线性规划中的对偶规划模型及对偶理论
合集下载
线性规划中的对偶规划模型及对偶理论

MaxZ 2x1 x2
s.t.53xx11
4x 2x
2 2
15 10
x1, x2 0
MinW 15y1 10y2
3y1 5y2 2 s.t.4y1 2y2 1
y1, y2 0
2、非对称形式的对偶关系:
(1) 原问题
n
MaxZ c j x j j 1 n
s.t. j1 aij x j bi i 1,2, , m x j 0 j 1,2, , n
(特点:等式约束)
对偶问题
m
MinW bixi i 1
m
s.t. i1 aij yi 来自cjj 1,2, ,n
yi符号不限, i 1,2, ,m
(特点:对偶变量符号 不限,系数阵转置)
(2)怎样写出非对称形式的对偶问题? 把一个等式约束写成两个不等式约束, 再根据对称形式的对偶关系定义写出;
5y3 3
,y
2
3
0
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时, 那么上述的价格系统能保证不亏本又最富 有竞争力(包工及原材料的总价格最低)
课堂练习:写出下面线性规划的对偶规划:
MinZ 4x1 2x2 3x3
4x1 5x2 6x3 7
s.t.182x1x191x32 x2
10x3 14
11
x1 0, x2符号不限, x3 0
下面的答案哪一个是正确的?为什麽?
MaxW 7 y1 11y2 14y3 MaxW 7 y1 11y2 14y3
x2
《管理运筹学》第3章--线性规划的对偶问题

x1 x2 x3 2
s.t.
x12x1x2
x3 x2
1 x3
2
x1 0; x2 , x3 ?
•
这样所有的约束条件均为“≤”和“=”类型,按前述对
应关系原则,可写出其对偶问题为:
minW ( y) 2 y1 y2 2 y3
y1 y2 2 y3 1
s.t.
y1 y1
y2 y2
min W ( y) 2 y1 6 y2 0 y3/ 0 y3//
y1
s.t.
0
y1
y1
2 y2 y3/ y3// 0
y2
y/ 3
y3/ /
2
6 y2 3 y3/ 3 y3//
5
y1
,
y2
,
y/ 3
,
y3/ /
0
13
OR:SM
• 再设y/3-y//3=y3,代入上述模型得:
始问题,则(3-2)称为对偶问题。
8
OR:SM
• 3.1.2 对称型线性规划问题——对称型对偶问题
•
• 每一个线性规划问题都必然有与之相伴随的对偶问题 存在。先讨论对称型对偶问题;对于非对称型对偶问题, 可以先转化为对称型,然后再进行分析,也可以直接从 非对称型进行分析。
• 对称型线性规划问题数学模型的一般形式为
变量 m个
约束 ≤ ≥
= (方程) 系数矩阵
b c
变量 ≥0 ≤0
无非负约束 转置
c b
19
OR:SM
•
这样对于任意给定的一个线性规划问题,均可依据上述
对应关系直接写出其对偶问题模型,而无须先化成对称型。
• 例3 写出下列线性规划的对偶问题
第二章 线性规划的对偶理论

max 3 2 A= 2 1 0 3 c=
对偶问题: Min f = 65 y1 + 40 y2 + 75 y3
s.t. 3y1 + 2 y2
y1, y2 , y3
min
≥1500
≥ 0
2y1 + y2 + 3y3 ≥2500
b=
65 40 75
A=
3 2
2 1
0 3
b=
1500 2500
1500 2500
例:
Min z= 5x1+ 25x2 7x1+ 75x2 ≤98 s.t. 5x1 + 6x2 = 78 24x1+ 12x2≥54 x1≥0 、x2 ≤ 0
怎么样, 没问题吧!
