算法分析与设计习题集整理.doc

合集下载

算法分析与设计习题集答案

算法分析与设计习题集答案

算法分析与设计习题集基础篇1、算法有哪些特点?它有哪些特征?它和程序的主要区别是什么?特点:就是一组有穷的规则,它规定了解决某一特定类型问题的一系列运算〔书上定义〕特征:输入、输出、有穷性、明确性、有效性区别:算法是完成特定任务的有限指令集。

程序是用电脑语言编写的写成特定任务的指令序列。

2、算法的时间复杂度指的是什么?如何表示?算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。

这是一个关于代表算法输入值的字符串的长度的函数。

时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。

〔百度百科〕3、算法的空间复杂度指的是什么?如何表示?一个程序的空间复杂度是指运行完一个程序所需内存的大小。

利用程序的空间复杂度,可以对程序的运行所需要的内存多少有个预先估计。

一个程序执行时除了需要存储空间和存储本身所使用的指令、常数、变量和输入数据外,还需要一些对数据进行操作的工作单元和存储一些为现实计算所需信息的辅助空间。

程序执行时所需存储空间包括以下两部分。

〔1〕固定部分。

这部分空间的大小与输入/输出的数据的个数多少、数值无关。

主要包括指令空间〔即代码空间〕、数据空间〔常量、简单变量〕等所占的空间。

这部分属于静态空间。

〔2〕可变空间,这部分空间的主要包括动态分配的空间,以及递归栈所需的空间等。

这部分的空间大小与算法有关。

一个算法所需的存储空间用f(n)表示。

S(n)=O(f(n))其中n为问题的规模,S(n)表示空间复杂度。

答:最坏情况时间复杂性:最好情况时间复杂性::I*是DN中使T(N, I*)到达Tmax(N)的合法输入;P(I)是在算法的应用中出现输入I的概率10、限界函数的功能是什么?答:用限界函数剪去得不到最优解的子树11、设某一函数定义如下:编写一个递归函数计算给定x的M〔x〕的值。

本函数是一个递归函数,其递归出口是:M〔x〕= x-10x>100递归体是:M〔M〔x+11〕〕x ≤100实现此题功能的递归函数如下:intm ( intx ){ int y;if ( x>100 )return(x-10 );else {y =m(x+11) ;return (m (y ));}procedure M(x)if x>100 thenreturn(x-10)elsereturn M(M(x+11))endifend M12、已知一个顺序表中的元素按元素值非递减有序排列,编写一个函数删除表中多余的值相同的元素。

算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6

算法分析与设计 第1章习题答案 1-1,1-2,1-3,1-6

第一章习题(1-1,1-2,1-3,1-6)1-1 求下列函数的渐进表达式3n2+10n = O(n2)n2/10+2n = O(2n)21+1/n = O(1)logn3 = O(logn)10log3n = O(n)知识点:如果存在正的常数C和自然数N0,使得:当N>=N0时有f(N)<=Cg(N),则称f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)).这时,可以说f(N)的阶不高于g(N)的阶。

1-2 论O(1)和O(2)的区别O(1)和O(2)差别仅在于其中的常数因子,根据渐进上界记号O的定义可知,O(1)=O(2)。

1-3 从低到高排列以下表达式(按渐进阶排列以下表达式)结果:2 logn n2/320n 4n23n n! 分析:当n>=1时,有logn< n2/3当n>=7时,有3n < n!补充:当n>=4时,有logn> n1/31-6 对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=Θ(g(n))。

知识点:f(n)的阶不高于g(n)的阶:f(n)=O(g(n));f(n)的阶不低于g(n)的阶:f(n)=Ω(g(n));f(n)与g(n) 同阶:f(n)=Θ(g(n)) (1)f(n)= logn2 ; g(n)= logn+5f(n)与g(n)同阶,故f(n)=Θ(g(n)) (2) f(n)= logn2 ; g(n)= n1/2当n>=8时,f(n)<=g(n),故f(n)=O(g(n))分析:此类题目不易直接看出阶的高低,可用几个数字代入观察结果。

