a -∞-是减函数,在[,)2b a -+∞是增函数,当0a <,2y axbx c =++在(,]2b a -∞-是增函数,在[,)2b a -+∞是减函数3 解:(1)定义域为[)(]1,00,1-U ,则22x x +-=,()f x =∵()()f x f x -=-∴()f x =为奇函数(2)∵()()f x f x -=-且()()f x f x -=∴()f x 既是奇函数又是偶函数4 解:22(1)(1)(1)f a f a f a -<--=-,则2211111111a a a a -<-<⎧⎪-<-<⎨⎪->-⎩,5 解:2(1)1,()22,a f x x x =-=-+对称轴min max 1,()(1)1,()(5)37x f x f f x f ===== ∴max m ()37,()1in f x f x ==(2)对称轴,x a =-当5a -≤-或5a -≥时,()f x []5,5-上单调 ∴5a ≥或5a ≤-6 解:(1)当0a =时,2()||1f x x x =++为偶函数, 当0a ≠时,2()||1f x x x a =+-+为非奇非偶函数; (2)当x a <时,2213()1(),24f x x x a x a =-++=-++ 当12a >时,min 13()()24f x f a ==+, 当12a ≤时,min ()f x 不存在;当x a ≥时,2213()1(),24f x x x a x a =+-+=+-+ 当12a >-时,2min ()()1f x f a a ==+, 当12a ≤-时,min 13()()24f x f a =-=-+。

北师大版数学必修试题及答案

北师大版数学必修试题及答案

高一数学必修二模块考试题命题人:高一年级组 侯雪慧参考公式: 球的表面积公式S球24R π=,其中R 是球半径.锥体的体积公式V锥体13Sh =,其中S 是锥体的底面积,h 是锥体的高. 台体的体积V台体1()3h S S '=,其中,S S '分别是台体上、下底面的面积,h 是台体的高.球的体积公式V 球343R π=,其中R 是球半径.一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、 图(1)是由哪个平面图形旋转得到的 ( )A B C D2.若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A . 相交B . 异面C . 平行D .异面或相交 3.在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( )A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45角 D 、11AC 与1B C 成60角4.正三棱锥的底面边长为6,高为3,则这个三棱锥的全面积为( ) A.39 B.183 C.9(3+6) D.65.如果两个球的体积之比为8:27,那么两个球的表面积之比为 ( ) A.8:27 B. 2:3 C.4:9 D. 2:96、有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:( )A.24πcm 2,12πcm 3B.15πcm 2,12πcm 3C.24πcm 2,36πcm3D.以上都不正确7) A、8Лcm2B、12Лcm2C、16Лcm2D、20Лcm28、已知在四面体ABCD 中,E 、F 分别是AC 、BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角为( ) A、900B、450C、600D、3009、一个棱柱是正四棱柱的条件是 ( )A 、底面是正方形,有两个侧面是矩形B 、底面是正方形,有两个侧面垂直于底面C 、底面是菱形,且有一个顶点处的三条棱两两垂直D 、每个侧面都是全等矩形的四棱柱 10.下列四个命题① 垂直于同一条直线的两条直线相互平行; ② 垂直于同一个平面的两条直线相互平行; ③ 垂直于同一条直线的两个平面相互平行; ④ 垂直于同一个平面的两个平面相互垂直.其中错误..的命题有 ( ) A . 1个 B . 2个 C . 3 个 D . 4个11.已知各面均为等边三角形的四面体的棱长为2,则它的表面积是( )A .B .C .D . 12.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 ( ) A 、23 B 、76 C 、45 D 、56二、填空题(本大题共4小题,每小题6分,共24分)1.长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为_______________.2.如图:四棱锥V-ABCD 中,底面ABCD 是边长为2的正方形,其他四个侧面 都是侧棱长为5的等腰三角形,则二面角V-AB-C 的平面角为 度3. 已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .4. 有下列命题:(m ,n 是两条直线,α是平面)○1若m ║α,n ║α,则m ║n ○2若m ║n ,n ║α,则m ║α ○3若 m ║α则m 平行于α内所有直线 ○4若m 平行于α内无数直线,则m ║α 以上正确的有 个 三、解答题(共66分)1、将圆心角为1200,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.2.如图,在四边形ABCD 中,,,,,AD=2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.3.作图(不要求写出作法,请保留作图痕迹)(1) 画出下图几何体的三视图(尺寸自定);(7分)(2) 画出一个底面直径为4cm,高为2cm的圆锥的直观图(6分)4、空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,且AC=BD,判断四边形EFGH的形状,并加以证明。

