(完整版)初中数学几何证明经典试题(含答案),推荐文档
初中数学几何证明经典题含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二).如下图做GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。
2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二).如下图做GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF得证。
.如下图做GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得EO GF =GO GH =COCD,又CO=EO ,所以CD=GF 得证。
3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N AD 、APCDB CDAFG CEBODBC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自AB、C及D、E,直线EB及CD分别交MN于P、Q.求证:AP=AQ.(初二)3、如果上题把直线MN设MN是圆O的弦,过MN的中点A任作两弦MN于P、Q.求证:AP=AQ.(初二)4、如图,分别以△ABC的AC和BC为一边,在△ABC方形CBFG,点P是EF的中点.求证:点P到边AB1、如图,四边形ABCD求证:CE=CF.2、如图,四边形ABCDF.求证:AE=AF.3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC相交于B 、D .求证:AB =DC ,BC =经典1、已知:△ABC 是正三角形,P 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·4、平行四边形ABCD 中,设E 、F 分别是BC 、AB ,且AE =CF .求证:∠DPA =∠DPC .(初二)经典难1、 设P 是边长为1的正△ABC 内任一点,L =PA +求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是=300,∠EBA =200,求∠BED 的度数.经典题(一)1.如下图做GH ⊥AB,连接EO 。
初中数学几何证明经典题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
.如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 BF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC点P 是EF 的中点.求证:点P 到边AB 的距离等于AB的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、证:AB =DC ,BC =AD .(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA =200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、 E 是圆上的两点,CD⊥ AB,EF⊥ AB, EG⊥ CO.求证: CD= GF.(初二)CEGA BD O F2、已知:如图,P 是正方形ABCD内点,∠ PAD=∠ PDA= 150.求证:△ PBC是正三角形.(初二)A DPB C3、如图,已知四边形ABCD、 A1B1C1D1都是正方形, A2、 B2、 C2、 D2分别是AA1、BB1、 CC1、 DD1的中点.A DA2D2求证:四边形 A B C D 是正方形.(初二)A12222D1B1C1B22CB C4、已知:如图,在四边形ABCD中, AD= BC,M、N 分别是 AB、CD的中点, AD、BC的延伸线FEN C交 MN于 E、 F.求证:∠ DEN=∠ F.经典题(二)1、已知:△ ABC中, H 为垂心(各边高线的交点), O为外心,且 OM⊥ BC于M.( 1)求证: AH=2OM;A( 2)若∠ BAC= 600,求证: AH= AO.(初二)O·H EB M D C2、设 MN是圆 O外向来线,过 O作 OA⊥ MN于 A,自 A引圆的两条直线,交圆于B、C及D、E,直线 EB及 CD分别交 MN于 P、 Q.GE求证: AP= AQ.(初二)O·CB DMP A Q N3、假如上题把直线MN由圆外平移至圆内,则由此可得以下命题:设 MN是圆 O的弦,过 MN的中点 A 任作两弦 BC、DE,设 CD、 EB分别交 MN于 P、 Q.求证: AP=AQ.(初二)CEA M Q·P N·O B D4、如图,分别以△ABC的 AC和 BC为一边,在△ ABC的外侧作正方形ACDE和正方形 CBFG,点 P是 EF的中点.求证:点P 到边 AB的距离等于AB的一半.(初二)DGCEPFA Q B经典题(三)1、如图,四边形ABCD为正方形, DE∥AC, AE=AC, AE与 CD订交于 F.求证: CE=CF.(初二)AB2、如图,四边形ABCD为正方形, DE∥AC,且 CE= CA,直线 EC交 DA延伸线于求证: AE= AF.(初二)DF ECF.F A DB C3、设 P 是正方形ABCD一边 BC上的任一点,PF⊥ AP, CF均分∠ DCE.求证: PA= PF.(初二)AE DFBP C E4、如图, PC切圆 O于 C,AC为圆的直径, PEF为圆的割线, AE、AF 与直线 PO订交于 B、D.求证: AB= DC, BC= AD.(初三)AB O DPEFC经典题(四)A1、已知:△ ABC是正三角形, P 是三角形内一点,PA=3, PB= 4, PC= 5.P 求:∠ APB的度数.(初二)B C2、设 P 是平行四边形ABCD内部的一点,且∠PBA=∠ PDA.求证:∠ PAB=∠ PCB.(初二)A DPB C3、设 ABCD为圆内接凸四边形,求证:AB· CD+AD· BC=AC· BD.(初三)ADB C4、平行四边形ABCD中,设 E、 F 分别是 BC、 AB上的一点, AE 与 CF订交于 P,且AE= CF.求证:∠ DPA=∠ DPC.(初二)A DFPB E C经典难题(五)A1、设 P 是边长为 1 的正△ ABC内任一点, L= PA+ PB+ PC,PB C求证:≤ L<2.2、已知: P 是边长为 1 的正方形ABCD内的一点,求PA+ PB+ PC的最小值.A DPCB3、 P 为正方形ABCD内的一点,而且PA= a, PB= 2a, PC= 3a,求正方形的边长.A DPCB4、如图,△ ABC中,∠ ABC=∠ ACB= 800, D、 E 分别是 AB、 AC上的点,∠ DCA= 300,∠ EBAAE= 200,求∠ BED的度数.经典题(一)1.以下列图做 GH⊥ AB,连结 EO。
(完整版)初中经典几何证明练习题集(含答案解析),推荐文档