Max w= 98y1+ 78y2 + 54y3 7y1+ 5y2 + 24y3 ≤ 5 s.t. 75y1+ 6y2 + 12y3 ≥25 y1 ≤ 0 、y2无限制、 y3≥0
二、对偶规划问题的求解
1、利用原问题的最优单纯形表
3x1 x2 3x3 ≤100 x1, x2 , x3 ≥0 解: 对偶问题为
min w 100y1 100y2
max z 4 x1 3x2 7 x3 s.t. x1 2 x2 2 x3≤100
s.t.
2 y1 y2 ≥3 2 y1 3 y2≥7
原问题检验数与对偶问题的解的总结
•在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值 •容易证明,对偶问题最优解的剩余变量解值等于原问 题对应变量的检验数的绝对值 •由于原问题和对偶问题是相互对偶的,因此对偶问题 的检验数与原问题的解也有类似上述关系。 •更一般地讲,不管原问题是否标准,在最优解的单纯 型表中,都有原问题虚变量(松弛或剩余) 的检验数对应 其对偶问题实变量 (对偶变量)的最优解,原问题实变量 (决策变量) 的检验数对应其对偶问题虚变量 (松弛或剩 余变量)的最优解。因此,原问题或对偶问题只需求解 其中之一就可以了。
对偶问题: Min f = 65 y1 + 40 y2 + 75 y3
s.t. 3y1 + 2 y2
y1, y2 , y3
min
≥1500
≥ 0
2y1 + y2 + 3y3 ≥2500
b=
65 40 75
A=
3 2
2 1
0 3
b=
1500 2500
1500 2500
例:
Min z= 5x1+ 25x2 7x1+ 75x2 ≤98 s.t. 5x1 + 6x2 = 78 24x1+ 12x2≥54 x1≥0 、x2 ≤ 0
怎么样, 没问题吧!
Max w= 98y1+ 78y2 + 54y3 7y1+ 5y2 + 24y3 ≤ 5 s.t. 75y1+ 6y2 + 12y3 ≥25 y1 ≤ 0 、y2无限制、 y3≥0
二、对偶规划问题的求解
1、利用原问题的最优单纯形表
3x1 x2 3x3 ≤100 x1, x2 , x3 ≥0 解: 对偶问题为
min w 100y1 100y2
max z 4 x1 3x2 7 x3 s.t. x1 2 x2 2 x3≤100
s.t.
2 y1 y2 ≥3 2 y1 3 y2≥7
原问题检验数与对偶问题的解的总结
•在主对偶定理的证明中我们有:对偶(min型)变量的最 优解等于原问题松弛变量的机会成本,或者说原问题松 弛变量检验数的绝对值 •容易证明,对偶问题最优解的剩余变量解值等于原问 题对应变量的检验数的绝对值 •由于原问题和对偶问题是相互对偶的,因此对偶问题 的检验数与原问题的解也有类似上述关系。 •更一般地讲,不管原问题是否标准,在最优解的单纯 型表中,都有原问题虚变量(松弛或剩余) 的检验数对应 其对偶问题实变量 (对偶变量)的最优解,原问题实变量 (决策变量) 的检验数对应其对偶问题虚变量 (松弛或剩 余变量)的最优解。因此,原问题或对偶问题只需求解 其中之一就可以了。
8对偶LP及对偶单纯形法

原问题 对偶问题 (对偶问题)
原始规划与对偶规划是同一组数 据参数,只是位置有所不同,所描 述的问题实际上是同一个问题从 另一种角度去描述.
(原问题)
线性规划的对偶模型
Page 10
特点:目标函数求极大值时,所有约束条件为≤ 号,变量非负; 目标函数求极小值时,所有约束条件 为≥号,变量非负.
LP:min Z C X
如何安排生产, 使获利最多?
最优解为 x (4, 2)T 最优值为 zmax 14
Page 6
反过来问:若厂长决定不生产甲和乙型产品,决定 出租机器用于接受外加工,只收加工费,那么4种 机器的机时如何定价才是最佳决策?