高中数学 第一章立体几何初步 1.3 三视图练习 北师大版必修2-北师大版高一必修2数学试题

高中数学 第一章立体几何初步 1.3 三视图练习 北师大版必修2-北师大版高一必修2数学试题

§3三视图A组1.一个圆柱的三视图中,一定没有的图形是()A.矩形B.圆C.三角形D.正方形解析:一个圆柱,不论怎样放置,三视图均不可能出现三角形.答案:C2.若一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.三棱锥D.圆锥答案:A3.如图,空心圆柱体的主视图是()答案:C4.导学号62180016若一个几何体的三视图如图所示,则该三视图表示的组合体为()A.圆柱与圆锥B.圆柱与三棱锥C.圆柱与四棱锥D.四棱柱与圆锥答案:C5.一个几何体的三视图如图所示,则该几何体的直观图可以是()解析:由俯视图易知,只有选项D符合题意.故选D.答案:D6.如图所示的立体图形,都是由相同的小正方体拼成的.(1)图①的主视图与图②的图相同;(2)图③的主视图与图④的主视图.(填“相同”或“不同”)答案:(1)俯视(2)不同7.如图所示是一个圆锥的三视图,则该圆锥的高为 cm.解析:由三视图知,圆锥的母线长为3 cm,底面圆的直径为3 cm,所以圆锥的轴截面是边长为3 cm 的等边三角形,所以圆锥的高为(cm).答案:8.已知某组合体的主视图与左视图相同(如图1所示,其中AB=AC,四边形BCDE为正方形),则该组合体的俯视图可以是如图2所示的.(把你认为正确的图的序号都填上)图1图2解析:由主视图与左视图可得该几何体可以是由正方体与底面边长相同的四棱锥组合而成的,则其俯视图为图①;可以是由正方体与底面直径与底面正方形边长相同的圆锥组合而成的,则其俯视图为图④;可以是由圆柱与底面相同的圆锥组合而成的,则其俯视图为图③;可以是由圆柱与底面正方形边长等于圆柱底面直径的四棱锥组合而成的,则其俯视图为图②.答案:①②③④9.一个几何体的三视图如图所示,请画出它的实物图.解:由三视图可知,该几何体由正方体和四棱柱组成,如图所示.10.导学号62180017如图所示是一个零件的实物图,画出这个几何体的三视图.解:该零件由一个长方体和一个半圆柱拼接而成,并挖去了一个小圆柱(形成圆孔).主视图反映了长方体的侧面和半圆的底面、小圆柱的底面,左视图反映了长方体的侧面、半圆柱的侧面、小圆柱的侧面,俯视图反映了长方体的底面、半圆柱的侧面和小圆柱的侧面投影后的形状.它的三视图如图所示.B组1.如图①②③分别为三个几何体的三视图,根据三视图可以判断这三个几何体依次分别为()图①图②图③A.三棱台、三棱柱、圆锥B.三棱台、三棱锥、圆锥C.三棱柱、正四棱锥、圆锥D.三棱柱、三棱台、圆锥解析:图①②③对应的原几何体分别是三棱柱、正四棱锥、圆锥,故选C.答案:C2.导学号62180018将正方体(如图1-(1)所示)截去两个三棱锥,得到图1-(2)中的几何体,则该几何体的左视图为(如图2所示)()图1图2解析:左侧被截去的三棱锥的底面三条边中,有两条与正方体的棱重合,另一条应为正方形自左上到右下的对角线,是可见的;右侧被截去的三棱锥的底面的三条边中,有两条与正方体的棱重合,另一条应为正方形自右上到左下(从左面看)的对角线,是不可见的.故选B.答案:B3.如图所示,已知正三棱柱ABC-A1B1C1的底面边长为2,高为3,则其左视图的面积为()A.6B.3C.3D.6解析:由三视图的画法可知,该几何体的左视图是一个矩形,其宽为2sin 60°=,长为3,故面积S=3.答案:C4.已知一几何体的主视图与左视图如图所示,则下列图形中,可以是该几何体的俯视图的图形有()A.①②③⑤B.②③④⑤C.①②④⑤D.①②③④解析:可以结合实物想象,对于①,可认为该几何体的最下部为棱柱,上部为两个圆柱;对于②,可认为该几何体的上部为两个棱柱,下部为圆柱;对于③,可认为该几何体的上部为圆柱,下部为两个棱柱;对于④,可认为该几何体的上部是底面为等腰直角三角形的棱柱,中间为一圆柱,底部为四棱柱;对于⑤,由原几何体最下部的两个视图可知,其俯视图不可能是一个三角形.答案:D5.如图所示,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为.解析:根据三视图还原成实物图,即四棱锥P-ABCD,所以最长的一条棱的长为PB=2.答案:26.已知三棱锥的直观图及其俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一直角边长为2的直角三角形,则该三棱锥的主视图面积为.解析:三棱锥的主视图如图所示,故主视图的面积为×2×2=2.答案:27.下图是一个几何体的三视图,试画出其实物图.解:由几何体的三视图容易想到该几何体可以由正方体切割而得到,如图所示.俯视图8.导学号62180019一个棱长均为6的正三棱锥,其俯视图如图所示,求其主视图的面积和左视图的面积.解:作出正三棱锥的直观图如图所示,E为BD的中点,AO为三棱锥的高,由三棱锥的放置方式知,其主视图为三角形,底面边长为BD=6,其高等于AO,其左视图为三角形,底面边长等于CE(中线)的长,其高等于AO.在Rt△BCE中,BC=6,BE=3,得CE=3,CO=×CE=2.在Rt△ACO中,AC=6,CO=2,则AO==2,故主视图面积为×6×2=6,左视图的面积为×3×2=9.。

北师大版高一数学必修2期末试题及答案

北师大版高一数学必修2期末试题及答案

斗鸡中学 刘 芳2009-2019学年度高中第一学期期末教学模块测试高一数学(必修2)试题参考公式:1)2S c c h ''+正棱台或圆台侧=(; S ch 正棱柱或圆柱侧=;12S ch '正棱锥或圆锥侧=;24S R π球面=;13V S S h 下台体上=(+;V sh 柱体=; V sh 锥体1=3; 343V R π球=第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.图为某物体的实物图,则其俯视图为( )2.若直线l 只经过第一、二、四象限,则直线l 的斜率k ( )A. 大于零B.小于零 D. 大于零或小于零 D. 以上结论都有可能 3.在空间直角坐标系中Q(1,4,2)到坐标原点的距离为A.21B. 21C.3D.74、 图(1)是由哪个平面图形旋转得到的( )A B C D5.四面体A BCD -中,棱AB AC AD ,,两两互相垂直,则顶点A 在底面BCD 上的投影H 为BCD △的( )A.垂心 B.重心 C.外心 D.内心6.一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28πcm B.212πcm C.22πcm D.220πcm7.一束光线从点A(-1,1)出发经x 轴反射,到达圆C: (x -2)2+(y -2)2=1上一点的最短路程是A. 4B. 5C. 32-1D.28.如下图,都不是正四面体的表面展开图的是( )A.①⑥ B.④⑤ C.③④ D.④⑥9.已知点(,2)(0)a a >到直线:30l x y -+=的距离为1,则a 等于( )B.21D.1+10.在平面直角坐标系中,直线3x y +=和直线2x y +=的位置关系是( )A.相交但不垂直 B.垂直 C.平行D.重合11.圆:22460x y x y +-+=和圆:2260x y x +-=交于A B ,两点,则AB 的垂直平分线的方程是( ) A.30x y ++=B.250x y --=C.390x y --= D.4370x y -+=12.过点(01)-,)的直线l 与半圆22:430(0)C x y x y +-+=≥有且只有一个交点,则直线l 的斜率k 的取值范围为( ) A.0k =或43k = B.113k <≤ C.43k =或113k <≤D.43k =或113k ≤≤二、填空题:本大题共6小题,每小题5分,共30分。