如依次用n=1, 21, 22, 23, 26, 28, 210 (3) f(n)= n ; g(n)= log2nf(n)=Ω(g(n))(4) f(n)= nlogn+n; g(n)= lognf(n)=Ω(g(n))(5) f(n)= 10 ; g(n)= log10f(n)=Θ(g(n))(6) f(n)= log2n ; g(n)= lognf(n)=Ω(g(n))(7) f(n)= 2n ; g(n)= 100 n2f(n)=Ω(g(n))(8) f(n)= 2n ; g(n)= 3nf(n)=O(g(n))。

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)
}
Hanoi 塔
D. void hanoi(int n, int C, int A, int B) { if (n > 0) { hanoi(n-1, A, C, B); move(n,a,b); hanoi(n-1, C, B, A); }
3. 动态规} 划算法的基本要素为(C) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质 C.最优子结构性质与重叠子问题性质 D. 预排序与递归调用
(排列树)算法框架。 8. 用回溯法解 0/1 背包问题时,该问题的解空间结构为(子集树)结构。 9.用回溯法解批处理作业调度问题时,该问题的解空间结构为(排列树)结
构。 10.用回溯法解 0/1 背包问题时,计算结点的上界的函数如下所示,请在空
格中填入合适的内容:
Typep Knap<Typew, Typep>::Bound(int i) {// 计算上界
B. f (n) O(g(n)), g(n) O(h(n)) h(n) O(f (n)) C. O(f(n))+O(g(n)) = O(min{f(n),g(n)}) D. f (n) O(g(n)) g(n) O(f (n))
6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A) A. 最优子结构性质与贪心选择性质 B.重叠子问题性质与贪心选择性质
《算法分析与设计》期末复习 法则的流水作业调度采用的算法是(D)
A. 贪心算法
B. 分支限界法 C.分治法
D. 动态规划算法
2.Hanoi 塔问题如下图所示。现要求将塔座 A 上的的所有圆盘移到塔座 B 上, 并仍按同样顺序叠置。移动圆盘时遵守 Hanoi 塔问题的移动规则。由此设计出 解 Hanoi 塔问题的递归算法正确的为:(B)

算法分析与设计.pdf

算法分析与设计.pdf

单选题1.若需在O(nlog2n)的时间内完成对数组的排序,且要求排序是稳定的,则可选择的排序方法是()。

A.快速排序B.堆排序C.归并排序D.直接插入排序答案:C2.下面命名规则中,哪项不是现在比较常用的命名规则()。

A.匈牙利命名法B.骆驼命名法C.下划线命名法D.图灵命名法答案:D3.十进制的123,1的位权是()。

A.1B.2C.10D.100答案:D4.一个良好算法的基本单元是:顺序结构、循环结构和()。

A.线性结构B.离散结构C.数据结构D.选择结构答案:D5.遗传算法用于解决()。

A.排序问题B.规划问题C.最优化问题D.决策问题答案:C6.下列叙述中正确的是()A.数据的逻辑结构与存储结构必定是一一对应的B.由于计算机在存储空间上是向量式的存储结构,因此,利用数组只能处理线性结构C.程序设计语言中的数组一般是顺序存储结构,因此,利用数组只能处理线性结构D.以上说法都不对答案:D7.按F5开始调试,程序便会直接运行到断点处。

接下来可以逐行来运行程序,查看各个变量的值,也可以直接运行到下一个断点或程序结束,这样过程被称作()。

A.设置断点B.单步调试C.程序编译D.程序调试答案:B8.下列说法错误的是()A.使用高级计算机语言,如C、C++、Java,编写的程序,都需要经过编译器编译或解释,才能转化成机器能够识别并能执行的二进制代码。

B.如何一步步的跟踪代码,找到问题,搞明白为何程序不能正常运行,这个过程称为调试程序。

C.自动化的工具同样也能够帮助你跟踪程序,尤其当程序很复杂时效果更加明显,这种工具叫做调试器。

D.调试器并能解决程序中出现的问题。

答案:D9.注释从功能上可以分为文件注释、函数注释和()。

A.程序员注释B.功能注释C.时间注释D.版权注释答案:B10.二进制数1101.0101转换为十进制数是()。

A.11.3225B.12.3125C.13.0125D.13.3125答案:D11.十六进制数C1B转换为二进制数是()。

算法设计与分析第二版课后习题及解答(可编辑)

算法设计与分析第二版课后习题及解答(可编辑)