付出的代价最小, 且对方能接受。
出让代价应不低于 用同等数量的资源 自己生产的利润。
本节主要内容
线性规划的对偶模型 对偶性质
Page 2
对偶单纯形法
学习要点: 1. 掌握线性规划的对偶形式
2. 掌握对偶单纯形法的解题思路及求解步骤
对偶现象普遍存在
Page 3
“对偶”,在不同的领域有着不同的诠释。在词 语中,它是一种修辞方式,指两个字数相等、结构 相似的语句,旨表达出相关或相反的意思。如: “下笔千言,离题万里” “横眉冷对千夫指,俯首甘为孺子牛” “天高任鸟飞,海阔凭鱼跃” 数学上也有如下对偶例子: 周长一定,面积最大的矩形是正方形; 面积一定,周长最小的矩形是正方形。
0T Y Xs 0 T 0 Ys X 0
互补松弛条件
其中:Xs为松弛变量、Ys为剩余变量.
对偶性质的应用
Page 21
借助以上性质可以证明,在用单纯形法求解原问题的迭代 过程中,单纯形表右列中的元素对应于原问题的基本可行解, 底行中松弛变量对应的元素恰好构成对偶问题的基本解。逐次 迭代下去,当底行对应于对偶问题的解也变成基本可行解(底 行元素全非负)时,原问题和对偶问题同时达到最优解. 即此 时对偶问题的这个基本可行解就是它的最优解。 用单纯形方法求解原线性规划的过程中,每次迭代都保证 得到原问题的一个基本可行解,底行某些元素对应于对偶问题 的基本解. 单纯形法的迭代的过程既可以看作使原问题的基本 可行解逐步变为最优解(此时底行元素非负)的过程,也可看 作使对偶问题的基本解逐步变成基本可行解的过程。
原始规划与对偶规划是同一组数 据参数,只是位置有所不同,所描 述的问题实际上是同一个问题从 另一种角度去描述.
(原问题)
线性规划的对偶模型
Page 10
特点:目标函数求极大值时,所有约束条件为≤ 号,变量非负; 目标函数求极小值时,所有约束条件 为≥号,变量非负.
LP:min Z C X
如何安排生产, 使获利最多?
最优解为 x (4, 2)T 最优值为 zmax 14
Page 6
反过来问:若厂长决定不生产甲和乙型产品,决定 出租机器用于接受外加工,只收加工费,那么4种 机器的机时如何定价才是最佳决策?
付出的代价最小, 且对方能接受。
出让代价应不低于 用同等数量的资源 自己生产的利润。
本节主要内容
线性规划的对偶模型 对偶性质
Page 2
对偶单纯形法
学习要点: 1. 掌握线性规划的对偶形式
2. 掌握对偶单纯形法的解题思路及求解步骤
对偶现象普遍存在
Page 3
“对偶”,在不同的领域有着不同的诠释。在词 语中,它是一种修辞方式,指两个字数相等、结构 相似的语句,旨表达出相关或相反的意思。如: “下笔千言,离题万里” “横眉冷对千夫指,俯首甘为孺子牛” “天高任鸟飞,海阔凭鱼跃” 数学上也有如下对偶例子: 周长一定,面积最大的矩形是正方形; 面积一定,周长最小的矩形是正方形。
0T Y Xs 0 T 0 Ys X 0
互补松弛条件
其中:Xs为松弛变量、Ys为剩余变量.