北师大版高一数学必修2测试题及答案

北师大版高一数学必修2测试题及答案

高一数学必修2测试题斗鸡中学 强彩虹一、 选择题(12×5分=60分)1、下列命题为真命题的是( )A. 平行于同一平面的两条直线平行;B.与某一平面成等角的两条直线平行;C. 垂直于同一平面的两条直线平行;D.垂直于同一直线的两条直线平行。

D.2、下列命题中错误的是:( )A. 如果α⊥β,那么α内一定存在直线平行于平面β;B. 如果α⊥β,那么α内所有直线都垂直于平面β;C. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面β;D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.3、右图的正方体ABCD-A ’B ’C ’D ’中,异面直线AA ’与BC 所成的角是( )A. 300B.450C. 600D. 9004、右图的正方体ABCD- A ’B ’C ’D ’中,二面角D ’-AB-D 的大小是( )A. 300B.450C. 600D. 9005、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=5-;C.a=2-,b=5;D.a=2-,b=5-.6、直线2x-y=7与直线3x+2y-7=0的交点是( )A (3,-1)B (-1,3)C (-3,-1)D (3,1)7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=08、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:( )A BA ’A.3aπ; B.2aπ; C.a π2; D.a π3.9、已知一个铜质的五棱柱的底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是( )A. 2cm;B.cm 34; C.4cm; D.8cm 。

10、圆x 2+y 2-4x-2y-5=0的圆心坐标是:( )A.(-2,-1);B.(2,1);C.(2,-1);D.(1,-2).11、直线3x+4y-13=0与圆1)3()2(22=-+-y x 的位置关系是:( ) A. 相离; B. 相交; C. 相切; D. 无法判定. 12、圆C 1: 1)2()2(22=-++y x 与圆C 2:16)5()2(22=-+-y x 的位置关系是( )A 、外离B 相交C 内切D 外切二、填空题(5×5=25)13、底面直径和高都是4cm 的圆柱的侧面积为 cm 2。