算法设计与分析第二版课后习题及解答算法设计与分析基础课后练习答案习题1.14.设计一个计算的算法,n是任意正整数。

除了赋值和比较运算,该算法只能用到基本的四则运算操作。

算法求 //输入:一个正整数n2//输出:。

step1:a1; step2:若a*an 转step 3,否则输出a; step3:aa+1转step 2;5. a.用欧几里德算法求gcd(31415,14142)。

b. 用欧几里德算法求gcd(31415,14142),比检查min{m,n}和gcd(m,n)间连续整数的算法快多少倍?请估算一下。

a. gcd31415, 14142 gcd14142, 3131 gcd3131, 1618 gcd1618, 1513 gcd1513, 105 gcd1513, 105 gcd105, 43 gcd43, 19 gcd19, 5 gcd5, 4 gcd4, 1 gcd1, 0 1.b.有a可知计算gcd(31415,14142)欧几里德算法做了11次除法。

连续整数检测算法在14142每次迭代过程中或者做了一次除法,或者两次除法,因此这个算法做除法的次数鉴于1?14142 和 2?14142之间,所以欧几里德算法比此算法快1?14142/11 ≈1300 与2?14142/11 ≈ 2600 倍之间。

6.证明等式gcdm,ngcdn,m mod n对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:如果d整除u和v, 那么d一定能整除u±v;如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和rm mod nm-qn;显然,若d能整除n和r,也一定能整除mr+qn和n。

数对m,n和n,r具有相同的公约数的有限非空集,其中也包括了最大公约数。

故gcdm,ngcdn,r7.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0mn的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcdm,ngcdn,m并且这种交换处理只发生一次.8.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?1次b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?5次gcd5,8习题1.21.农夫过河P?农夫W?狼 G?山羊 C?白菜2.过桥问题1,2,5,10---分别代表4个人, f?手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c0的实根,写出上述算法的伪代码可以假设sqrtx是求平方根的函数算法Quadratica,b,c//求方程ax^2+bx+c0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D0temp←2*ax1←-b+sqrtD/tempx2←-b-sqrtD/tempreturn x1,x2else if D0 return ?b/2*ael se return “no real roots”else //a0if b≠0 return ?c/belse //ab0if c0 return “no real numbers”else return “no real roots”5. 描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Kii0,1,2,商赋给n第二步:如果n0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法 DectoBinn//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1n]中i1while n!0 doBin[i]n%2;nintn/2;i++;while i!0 doprint Bin[i];i--;9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.算法略对这个算法做尽可能多的改进.算法 MinDistanceA[0..n-1]//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements 习题1.3考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表”60,35,81,98,14,47”排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示:b.该算法不稳定.比如对列表”2,2*”排序c.该算法不在位.额外空间for S and Count[]4.古老的七桥问题第2章习题2.17.对下列断言进行证明:如果是错误的,请举例a. 如果tn∈Ogn,则gn∈Ωtnb.α0时,Θαgn Θgn解:a这个断言是正确的。

算法设计与分析习题集

算法设计与分析习题集

一、假设有7个物品,它们的重量和价值如下表所示。

若这些物品均不能被分割,且背包容量M=150,使用回溯方法求解此背包问题。

请写出状态空间搜索树(20分)。

答:按照单位效益从大到小依次排列这7个物品为:FBGDECA 。

将它们的序号分别记为1~7。

则可生产如下的状态空间搜索树。

其中各个节点处的限界函数值通过如下方式求得:【排序1分】5x =6x =7x =17分,每个节点1分】a .1501154040305035190.62540-++++⨯= 7(1,1,1,1,,0,0)8b. 1501154040305030177.560-++++⨯=7(1,1,1,1,0,,0)12c .4040305010170++++=(1,1,1,1,0,0,1)d. 1501054040303530167.560-++++⨯= 3(1,1,1,0,1,,0)4e. 150130404050353017560-++++⨯=1(1,1,0,1,1,,0)3f. 1501304040503510170.7135-++++⨯=4(1,1,0,1,1,0,)7g. 40405030160+++=(1,1,0,1,0,1,0)h. 1501404040353010146.8535-++++⨯= 2(1,1,0,0,1,1,)7i.1501254030503530167.560-++++⨯=5(1,0,1,1,1,,0)12 j. 1501454030503530157.560-++++⨯=1(0,1,1,1,1,,0)12在Q 1处获得该问题的最优解为(1,1,1,1,0,0,1),背包效益为170。