对偶性质的应用
Page 21
借助以上性质可以证明,在用单纯形法求解原问题的迭代 过程中,单纯形表右列中的元素对应于原问题的基本可行解, 底行中松弛变量对应的元素恰好构成对偶问题的基本解。逐次 迭代下去,当底行对应于对偶问题的解也变成基本可行解(底 行元素全非负)时,原问题和对偶问题同时达到最优解. 即此 时对偶问题的这个基本可行解就是它的最优解。 用单纯形方法求解原线性规划的过程中,每次迭代都保证 得到原问题的一个基本可行解,底行某些元素对应于对偶问题 的基本解. 单纯形法的迭代的过程既可以看作使原问题的基本 可行解逐步变为最优解(此时底行元素非负)的过程,也可看 作使对偶问题的基本解逐步变成基本可行解的过程。
线性规划的对偶理论(第一部分

对偶问题的约束条件 对应于原问题的目标 函数和约束条件的系 数。
对偶问题的可行解集 是原问题可行解集的 凸包。
原问题与对偶问题关系
弱对偶性
对于任意一对原问题和对偶问题 的可行解,原问题的目标函数值 总是大于或等于对偶问题的目标
函数值。
强对偶性
当原问题和对偶问题都存在可行 解时,它们的最优解对应的目标
强对偶性定理
若原问题和对偶问题都有可行解,则 它们分别存在最优解,且这两个最优 解的目标函数值相等。
在满足某些约束规格(如Slater条件) 的情况下,强对偶性成立。
互补松弛条件
在原问题和对偶问题的最优解中,如果某个约束条件的对偶变量值为正,则该约束 条件必须是紧的(即取等号)。
如果原问题(对偶问题)的某个变量在最优解中取正值,则其对应的对偶问题(原 问题)的约束条件必须是紧的。
标准形式
通常将线性规划问题转化为标准 形式,即求解目标函数的最小值 ,约束条件为一系列线性不等式 。
对偶问题定义与性质
对偶问题定义:对于 给定的线性规划问题, 可以构造一个与之对 应的对偶问题,该问 题的目标函数和约束 条件与原问题密切相 关。
对偶问题性质
对偶问题的目标函数 是原问题约束条件的 线性组合。
解决对偶间隙等关键问题
在实际应用中,由于原问题和对偶问题之间可能存在对偶间隙,导致对偶理论的实用性受到一定的限制。 未来可以研究如何缩小或消除对偶间隙,提高对偶理论的实用性和应用范围。
THANKS
感谢您的观看
简化了复杂问题的求解过程
对偶理论能够将一些复杂的线性规划问题转化为相对简单的对偶问题进行求解,从而降低了问题 的求解难度和计算量。
揭示了原问题和对偶问题之间的内在联系
运筹学课件 第2章:线性规划的对偶理论

min w 16y1 36y2 65y3
90 y1 3 y 2 y1 2 y 2 5 y 3 70 y , y , y 0 1 2 3
原问题 A b C 约束系数矩阵
对偶问题 约束系数矩阵的转臵
约束条件的右端项向量 目标函数中的价格系数向量 目标函数中的价格系数向量 约束条件的右端项向量 Max z=CX Min w=Y’b 目标函数 AX≤b A’Y≥C’ 约束条件 X≥0 Y≥0 决策变量
若原问题为求极小形式的对称形式线性规划问题, 对偶问题应该具有什么形式?