北师大数学必修二测试题附标准答案

北师大数学必修二测试题附标准答案

x y O x y O x y O xyO高一年级数学学科必修2第二章质量检测试题试卷学校:卧龙寺中学 命题人:吴亮 李丰明第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分)1.下列命题中为真命题地是 ( )A .平行直线地倾斜角相等B .平行直线地斜率相等C .互相垂直地两直线地倾斜角互补D .互相垂直地两直线地斜率互为相反 2. 在同一直角坐标系中,表示直线y ax =与y x a =+正确地是 ( )A .B .C .D .3.已知点(1,2)A 、(3,1)B ,则线段AB 地垂直平分线l 地方程是 ( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x4.如果直线022=++y ax 与直线023=--y x 平行,那么系数a 为 ( ) A .23-B .6-C .3-D .325.过直线013=-+y x 与072=-+y x 地交点,且与第一条直线垂直地直线l 地方程是( )A .073=+-y xB .0133=+-y xC .072=+-y xD .053=--y x 6.与圆02422=+-+y y x 相切,并在x 轴、y 轴上地截距相等地直线共有 ( ) A.6条 B.5条 C.4条 D.3条7.直线2x =被圆422=+-y a x )(所截得地弦长等于32,则a 地值为 ( )A 、-1或-3B 、22-或C 、1或3D 、3 8.已知1O :06422=+-+y x y x 和2O :0622=-+x y x 交于,A B 两点,则AB 地垂直平分线地方程是 ( )A.30x y ++= B.250x y --= C.390x y --=D.4370x y -+=9.两点)2,2(++b a A 、B ),(b a b --关于直线1134=+y x 对称,则 ( ) A.2,4=-=b a B.2,4-==b a C.2,4==b a D.2,4a b ==10.空间直角坐标系中,点(3,4,0)A -和点(2,1B -地距离是( )A .B .C .9 D二、填空题(本大题共6小题,每小题5分,共30分)把答案填第Ⅱ卷题中横线上11.直线x y 2=关于x 轴对称地直线方程为.12.已知点)1,1(P 和直线l :02043=--y x ,则过P 与直线l 平行地直线方程是,过点P 与l 垂直地直线方程是.13.直线l 经过直线0623=++y x 和0752=-+y x 地交点,且在两坐标轴上地截距相等,则直线l 地方程是______.14.圆心在直线270x y --=上地圆C 与y 轴交于两点(0,4)A -,(0,2)B -,则圆C 地方程为.15.已知点(,)M a b 在直线1543=+y x 上,则22b a +地最小值为16.经过)1,2(-A 和直线1x y +=相切,且圆心在直线x y 2-=上地圆地方程为________________________________.金台区高一年级数学学科必修2第二章质量检测试题参赛试卷第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)11.________________________12._______________________13._________________________14.______________________15._________________________16._______________________三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)求经过点)2,1(A且到原点地距离等于1地直线方程.18.(14分)已知一曲线是与两个定点(0,0)O 、(3,0)A 距离地比为21地点地轨迹,则求此曲线地方程.19.(14分) 求垂直于直线0743=--y x ,且与两坐标轴构成周长为10地三角形地直线方程20.(15分) 自点A(-3,3)发出地光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线L 所在直线地方程.21(15分)圆822=+y x 内有一点(1,2)P -,AB 为过点P 且倾斜角为α地弦, (1)当α=1350时,求AB ;(2)当弦AB 被点P 平分时,求出直线AB 地方程;(3)设过P 点地弦地中点为M ,求点M 地坐标所满足地关系式.高一年级数学学科必修2第二章质量检测试题试卷试卷说明学校:卧龙寺中学命题人吴亮李丰明一、命题意图解析几何是新课标中方程与几何部分地重点内容,其中既有一些几何图形基础,也蕴含了丰富地数形结合地思想方法,新课程标准要求重视数学之间地联系应用,培养和发展数学联系意识,所以本章内容一定会成为高考中地热点与重点.本套试题依据“重视基础,考察能力,体现导向,注重发展”地命题原则.注重学生地基础能力,同时考察学生地应用能力,体现了新课程标准数学应用地理念,更考察了学生在数学方面地运用能力以及核心知识地掌握情况,难度中等,对数学学科在新课程地理念下有很好地检测作用.二、试卷结构特点本试题是对高一数学必修2第二章“解析几何”地单元检测,满分150分,时间120分钟,分为Ⅰ卷和Ⅱ卷,共有试题21道,其中10道选择题,共50分;6道填空题,共30分;5道解答题,共70分.难度为中等水平,既有基础能力题,也有拔高扩展题.用基础题考察学生对知识地掌握能力,也同时用拔高题来提高学生地应变能力,为学生对数学意识地培养和在数学方面地应用打好一个基础.三、典型试题例说1.解答第17题:求经过点)2,1(A 且到原点地距离等于1地直线方程.【分析】此题看似简单,但学生极易做错,因为学生只考虑到斜率存在情况,而没有考虑到斜率不存在地情况,因此此题入手容易,得满分难.