即在背包中装入物品F 、B 、G 、D 、A 时达到最大效益,为170,重量为150。

【结论2分】一、已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序。

算法设计与分析复习题目及答案.docx

算法设计与分析复习题目及答案.docx一。

选择题1、二分搜索算法是利用(A)实现的算法。

A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是(B)。

A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是(A)的一搜索方式。

A、分支界限法B、动态规划法C、贪心法D、回溯法4、在下列算法中有时找不到问题解的是(B)。

A、蒙特卡罗算法B、拉斯维加斯算法C、舍伍德算法D、数值概率算法5. 回溯法解旅行售货员问题时的解空间树是(B)。

A、子集树B、排列树C、深度优先生成树D、广度优先生成树6.下列算法常以自底向上的方式求解最优解的是(B)。

A、备忘录法B、动态规划法C、贪心法D、回溯法7、衡量一个算法好坏的标准是( C )。

A 运行速度快B 占用空间少C 时间复杂度低D 代码短8、以下不可以使用分治法求解的是( D )。

A 棋盘覆盖问题B 选择问题C 归并排序D 0/1 背包问题9. 实现循环赛日程表利用的算法是(A)。

A、分治策略B、动态规划法C、贪心法D、回溯法10、下列随机算法中运行时有时候成功有时候失败的是( C )A 数值概率算法B 舍伍德算法C 拉斯维加斯算法D 蒙特卡罗算法11.下面不是分支界限法搜索方式的是(DA、广度优先B、最小耗费优先C、最大效益优先12.下列算法常以深度优先方式系统搜索问题解的是(A、备忘录法B、动态规划法C、贪心法13.备忘录方法是那种算法的变形。

( B )A、分治法B、动态规划法C、贪心法14.哈弗曼编码的贪心算法所需的计算时间为(BnB、 O(nlogn )n )A、O( n2 )C、O(215.分支限界法解最大团问题时,活结点表的组织形式是(A、最小堆B、最大堆C、栈组)。

D、深度优先D)。

D、回溯法D、回溯法)。

D、 O( n)B)。

D 、数16.最长公共子序列算法利用的算法是(B)。

A、分支界限法B、动态规划法C、贪心法D、回溯法17.实现棋盘覆盖算法利用的算法是(A)。

算法设计与分析王晓东

习题2-1 求下列函数的渐进表达式:3n^2+10n; n^2/10+2n; 21+1/n; logn^3; 10 log3^n 。

解答:3n^2+10n=O(n^2),n^2/10+2^n=O(2^n),21+1/n=O(1),logn^3=O(logn),10log3^n=O(n).习题2-3 照渐进阶从低到高的顺序排列以下表达式:n!,4n^2,logn,3^n,20n,2,n^2/3。

解答:照渐进阶从高到低的顺序为:n!、3^n、4n^2 、20n、n^2/3、logn、2习题2-4(1)假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。

在某台计算机上实现并完成该算法的时间为t秒。

现有另外一台计算机,其运行速度为第一台计算机的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?(2)若上述算法的计算时间改进为T(n)=n^2,其余条件不变,则在新机器上用t秒时间能解输入规模多大的问题?(3)若上述算法的计算时间进一步改进为,其余条件不变,那么在新机器上用t秒时间能解输入规模多大的问题?解答:(1)设能解输入规模为n1的问题,则t=3*2^n=3*2^n/64,解得n1=n+6(2)n1^2=64n^2得到n1=8n(3)由于T(n)=常数,因此算法可解任意规模的问题。

习题2-5 XYZ公司宣称他们最新研制的微处理器运行速度为其竞争对手ABC公司同类产品的100倍。

对于计算复杂性分别为n,n^2,n^3和n!的各算法,若用ABC公司的计算机能在1小时内能解输入规模为n的问题,那么用XYZ公司的计算机在1小时内分别能解输入规模为多大的问题?解答:n'=100nn'^2=100n^2得到n'=10nn'^3=100n^3得到n'=4.64nn'!=100n!得到n'<n+log100=n+6.64习题2-6对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。