Min w Y 'b A'Y C Y 0
max w Y 'b A'Y C Y 0
min z CX
Max z CX
AX b X 0
AX b X 0
min w 5 y1 4 y2 6 y3 4 y1 3 y2 2 y3 2 y1 2 y2 3 y3 3 3 y1 4 y3 5 2 y 7 y y 1 2 3 1 y1 0, y2 0, y3无约束
对偶问题 约束系数矩阵的转臵
目标函数中的价格系数向量
目标函数 约束条件
变量
Max z=CX m个 ≤ ≥ = n个 ≥0 ≤0 无约束
约束条件的右端项向量 目标函数 Min w=Y’b m个 ≥0 变量 ≤0 无约束 n个 ≥ 约束条件 ≤ =
【例2-3】写出下列线性规划问题的对偶问题
min 2x1 3x2 5x3 x4
1.初始表中单位阵在迭代后单纯形表中对应的位臵就是B-1 2.对于原问题的最优解,各松弛变量检验数的相反数恰好 是其对偶问题的一个可行解,且两者具有相同的目标函数 值。根据下面介绍的对偶问题的基本性质还将看到,若原 问题取得最优解,则对偶问题的解也为最优解。
运筹学02对偶理论1线性规划的对偶模型,对偶性质

(x1, x2, x3)T 0
从而对偶问题为
4 min w Yb ( y1, y2 ) 1 4 y1 y2
4 1 -1
YA ( y1, y2 ) 1 -7
5
(4 y1 y2, y1 7 y2, y1 5y2 ) (5, 2, 3)
min Z 4 y1 y2
4 y1 y2 5
min
w
6 y1
8y2
10 y3
约束, 即
5yy1175yy22
y3 3 y3
4
3
yi 0, i 1,2,3
3.1 线性规划的对偶模型 Dual model of LP
线性规划问题的规范形式(Canonical Form 或叫对称形式) : 定义:
目标函数求极大值时,所有约束条件为≤号,变量非负; 目标函数求极小值时,所有约束条件为≥号,变量非负。
【例3.2】写出下列线性规划的对偶问题
max Z (5, 2,3)(x1, x2, x3)T
max Z 5x1 2x2 3x3
4x1x1 7
x2 x2
x3 4 5x3 1
x1, x2, x3 0
【解】设Y=(y1,y2 ), 则有
4
1
1 7
1
5
x1 x2 x3
4 1
y1y1 7
y2 2 5 y2 3
y1 0, y2 0
3.1 线性规划的对偶模型 Dual model of LP
【例3.3】 写出下列线性规划的对偶问题
max Z 4x1 3x2
5x1 x2 6 7x1x1 35x2x2108 x1 0, x2 0
【解】该线性规划的对偶问题是求最 小值,有三个变量 且非负, 有两个“ ≥”
第三章 对偶理论 第一讲 线性规划的对偶模型,对偶性质

根据对偶性质;可将原问题与对偶问题解的对应关系列表如下: 表3-6 一个问题max 有最优解 无 最 优 解 无最优解 无界解 (有可行解) 无可行解 另一个问题min 有最优解 无最优解 无可行解 无界解 (有可行解) 性质4 性质4 性质2
应用
已知最优解 已知检验数
通过解方程
检验数乘以
求最优解 求得基本解
max w 2 y1 2 y 2 y1 y 2 1 1 y1 y 2 2 2 y1 , y 2 0
【性质2】 弱对偶性: 设X*、Y*分别为LP(mix)与 DP(max)的可行解,则
CX Y b
* *
【性质3】最优准则定理: 设X*与Y*分别是(LP)与(DP) 的可行解,则X*、Y*是(LP)与(DP)的最优解当且仅当 C X*= Y*b . 【性质4】对偶性:若互为对偶的两个问题其中一个有 最优解,则另一个也有最优解,且最优值相同。 另一结论:若(LP)与(DP)都有可行解,则两者都有最优 解,若一个问题无最优解,则另一问题也无最优解。 【性质5】互补松弛定理: 设X*、Y*分别为 (LP) 与 (DP) 的可行解,XS和YS分别是它们的松弛变量的可行解,则 X*和Y*是最优解当且仅当
YSX*=0 和 Y*XS=0
i 1
可写成下式
y x 0
i 1 n * i Si
m
y
j 1
n
Sj
x 0
* j
即
* S j* (2) yS j 0时x j j j 1
y
x 0, 反之当x* 0时y 0 0 j S
j
已知一个问题的最优解时求另一个问题的最优解的方法
max z 3 x1 4 x 2 x3 x1 2 x 2 x3 10 【例3.5】 已知线性规划 2 x 2 x x 16 1 2 3 x 0, j 1,2,3 j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则定义其对偶问题为
MinW b1 y1 b2 y2 bm ym a11 y1 a21 y 2 am1 ym c1 a y a y a y c 12 1 22 2 m2 n 2 s.t. a y a y a y c 2n 2 mn n n 1n 1 y1 , y2 , , ym 0
(2)对称形式的对偶关系的矩阵描述
MaxZ CX
MinW bY
YA C ( D ) AX b (L)s.t. s.t. Y 0 X 0 (3)怎样从原始问题写出其对偶问题?