解:(1)当过点)2,1(A 地直线与x 轴垂直时,则点)2,1(A 到原点地距离为1,所以1=x 为所求直线方程.(2)当过点)2,1(A 且与x 轴不垂直时,可设所求直线方程为)1(2-=-x k y , 即:02=+--k y kx ,由题意有11|2|2=++-k k ,解得43=k , 故所求地直线方程为)1(432-=-x y ,即0543=+-y x . 综上,所求直线方程为1=x 或0543=+-y x .2. 解答第21题:圆822=+y x 内有一点(1,2)P -,AB 为过点P 且倾斜角为α地弦,(1)当α=1350时,求AB ;(2)当弦AB 被点P 平分时,求出直线AB 地方程;(3)设过P 点地弦地中点为M ,求点M 地坐标所满足地关系式.【分析】此题意在使学生理解数形结合地应用思想,要在几何图中勾画函数方程地思想,用函数方程来解决各种问题,正是体现了新课程标准下地“学有价值地数学”地理念.仍要留意不要被斜率不存在所蒙蔽.解:(1)过点O 做OG AB ⊥于G ,连结OA ,当α=1350时,直线AB 地斜率为-1,故直线AB 地方程x+y-1=0,∴OG=d=222100=-+,又∵r=22,∴2OA ===,∴2AB OA == (2)当弦AB 被P 平分时,OP AB ⊥,此时K OP =21-, ∴AB 地点斜式方程为0521212=+-+=-y x x y ),即(.(3)设AB 地中点为(,)M x y ,AB 地斜率为K ,OM AB ⊥,则⎪⎩⎪⎨⎧-=+=-x k y x k y 112)(, 消去K ,得:0222=+-+x y y x ,当AB 地斜率K 不存在时也成立,故过点P 地弦地中点地轨迹方程为:0222=+-+x y y x .参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分)二、填空题(本大题共6小题,每小题5分,共30分) 11.x y 2-=. 12.0143=+-y x 或0734=-+y x .13. 340x y +=或10x y ++= 14.22(2)(3)5x y -++= 15.316.22(1)(2)2x y -++=三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分)(1)当过点)2,1(A 地直线与x 轴垂直时,则点)2,1(A 到原点地距离为1,所以1=x 为所求直线方程. …………5分(2)当过点)2,1(A 且与x 轴不垂直时,可设所求直线方程为)1(2-=-x k y , 即:02=+--k y kx ,由题意有11|2|2=++-k k ,解得43=k , …………10分故所求地直线方程为)1(432-=-x y ,即0543=+-y x .综上,所求直线方程为1=x 或0543=+-y x . …………12分18.(14分)解:在给定地坐标系里,设点(,)M x y 是曲线上地任意一点,则||1.||2OM AM =…………4分由两点间地距离公式,点M 所适合地条件可以表示为21)3(2222=+-+y x y x ,…………8分 两边平方,得41)3(2222=+-+yx y x ,化简整理有:22230x y x ++-=, 化为标准形式:22(1)4x y ++=, …………12分所以,所求曲线是以C (-1,0)为圆心,2为半径地圆…………14分19.(14分)解:由所求直线能与坐标轴围成三角形,则所求直线在坐标轴上地截距不为0,故可设该直线在x 轴、y 轴上地截距分别为b a ,,又该直线垂直于直线0743=--y x ,且与两坐标轴构成周长为10地三角形,故有⎪⎩⎪⎨⎧=+++=10||||3422b a b a a b , …………9分 解得:52103a b ⎧=⎪⎪⎨⎪=⎪⎩或52103a b ⎧=-⎪⎪⎨⎪=-⎪⎩,…………12分所以所求直线方程为0103y 4x =-+或0103y 4x =++. …………14分20.(15分)解法一:,已知圆地标准方程是:(x-2)2+(y-2)2=1,它关于x 轴地对称圆地方程是(x-2)2+(y+2)2=1. …………5分设光线L 所在地直线地方程是y-3=k(x+3)(其中斜率k 待定), 由题设知对称圆地圆心C ′(2,-2)到这条直线地距离等于1,即…………10分整理得:12k 2+25k+12=0,解得k= -34或k= -43. …………13分故所求直线方程是y-3= -43(x+3),或y-3= -43(x+3),即3x+4y+3=0或4x+3y+3=0. …………15分解法二:已知圆地标准方程是:(x-2)2+(y-2)2=1,设光线L 所在地直线地方程是:y-3=k(x+3)(其中斜率k 待定), 由题意知k ≠0,则L 地反射点地坐标是(-3(1)k k +,0),因为光线地入射角等于反射角, 所以反射光线L '所在直线地方程为y= -k(x+3(1)k k+), 即y+kx+3(1+k)=0.这条直线与已知圆相切,故圆心到直线地距离为1,即以下同解法一21(15分)解:(1)过点O 做OG AB ⊥于G ,连结OA ,当α=1350时,直线AB 地斜率为-1,故直线AB 地方程x+y-1=0,∴OG=d=222100=-+, …………2分又∵r=22,∴OA ===2AB OA = …………5分 (2)当弦AB 被P 平分时,OP AB ⊥,此时K OP =21-, ∴AB 地点斜式方程为0521212=+-+=-y x x y ),即(. …………10分(3)设AB 地中点为(,)M x y ,AB 地斜率为K ,OM AB ⊥,则⎪⎩⎪⎨⎧-=+=-x k y x k y 112)(, 消去K ,得:0222=+-+x y y x ,当AB 地斜率K 不存在时也成立,故过点P 地弦地中点地轨迹方程为:0222=+-+x y y x . …………15分版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.eUts8。