算法分析与设计试题及答案

算法分析与设计试题及答案一、选择题1. 下列哪个是属于分治算法的例子?A. 冒泡排序B. 归并排序C. 顺序查找D. 选择排序答案:B2. 在排序算法中,时间复杂度最优的是:A. 冒泡排序B. 插入排序C. 归并排序D. 快速排序答案:C3. 哪个不是动态规划的特点?A. 具有重叠子问题B. 通过递归求解C. 需要保存子问题的解D. 具有最优子结构答案:B4. 在图的广度优先搜索算法中,使用的数据结构是:A. 栈B. 队列C. 数组D. 堆栈答案:B5. 在最小生成树算法中,下列哪个不属于贪心策略?A. Kruskal算法B. Prim算法C. Dijkstra算法D. Prim-Kruskal混合算法答案:C二、简答题1. 请简述分治算法的思想和应用场景。

答案:分治算法的思想是将原问题分解成若干个规模较小且类似的子问题,然后解决子问题,最后将子问题的解合并得到原问题的解。

其应用场景包括排序算法(如归并排序、快速排序)、搜索算法(如二分查找)等。

2. 什么是动态规划算法?请给出一个动态规划算法的示例。

答案:动态规划算法是一种通过将问题分解成子问题并解决子问题来解决复杂问题的方法。

它的特点是具有重叠子问题和最优子结构性质。

以斐波那契数列为例,可以使用动态规划算法求解每一项的值,而不需要重复计算。

3. 图的深度优先搜索和广度优先搜索有什么区别?答案:图的深度优先搜索(Depth First Search,DFS)是一种先访问子节点再访问兄弟节点的遍历算法,通常使用递归或者栈实现。

而广度优先搜索(Breadth First Search,BFS)则是以层次遍历的方式展开搜索,使用队列来实现。

DFS更适合用于搜索路径,BFS则适用于寻找最短路径等。

4. 请简述贪心算法的特点及其应用场景。

答案:贪心算法的特点是每一步都采取当前状态下最优的选择,以期望得到全局最优解。

然而,贪心算法并不一定能求解所有问题的最优解,但对于一些特定问题,贪心算法往往能得到近似最优解。

算法分析与设计习题答案

算法分析与设计习题答案《算法分析与设计》期末复习题及答案⼀、简要回答下列问题:1.算法重要特性是什么?2.算法分析的⽬的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述⼆分检索(折半查找)算法的基本过程。

7.背包问题的⽬标函数和贪⼼算法最优化量度相同吗?8.采⽤回溯法求解的问题,其解如何表⽰?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么⽤分治法设计的算法⼀般有递归调⽤?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。

14.⼆分检索算法最多的⽐较次数?15.快速排序算法最坏情况下需要多少次⽐较运算?16.贪⼼算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束⼀般指什么?18.阐述归并排序的分治思路。

19.快速排序的基本思想是什么。

20.什么是直接递归和间接递归?消除递归⼀般要⽤到什么数据结构?21.什么是哈密顿环问题?22.⽤回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。

参考答案:1. 确定性、可实现性、输⼊、输出、有穷性2. 分析算法占⽤计算机资源的情况,对算法做出⽐较和评价,设计出额更好的算法。

3. 算法的时间复杂性与问题的规模相关,是问题⼤⼩n的函数。

4.当问题的规模n趋向⽆穷⼤时,影响算法效率的重要因素是T(n)的数量级,⽽其他因素仅是使时间复杂度相差常数倍,因此可以⽤T(n)的数量级(阶)评价算法。

时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。

5. 最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输⼊实例下的算法所耗时间。

最坏情况下的时间复杂性取的输⼊实例中最⼤的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输⼊实例的处理时间与各⾃概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn6. 设输⼊是⼀个按⾮降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x⽐较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]回溯法的搜索特点是什么7. 不相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法分析与设计习题集整理第一章算法引论一、填空题:1、算法运行所需要的计算机资源的量,称为算法复杂性,主耍包括时间复杂度和空间复杂度。

2、多项式A{n) = a m n m+…+ a/ + q的上界为O(rT)。

3、算法的基本特征:输入、输出、确定性、有限性。

4、如何从两个方面评价一个算法的优劣:时间复杂度、空间复杂度。

5、计算下面算法的时间复杂度记为:0(n3) 0for(i=l;i<=n;i++)for(j=l;j<=n;j++){c[i][j]二 0;for (k二1;k〈=n;k++)c[i][j]= c[i][j]+a[i][k]*b[k][j];}6、描述算法常川的方法:自然语言、伪代码、程序设计语言、流程图、盒图、PAD图。