按照定义;
记忆法则:
“上、下”交换,“左、右”换位, 不等式变号,“极大”变“极小”
~ b i yi
i 1
MaxZ CX
(L)
MinW bY
AX b 和 (D) YA C s.t. s.t. X 0 Y 0 ~ ~ ~ ~ 均有可行解,分别为 X 和 Y ,则C X ≤ Yb。 ~ ~ ~ ~ ~ 证 由(L)AX b 左乘 Y ,得 YAX Yb 明 ~~ ~ ~ ~ 思 由(D)Y A C 右乘 X,得 YAX CX 路 n m ~ ~ ~ ~ : c x b y j j i i CX Yb
n m
~ ~ 则X ,Y 分别为原始问题和对偶问题的最
j 1
j
j
i 1
i
i
优解。
性质3 无界性 如果原问题(对偶问题) 具有无界解,则对偶问题(原问题)无可 行解。
注意:这个性质逆不成立。因为当原问题
(对偶问题)无可行解时,其对偶问题(原 问题)或无可行解或具有无界解。
性质4 强对偶性(或称对偶定理) 如果原问 题有最优解,则其对偶问题也一定具有最优 解,且有 max z min
2、非对称形式的对偶关系:
(1) 原问题
MaxZ c j x j
j 1 n
对偶问题
MinW bi xi
i 1 m
n aij x j bi i 1,2,, m s.t. j 1 x j 0 j 1,2,, n
m aij yi c j j 1,2,, n s.t. i 1 yi符号不限, i 1,2,, m
第二章 线性规划的对偶模型
一、对偶问题的提出 1、 对偶思想举例:某工厂拥有一定生产原材料 时,该工厂考虑是自己进行产品生产所赚的利 润大还是将其原材料直接出售给其它工厂时所 以赚取的利润大的问题。
ห้องสมุดไป่ตู้ 2、 换个角度审视生产计划问题
例:(第一章例2)要求制定一个生产计划 方案,在劳动力和原材料可能供应的范围 内,使得产品的总利润最大 。
MaxZ 2 x1 3x 2 2 x1 2 x 2 12 16 4 x 1 s.t. 15 5x 2 x1 , x 2 0
它的对偶问题就是一个价格系统,使在平衡了 劳动力和原材料的直接成本后,所确定的价格系统 最具有竞争力:
MinW 12y1 16y 2 15y 3 2 2 y1 4 y 2 5y3 3 2 y1 s.t. y1,y 2,y 3 0
二、原问题和对偶问题的关系
1、对称形式的对偶关系
(1)定义:若原问题是
MaxZ c1 x1 c 2 x 2 c n x n a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 s.t. a x a x a x b m2 2 mn n m m1 1 x1 , x 2 , , x n 0
这两个式子之间的变换关系称为 “对称形式的对偶关系”。
原问题与对偶问题的对比:
若原问题 MaxZ c1 x1 c2 x2 cn xn 对偶问题
MinW b1 y1 b2 y2 bm ym
a11 x1 a12 x2 a1n xn b1 a11 y1 a21 y2 am1 ym c1 a x a x a x b a y a y a y c 21 1 22 2 2n n 2 12 1 22 2 m2 n 2 s.t. s.t. a x a x a x b a y a y a y c mn n m mn n n m1 1 m 2 2 1n 1 2 n 2 x1 , x2 ,, xn 0 y1 , y2 ,, ym 0
下面的答案哪一个是正确的?为什麽?