北师大版高中数学必修第二册第一章测试题及答案

北师大版高中数学必修第二册第一章测试题及答案

北师大版高中数学必修第二册第一章测试题及答案(时间:120分钟满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是()A.3B.6C.18D.362.若-π2<α<0,则点P(tan α,cos α)位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知sinα+π6=45,则cosα-π3的值为()A.35B.45C.-45D.-354.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在()A.第一、三象限B.第二、四象限C.第一、三象限或在x轴的非负半轴上D.第二、四象限或在x轴的非负半轴上5.函数y=√sinx√|x|-x √log12(x+4)的定义域为()A.(-4,-π]B.[-π,-3]C.[-3,0]D.[0,+∞)6.函数f(x)=sinx+xcosx+x2在[-π,π]的图象大致为()7.把函数f(x)=sin2x+π3图象向左平移π4个单位后所得图象与y轴距离最近的对称轴方程为()A.x=π3B.x=-π6C.x=-π24D.x=11π248.已知函数f(x)=sin(2x+φ)满足f(x)≤f(a)对x∈R恒成立,则函数()A.f(x-a)一定为奇函数B.f(x-a)一定为偶函数C.f(x+a)一定为奇函数D.f(x+a)一定为偶函数二、多项选择题(本题共4小题,每小题5分,共20分)9.给出下列各三角函数值:①sin(-100°);②cos(-220°);③tan(-10);④cos π.其中符号为负的是()A.①B.②C.③D.④10.设函数f(x)=A sin(ωx+φ)A≠0,ω>0,|φ|<π2的图象关于直线x=2π3对称,它的周期是π,则()A.f(x)的图象过点0,12B.f(x)在区间5π12,2π3上是单调递减C.f(x)的一个对称中心是5π12,0 D.f(x)的最大值可能是-A11.将函数f(x)=√3cos2x+π3-1的图象向左平移π3个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是()A.最大值为√3,图象关于直线x=π12对称 B.图象关于y 轴对称 C.最小正周期为π D.图象关于点π4,0对称12.已知函数f (x )=A sin(ωx+φ)(其中A>0,ω>0,0<|φ|<π)的部分图象,则下列结论正确的是( )A.函数f (x )的图象关于直线x=π2对称B.函数f (x )的图象关于点-π12,0对称C.函数f (x )在区间-π3,π6上单调递增 D.函数y=1与y=f (x )-π12≤x ≤23π12的图象的所有交点的横坐标之和为8π3三、填空题(本题共4小题,每小题5分,共20分)13.sin (-23π6)+cos 13π7·tan 4π-cos 13π3= .14.在扇形中,已知半径为8,弧长为12,则圆心角是 弧度,扇形面积是 . 15.函数y=sin (x +π6),x ∈[0,π2]的值域是 .16.已知函数f (x )=12sin 2x,给出下列五个说法:①f (1 921π12)=14;②若f (x 1)=-f (x 2),则x 1=-x 2; ③f (x )在区间[-π6,π3]上单调递增;④将函数f (x )的图象向右平移3π4个单位可得到函数y=12cos 2x 的图象;⑤函数f(x)的图象关于点(-π4,0)成中心对称.其中说法正确的是(填序号).四、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)在“①y=f(x)图象的一条对称轴是直线x=π8,②f(0)=-√22,③y=f(x)的图象关于点7π8,0成中心对称”这三个条件中任选一个,补充在下面问题中,并作出详细解答.设函数f(x)=sin(2x+φ)(-π<φ<0),,求函数y=f(x)的单调递增区间.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)(1)化简:sin(2π-α)tan(α+π)tan(-α)cos(π-α)tan(3π-α);(2)计算:cos25π6+cos25π3+tan-25π4+sin5π6.19.(12分)已知函数f(x)=3tan(2x-π3).(1)求f(x)的定义域;(2)比较f(π2)与f(-π8)的大小.20.(12分)已知函数f(x)=A sin(ωx+φ)x∈R,A>0,ω>0,|φ|<π2的部分图象如图所示.(1)试确定f(x)的解析式;(2)若f(α2π)=12,求cos2π3+α2的值.21.(12分)已知函数f(x)=2sin(2x+π6)+a+1(其中a为常数).(1)求f(x)的单调区间.(2)若x∈[0,π2]时,f(x)的最大值为4,求a的值.(3)求出使f(x)取最大值时x的取值集合.22.(12分)已知点A (x 1,f (x 1)),B (x 2,f (x 2))是函数f (x )=2sin(ωx+φ)ω>0,-π2<φ<0图象上的任意两点,角φ的终边经过点P (1,-√3),且当|f (x 1)-f (x 2)|=4时,|x 1-x 2|的最小值为π3. (1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间;(3)当x ∈0,π6时,不等式mf (x )+2m ≥f (x )恒成立,求实数m 的取值范围.第一章测评(时间:120分钟 满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分)1.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是( )A.3B.6C.18D.36α,圆心角所对的弧长为l ,半径为r.因为l=|α|r ,所以6=1×r. 所以r=6.所以S=12lr=12×6×6=18.2.若-π2<α<0,则点P (tan α,cos α)位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限-π2<α<0,所以tan α<0,cos α>0,所以点P (tan α,cos α)位于第二象限.3.已知sin α+π6=45,则cos α-π3的值为( )A.35 B.45 C.-45 D.-35解析cos α-π3=cos α+π6−π2=sin α+π6=45.故选B .4.若|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在( ) A .第一、三象限 B .第二、四象限C .第一、三象限或在x 轴的非负半轴上D .第二、四象限或在x 轴的非负半轴上,cos θ≥0,tan θ≤0,所以θ的终边在x 轴的非负半轴上或在第四象限,故θ2的终边在第二、四象限或在x 轴的非负半轴上.5.函数y=√sinx√|x |-x√log 12(x +4)的定义域为( )A .(-4,-π]B .[-π,-3]C .[-3,0]D .[0,+∞),需满足{sinx ≥0,|x |-x >0,0<x +4≤1,即{2kπ≤x ≤2kπ+π,k ∈Z ,x <0,-4<x ≤-3,解得-4<x ≤-π.6.函数f (x )=sinx+xcosx+x 2在[-π,π]的图象大致为( )f (-x )=-f (x )及区间[-π,π]关于原点对称,得f (x )是奇函数,其图象关于原点对称,排除A .又f (π2)=1+π2(π2)2=4+2ππ2>1,f (π)=π-1+π2>0,排除B,C .故选D .7.