7、算法设计的基本要求:正确性和H J读性。

8、计算下面算法的时间复杂度记为:0(/)。

for (i = l; i<n; i卄){ y=y+l;for (j=0; j <=2n; j++ )x + + ;}9、计算机求解问题的步骤:问题分析、数学模型建立、算法设计与选择、算法表示、算法分析、算法实现、程序调试、结果整理文档编制。

10、算法是指解决问题的方法或过程。

11、算法由操作、控制结构、数据结构三要素组成。

二、简答题:1、按照时间复杂度从低到高排列:0(4i?)、0(logn)、0(3")、0(20n)、0(2)、0( n2/3),0( n!)应该排在哪一位?答:0( 2), 0( logn), 0( n2/3), 0( 20n), 0( 4n2), 0( 3n), 0( n!)2、什么是算法?算法的特征有哪些?答:1) 法:指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。

通俗讲,算法:就是解决问题的方法或过程。

2)特征:1)算法有零个或多个输入;2)算法有一个或多个输岀;3)确定性;4)有穷性3、给出算法的定义?何谓算法的复杂性?计算下例在最坏情况下的时间复杂性?for(j=l;j<=n;j++) (1)for(i=l;i<=n;i++) (2)(c[i][j]=O; ⑶for(k=l;k<=n;k++) (4)c[i][j]= c[i][j]+a[i][k]*b[k][j];} (5)答:1)定义:指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程。

2) 算法的复杂性:指的是算法在运行过程中所需要的资源(时间、空间)多少。

所需 资源越多,表明算法的复杂性越高3) 该算法的主要元操作是语句5,其执行次数是r?次。

故该算法的时间复杂度记为0 (n 8)・4、算法A 和算法B 解同一问题,设算法A 的时间复杂性满足递归方程,若要使得算法A 时间复杂性的阶高于算法B 时间复杂性的阶,T(n) = aT(n/4) + n , n > 1 a 的最大整数值可取多少?答:分别记算法A 和算法B 的时间复杂性为丁八(n)和T B (n),解相应的递归方程得:T A (n) = O(n 2)0(n) ,a < 4T B (n) = < 0(nlogn) ,a = 4O(n ,og4a ) ,a>4依题意,要求最人的整数a 使得T B (n) <T A (n)o 显然,当以二4时,T B (n) <T A (n); 当 a>4 时,T B (n) (T A (n) <=> log 4 a < 2 <=> a<42=16o所以,所求的a 的最人整数值为15。

5、 算法分析的目的?答:1)为了对算法的某些特定输入,估算该算法所協的内存空间和运行时间;2)是为了建立衡最算法优劣的标准,用以比较同一类问题的不同算法。

6、 算法设计常用的技术?(写5种) 答:①分治法;②回溯法; ③贪心法;④动态规划法⑤分治限界法;⑥蛮力法;⑦倒推法三、算法设计题1、 蛮力法:百鸡百钱问题?2、 倒推法:穿越沙漠问题?第二章分治算法(1) 一一递归循环一、 填空题:1、 总接或间接地调用自身的算法称为 递归算法,用函数自身给出定义的函数称为 递归 函数。

2、 递归方程利约束函数(递归终止条件)是递归函数的两个要素。

二、 判断题:1、所有的递归函数都能找到对应的非递归定义。

(V )T(n) = 1 , n = 1 ' T(n) = 4T(n/2) + n , n>l算法B 的时间复杂性满足递归方程2、定义递归函数时可以没冇初始值。

(X )三、简答题:1、什么是递归算法?递归算法的特点?答:1)递归算法:是一个模块(函数、过程)除了可调用其它模块(函数、过程)夕卜,述可以宜接或间接地调用自身的算法。

2)递归算法特点:①每个递归函数都必须有非递归定义的初值;否则,递归函数无法计算;(递归终止条件)②递归中用较小自变量函数值來表达较大自变量函数值;(递归方程式)2、比较循环与递归的异同?答:相同:递归与循环都是解决“重复操作”的机制。

不同:①就效率而言,递归算法的实现往往要比迭代算法耗费更多的时间(调用和返回均需耍额外的吋间)与存贮空间(用来保存不同次调用情况下变量的当前值的栈栈空间),也限制了递归的深度。