MaxW 7 y1 11y 2 14 y3 MaxW 7 y1 11y 2 14 y3
4 y1 8 y 2 12 y3 4 4 y1 8 y 2 12 y3 4 5 y1 9 y 2 13y3 2 5 y1 9 y 2 13y3 2 s.t. s.t. 6 y1 10 y 2 3 6 y1 10 y 2 3 y1符号不限, y 2 0, y3 0 y1符号不限, y 2 0, y3 0
(特点:等式约束)
(特点:对偶变量符号 不限,系数阵转置)
(2)怎样写出非对称形式的对偶问题?
把一个等式约束写成两个不等式约束, 再根据对称形式的对偶关系定义写出;
按照原始-对偶表直接写出 ;
(3)原始-对偶表
原问题(或对偶问题)
目标函数 MaxZ
变量数:n个 变量 ≥0 变量 ≤0 变量 无约束
√
×
(原问题是极小化问题,因此应从原始对偶 表的右边往左边查!)
三、对偶定理
对偶定理是揭示 原始问题的解与对偶问题的解之间重 要关系的 一系列性质。 对称性—— 对偶问题的对偶是原问题。
~ 性质1 弱对偶性——如果 X 是原问题 j ( j 1,, n)
~ c jxj
j 1
~ 的可行解, Yi (in 1,其对偶问题的可行解,则恒有: , n) m
对偶问题(或原问题)
目标函数 MinW
约束条件数:n个 约束条件 ≥ 约束条件 ≤ 约束条件 =
约束条件:m个 约束条件 ≤ 约束条件 ≥ 约束条件 =
变量数:m个 变量 ≥0 变量 ≤0 无约束
课堂练习:写出下面线性规划的对偶规划:
MinZ 4 x1 2 x 2 3 x3 4 x1 5 x 2 6 x3 7 8 x1 9 x 2 10x3 11 s.t. 12x1 13x 2 14 x1 0, x 2 符号不限, x3 0
j 1 i 1
• 关于“界”的结果; •极小化问题有下界—— 推论1 极大化问题的任意一个可行解所对应的 目标函数值是其对偶问题最优目标函数值的一 个下界。
•极大化问题有上界——
推论2 极小化问题的任意一个可行解所对 应的目标函数值是其对偶问题最优目标函 数值的一个上界。
~ 、~ 分别为对称形式对 性质2 最优性 若 X Y 偶线性规划的可行解,且两者目标函数的 相应值相等,即 c ~ x b ~ y
j 1
n
性质6 线性规划的原问题及其对偶问题之间 存在一对互补的基解,其中原问题的松驰变 量对应对偶问题的变量,对偶问题的剩余变 量对应原问题的变量;这些互相对应的变量 如果在一个问题的解中是基解变量,则在另 一问题的解中是非基变量;将这对互补的基 解分别代入原问题和对偶问题的目标函数有:
z
性质5 互补松弛性 在线性规划问题的最优解
中,如果对应某一约束条件的对偶变量值为非 零,则该约束条件取严格等式;反之如果约束 条件取严格不等式,则其对应的对偶变量一定 为零。
即:
ˆ i 0, 则 aij x ˆ j bi 如果y
j 1
n
ˆ j bi, 则y ˆi 0 如果 aij x
例 写出下面线性规划的对偶问题:
MaxZ 2x1 x 2 3x1 4x 2 15 s.t.5x1 2x 2 10 x , x 0 1 2
MinW 15 y1 10 y 2 3 y1 5 y 2 2 s.t. 4 y1 2 y 2 1 y ,y 0 1 2
(用于生产第i种产 品的资源转让收益不 小于生产该种产品时 获得的利润)
对偶变量的经济意义可以解释为对工时及原材 料的单位定价 ;
若工厂自己不生产产品A、B和C,将现 有的工时及原材料转而接受外来加工时,
那么上述的价格系统能保证不亏本又最富
有竞争力(包工及原材料的总价格最低) 当原问题和对偶问题都取得最优解时,这 一对线性规划对应的目标函数值是相等的: Zmax=Wmin