把函数f (x )=sin 2x+π3图象向左平移π4个单位后所得图象与y 轴距离最近的对称轴方程为( ) A.x=π3 B.x=-π6 C.x=-π24D.x=11π24解析把函数f (x )=sin 2x+π3图象向左平移π4个单位后所得图象对应的解析式为y=sin 2x+π4+π3=cos 2x+π3,由2x+π3=k π(k ∈Z ),得对称轴方程为x=-π6+kπ2(k ∈Z ).当k=0时,可得对称轴为x=-π6,此时对称轴离y 轴距最近.故选B . 答案B8.已知函数f (x )=sin(2x+φ)满足f (x )≤f (a )对x ∈R 恒成立,则函数( ) A.f (x-a )一定为奇函数 B.f (x-a )一定为偶函数 C.f (x+a )一定为奇函数 D.f (x+a )一定为偶函数解析由题意得f (a )=sin(2a+φ)=1,则2a+φ=2k π+π2,k ∈Z ,所以f (x+a )=sin(2x+2a+φ)=sin 2x+2k π+π2=cos 2x ,此时函数为偶函数. 答案D二、多项选择题(本题共4小题,每小题5分,共20分)9.给出下列各三角函数值:①sin(-100°);②cos(-220°);③tan(-10);④cos π.其中符号为负的是( ) A.①B.②C.③D.④解析因为-100°角是第三象限角,所以sin(-100°)<0;因为-220°角是第二象限角,所以cos(-220°)<0;因为-10∈-72π,-3π,所以-10角是第二象限角,所以tan(-10)<0;cos π=-1<0.故选ABCD . 答案ABCD10.设函数f(x)=A sin(ωx+φ)A≠0,ω>0,|φ|<π2的图象关于直线x=2π3对称,它的周期是π,则()A.f(x)的图象过点0,12B.f(x)在区间5π12,2π3上是单调递减C.f(x)的一个对称中心是5π12,0D.f(x)的最大值可能是-AT=π,所以2πω=π,所以ω=2.又因为f(x)的图象关于直线x=2π3对称,所以2×2π3+φ=π2+kπ,k∈Z,又|φ|<π2,所以φ=π6.所以f(x)=A sin2x+π6.所以f(x)图象过点0,A2.又当x=5π12时,2x+π6=π,即f5π12=0,所以5π12,0是f(x)的一个对称中心.又因为A的值不能确定,所以A,B不一定正确.当A<0时,f(x)的最大值是-A.故D正确.11.将函数f(x)=√3cos2x+π3-1的图象向左平移π3个单位长度,再向上平移1个单位长度,得到函数g(x)的图象,则下列关于函数g(x)的说法正确的是()A.最大值为√3,图象关于直线x=π12对称 B.图象关于y 轴对称 C.最小正周期为πD.图象关于点π4,0对称解析将函数f (x )=√3cos 2x+π3-1的图象向左平移π3个单位长度,得到y=√3cos 2x+π3+π3-1=√3cos(2x+π)-1=-√3cos 2x-1的图象;再向上平移1个单位长度,得到函数g (x )=-√3cos 2x 的图象.对于函数g (x ),它的最大值为√3,由于当x=π12时,g (x )=-32,不是最值,故g (x )的图象不关于直线x=π12对称,故A 错误;由于该函数为偶函数,故它的图象关于y 轴对称,故B 正确;它的最小正周期为2π2=π,故C 正确;当x=π4时,g (x )=0,故函数g (x )的图象关于点π4,0对称,故D 正确.答案BCD12.已知函数f (x )=A sin(ωx+φ)(其中A>0,ω>0,0<|φ|<π)的部分图象,则下列结论正确的是( ) A.函数f (x )的图象关于直线x=π2对称B.函数f (x )的图象关于点-π12,0对称C.函数f (x )在区间-π3,π6上单调递增D.函数y=1与y=f (x )-π12≤x ≤23π12的图象的所有交点的横坐标之和为8π3解析由函数f (x )=A sin(ωx+φ)(其中A>0,ω>0,0<|φ|<π)的图象可得,A=2,T 4=2π3−5π12=π4,因此T=π,所以ω=2ππ=2,所以f (x )=2sin(2x+φ),又因为图象过点2π3,-2,所以f 2π3=2sin 4π3+φ=-2,即sin 4π3+φ=-1,因此4π3+φ=3π2+2k π,k ∈Z ,又0<|φ|<π,所以φ=π6,所以f (x )=2sin 2x+π6.当x=π2时,f π2=-1,故A错;当x=-π12时,f -π12=0,故B 正确;当x ∈-π3,π6,2x+π6∈-π2,π2,所以f (x )=2sin 2x+π6在x ∈-π3,π6上单调递增,故C 正确;当-π12≤x ≤23π12时,2x+π6∈[0,4π],所以y=1与函数y=f (x )有4个交点的横坐标为x 1,x 2,x 3,x 4,x 1+x 2+x 3+x 4=π6×2+7π6×2=8π3,故D 正确. 答案BCD三、填空题(本题共4小题,每小题5分,共20分)13.sin (-23π6)+cos 13π7·tan 4π-cos 13π3= .解析原式=-sin (4π-π6)+cos 13π7·0-cos 4π+π3=-sin (-π6)-cos π3=sin π6-cos π3=12−12=0.答案014.在扇形中,已知半径为8,弧长为12,则圆心角是 弧度,扇形面积是 .θ,则有θ=128=32弧度;扇形面积S=12×12×8=48.4815.函数y=sin (x +π6),x ∈[0,π2]的值域是 .x ∈[0,π2],所以π6≤x+π6≤2π3,所以12≤sin (x +π6)≤1,即原函数的值域为[12,1].[12,1]16.已知函数f (x )=12sin 2x,给出下列五个说法:①f(1921π12)=14;②若f(x1)=-f(x2),则x1=-x2;③f(x)在区间[-π6,π3]上单调递增;④将函数f(x)的图象向右平移3π4个单位可得到函数y=12cos 2x的图象;⑤函数f(x)的图象关于点(-π4,0)成中心对称.其中说法正确的是(填序号).正确,由已知得函数f(x)周期为π,f(1921π12)=f(π12)=12sinπ6=14;②错误,由f(x1)=-f(x2)=f(-x2),知x1=-x2+kπ或x1=π2+x2+kπ(k∈Z);③错误,令-π2+2kπ≤2x≤π2+2kπ(k∈Z),得-π4+kπ≤x≤π4+kπ(k∈Z),函数f(x)在每一个闭区间-π4+kπ,π4+kπ(k∈Z)上都单调递增,但[-π6,π3]不包含于[-π4+kπ,π4+kπ](k∈Z),故函数f(x)在区间[-π6,π3]上不是单调函数;④正确,将函数f(x)的图象向右平移3π4个单位可得到函数y=12sin 2(x-3π4)=12sin(2x-3π2)=12cos2x的图象;⑤错误,函数f(x)的对称中心的横坐标满足2x0=kπ,解得x0=kπ2,即对称中心的坐标为(kπ2,0)(k∈Z),故点(-π4,0)不是其对称中心.四、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)在“①y=f (x )图象的一条对称轴是直线x=π8,②f (0)=-√22,③y=f (x )的图象关于点7π8,0成中心对称”这三个条件中任选一个,补充在下面问题中,并作出详细解答.设函数f (x )=sin(2x+φ)(-π<φ<0), ,求函数y=f (x )的单调递增区间. 注:如果选择多个条件分别解答,按第一个解答计分.解选择①:因为x=π8是函数y=f (x )的图象的对称轴,所以sin 2×π8+φ=±1.所以π4+φ=k π+π2,k ∈Z . 因为-π<φ<0,所以φ=-3π4.因此y=sin 2x-3π4.由题意得2k π-π2≤2x-3π4≤2k π+π2,k ∈Z .所以k π+π8≤x ≤k π+5π8,k ∈Z .所以函数y=sin 2x-3π4的单调递增区间为k π+π8,k π+5π8,k ∈Z . 