②每个迭代算法原则上总可以转换成与它等价的递归算法;反Z不然。

③递归的层次是可以控制的,而循坏嵌套的层次只能是固定的,因此递归是比循环更灵活的重复操作的机制。

3、递归算法解题通常有三个步骤?答:1)分析问题、寻找递归:找出人规模问题与小规模问题的关系,这样通过递归使问题的规模逐渐变小。

2)设置边界、控制递归:找出停止条件,即算法对解的最小规模问题。

3)设计函数、确定参数:和其它算法模块一样设计函数体屮的操作及相关参数。

四、算法设计题:1、楼梯上有n个台阶,上楼时可以上1步,也可以上2步,设计一递归算法求出共有多少种上楼方法F(n)o①写出F(n)的递归表达式?②并写岀其相应的递归算法?解:①写出F(n)的递归表达式分析:到n阶有两种走法:1)n-l阶到n阶;2)n-2阶到n阶;1 n=lF(n) = y 2 n=2J(n-l) + F(n-2) n〉2②写出其相应的递归算法?Int F(int n){if(n=l) return 1;else if(n=2)return 2;elsereturn F(nT)+ F(n-2);}2、设a, b,c是3个塔座。

开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。

各圆盘从小到大编号为1, 2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。

在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。

①写出该问题的解题步骤?②并写出其相应的递归算法?解:①第一步:将n—1个盘子看成一个整体,从A移到C;第二步:将第n个盘子移到B;笫三步:将n—1个盘子看成一个整体,从C移到B;②写出其相应的递归算法:void hanoi (int n, int a, int b, int c){if (n > 0){hanoi(nT, a, c, b);move (a, b);hanoi (n-1, c, b, a);} }第二章分治算法(2)分治算法一、填空题:1、在快速排序、插入排序和合并排序算法中,插入排序算法不是分治算法。

2、合并排序算法使用的是分治算法设计的思想。

3、二分捜索算法是利用分治算法思想设计的。

二、简答题:1、适合用分治算法求解的问题具有的基本特征?答:1)该问题的规模缩小到一定的程度就可以容易解决;2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优了结构性质;3)该问题所分解出的各个子问题是相互独立的,即子问题Z间不包含公共的子问题。

4)利用该问题分解出子问题解可以合并为该问题解;2、分治算法基本思想,解题步骤?三、算法设计题:1、改写二分查找算法:设a[l-n]是一个已经排好序的数组,改写二分查找算法,使得当捜索元索x不在数组中时,返回小于x的最大元素位置i,和大于x的最小元素位置j;当搜索元素x在数组屮时,i和j和同,均为x在数组中的位置。

并分析具时间复杂度?解:int binsearch( int a[n], int x ,) //x 待查数据{int mid, i , j; low二1;int high二n;wh i 1 e (low<=hi gh){mid=(low+high)/2;if(a[mid]=x) return i二j=mid;if (a[mid]>x) high 二 midT; //继续在左边查找else // (a[mid]<x)low二mid+1; //继续在右边查找i=right; j=left;return 0; //low大于high查找区间为空,查找失败}计算时间复杂性为0(logn)2、棋盘覆盖在一个2k X2k个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,「1.称该棋盘为一特殊棋盘。

在棋盘覆盖问题中,耍用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。

求:①简述分治算法的基本思想?②设计该棋盘覆盖问题的分治算法?③计算所设计算法的时间复杂度?(要求写出递推公式)解:①分解:将一个难以直接解决的大问题,分割成一些规模较小的相同子问题,以便各个击破,分而治之。

对这k个子问题分别求解:如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止求小问题解、合并:将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原來问题的解。

②、③3、金块问题(求最大最小元问题)老板有一袋金块(共n块),最优秀的雇员得到具屮最重的—•块,最差的雇员得到其中最轻的一块。

假设有一台比较重聚的仪器,我们希望用最少的比较次数找岀最重的金块。

求:①简述分治算法的基木思想?②设计该金块问题的分治算法?③计算所设计算法的时间复杂度?(要求写出递推公式)答:①简述分治算法的基本思想:问题可以简化为:在含n (n是2的幕5>二2))个元素的集合中寻找极人元和极小元。

用分治法(二分法)可以用较少比较次数地解决上述问题:1)将数据等分为两组(两组数据可能差1),目的是分别选取其中的最大(小)值。

2)递归分解直到每组元素的个数W2,可简单地找到最大(小)值.3)回溯时将分解的两组解人者取大,小者取小,合并为当前问题的解。

相关文档
最新文档