选择②:因为f (0)=-√22,所以sin φ=-√22,又因为-π<φ<0,所以φ=-3π4.因此y=sin 2x-3π4.由题意得2k π-π2≤2x-3π4≤2k π+π2,k ∈Z .所以k π+π8≤x ≤k π+5π8,k ∈Z .所以函数y=sin 2x-3π4的单调递增区间为k π+π8,k π+5π8,k ∈Z .选择③:因为y=f(x)的图象关于点7π8,0成中心对称,所以2×7π8+φ=kπ,k∈Z,φ=kπ-74π,又因为-π<φ<0,所以φ=-3π4.因此y=sin2x-3π4.由题意得2kπ-π2≤2x-3π4≤2kπ+π2,k∈Z.所以kπ+π8≤x≤kπ+5π8,k∈Z.所以函数y=sin2x-3π4的单调递增区间为kπ+π8,kπ+5π8,k∈Z.18.(12分)(1)化简:sin(2π-α)tan(α+π)tan(-α)cos(π-α)tan(3π-α);(2)计算:cos25π6+cos25π3+tan-25π4+sin5π6.原式=sin(-α)tanαtan(-α)-cosα(-tanα)=-sinαtanα(-tanα)cosαtanα=tan αtan α=tan2α.(2)cos25π6+cos25π3+tan-25π4+sin5π6=cos4π+π6+cos8π+π3+tan-6π-π4+sinπ-π6=cosπ6+cosπ3+tan-π4+sinπ6=√3 2+12-1+12=√32.19.(12分)已知函数f(x)=3tan(2x-π3).(2)比较f (π2)与f (-π8)的大小.解(1)由已知得2x-π3≠k π+π2(k ∈Z ),x ≠12k π+5π12(k ∈Z ),所以函数f (x )的定义域为x |x ≠12k π+5π12,k ∈Z . (2)因为f (π2)=3tan (π-π3)=-3tan π3<0,f (-π8)=3tan (-π4-π3)=3tan (-7π12)=3tan (π-7π12)=3tan 5π12>0.所以f (π2)<f (-π8).20.(12分)已知函数f (x )=A sin(ωx+φ)x ∈R ,A>0,ω>0,|φ|<π2的部分图象如图所示. (1)试确定f (x )的解析式;(2)若f (α2π)=12,求cos 2π3+α2的值.由题图可知A=2,T4=56−13=12,则T=2,ω=2πT =π.将点P (13,2)代入y=2sin(πx+φ),得sin (π3+φ)=1, 又|φ|<π2,所以φ=π6.故f (x )的解析式为f (x )=2sin (πx +π6)(x ∈R ).(2)由(1)和f (α2π)=12,得2sin (α2+π6)=12,即sin (α2+π6)=14.所以cos (2π3+α2)=cos (π2+π6+α2)=-sin (π6+α2)=-14.21.(12分)已知函数f (x )=2sin (2x +π6)+a+1(其中a 为常数).(2)若x ∈[0,π2]时,f (x )的最大值为4,求a 的值. (3)求出使f (x )取最大值时x 的取值集合.由-π2+2k π≤2x+π6≤π2+2k π(k ∈Z ),解得-π3+k π≤x ≤π6+k π(k ∈Z ).所以函数f (x )的单调递增区间为-π3+k π,π6+k π(k ∈Z ). 由π2+2k π≤2x+π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π(k ∈Z ).所以函数f (x )的单调递减区间为π6+k π,2π3+k π(k ∈Z ).(2)因为0≤x ≤π2,所以π6≤2x+π6≤7π6, 所以-12≤sin (2x +π6)≤1,所以f (x )的最大值为2+a+1=4,所以a=1. (3)当f (x )取最大值时,2x+π6=π2+2k π,k ∈Z , 所以2x=π3+2k π,k ∈Z , 所以x=π6+k π,k ∈Z .所以当f (x )取最大值时,x 的取值集合是x x=π6+k π,k ∈Z .22.(12分)已知点A (x 1,f (x 1)),B (x 2,f (x 2))是函数f (x )=2sin(ωx+φ)ω>0,-π2<φ<0图象上的任意两点,角φ的终边经过点P (1,-√3),且当|f (x 1)-f (x 2)|=4时,|x 1-x 2|的最小值为π3. (1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间;(3)当x ∈0,π6时,不等式mf (x )+2m ≥f (x )恒成立,求实数m 的取值范围.因为角φ的终边经过点P (1,-√3),所以tan φ=-√3, 因为-π2<φ<0,所以φ=-π3.由当|f (x 1)-f (x 2)|=4时,|x 1-x 2|的最小值为π3,得T=2π3,即2πω=2π3,所以ω=3.所以f (x )=2sin 3x-π3.(2)由-π2+2k π≤3x-π3≤π2+2k π,k ∈Z , 得-π18+2kπ3≤x ≤5π18+2kπ3,k ∈Z ,故函数f (x )的单调递增区间为-π18+2kπ3,5π18+2kπ3(k ∈Z ).(3)当x ∈0,π6时,-√3≤f (x )≤1,于是2+f (x )>0,则mf (x )+2m ≥f (x )等价于m ≥f (x )2+f (x )=1-22+f (x ).由-√3≤f (x )≤1,得f (x )2+f (x )的最大值为13. 故实数m 的取值范围是13,+∞.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修2考试卷
十二厂中学 屈丽萍
一、选择题(本大题共12小题,每小题5分,共60分)
1、已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的
等腰三角形.则该几何体的体积为( )
(A )48 (B )64 (C )96 (D )192
2、已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,
则|AB |=( ) A 、|x 1-x 2| B 、|y 1-y 2| C 、 x 2-x 1 D 、 y 2-y 1
3.棱长都是1的三棱锥的表面积为( )
A. 3
B. 23
C. 33
D. 43
4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )
A .25π
B .50π
C .125π
D .都不对
5、已知正方体外接球的体积是
323π,那么正方体的棱长等于 ( D ) (A )22 (B )233 (C )423 (D )433
6、若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )
A .若//,,l n αβαβ⊂⊂,则//l n
B .若,l αβα⊥⊂,则l β⊥
C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则
//l m 7、如图,在正方体1111ABCD A B C D -中,E F G H ,,,分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( ) A.45° B.60° C.90° D.120° 8、方程(x-2)2+(y+1)2=1表示的曲线关于点T (-3,2)的对
称曲线方程是: ( )
A 、 (x+8)2+(y-5)2=1
B 、(x-7)2+(y+4)2=2
C 、 (x+3)2+(y-2)2=1
D 、(x+4)2+(y+3)2=2
A F D
B
C E 1B H 1C 1
D 1A。

相关文档
最新文档