初 中 几 何 证 明 题经 典 题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点 G 作 GH ⊥AB 于 H ,连➓ OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴EO = GOFG HG∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴GO = COHG CD ∴ EO = CO FG CD∵EO=CO ∴CD=GF2、已知:如图,P 是正方形 ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形 ADM ,连➓ MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ➴△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ➴∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形 ABCD 中,AD =BC ,M 、N 分别是 AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F .求证:∠DEN =∠F .证明:连➓ AC ,取 AC 的中点 G,连➓ NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 1AD2∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 1 BC2∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经 典 题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且 OM ⊥BC 于 M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长 AD 交圆于 F ,连➓ BF ,过点 O 作 OG ⊥AD 于 G ∵OG ⊥AF ∴AG=FG ⌒ ⌒ AB AB ∵ =∴∠F=∠ACB又 AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又 AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又 AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形 OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连➓ OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM= 1∠BOC=60°∴∠OBM=30°2∴BO=2OM由(1)知 AH=2OM ∴AH=BO=AO2、设 MN 是圆 O 外一条直线,过 O 作 OA ⊥MN 于 A ,自 A 引圆的两条割线交圆 O 于 B 、C 及 D 、E ,连➓ CD 并延长交 MN 于 Q ,连➓ EB 并延长交 MN 于 P. 求证:AP =AQ .证明:作点 E 关于 AG 的对称点 F ,连➓ AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ3、设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC 、DE ,设 CD 、EB 分别交 MN 于 P 、Q . 求证:AP =AQ .(初二)证明:作 OF ⊥CD 于 F ,OG ⊥BE 于 G ,连➓ OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴AB = BE = 2BG =BGAD DC 2FD DF∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN又 OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ➴△OAP ∴AP=AQ4、如图,分别以△ABC 的 AB 和 AC 为一边,在△ABC 的外侧作正方形 ABFG 和正方形 ACDE ,点 O 是 DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过 F 、A 、D 作直线 BC 的垂线,垂足分别是 L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是✲形 DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ➴△ABM ∴FL=BM同理△AMC ➴△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经 典 题(三)1、如图,四边形 ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与 CD 相交于 F . 求证:CE =CF .(初二)证明:连➓ BD 交 AC 于 O 。
初中数学-几何证明经典试题(含答案)

初中几何证明题经典题〔一〕1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .〔初二〕2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.〔初二〕3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.〔初二〕AP C D BA F G C EBO D D 2 C 2 B 2 A 2 D 1 C 1B 1C BD AA 14、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题〔二〕1、已知:△ABC 中,H 为垂心〔各边高线的交点〕,O为外心,且OM ⊥BC 于M . 〔1〕求证:AH =2OM ;〔2〕假设∠BAC =600,求证:AH =AO .〔初二〕2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q .F3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.〔初二〕经典题〔三〕1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .〔初二〕3、设P 是正方形ABCD 一边BC 上的任一点,PF⊥AP ,CF 平分∠DCE .4、如图,PC切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .〔初三〕D经典题〔四〕1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.〔初二〕2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.〔初二〕3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.〔初三〕4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.〔初二〕经典难题〔五〕1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.2ABCD 内的一点,求PA +PB +PC 的最小值. 3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长. 4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =30,∠EBA =200,求∠BED 的度数.APCB ACBPDED CBA ACBPD参考答案经典题〔一〕⊥AB,连接EO。
初中数学几何证明经典题含答案

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二).如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
.如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 BF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN于P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEFB 、D .求证:AB =DC ,BC =AD.(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
初中数学几何证明经典试题(含答案)

初中数学⼏何证明经典试题(含答案)初中⼏何证明题经典题(⼀)1、已知:如图,O 是半圆的圆⼼,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初⼆).如下图做 GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG, 即△GHF ∽△OGE,可得 EO = GO = CO ,⼜CO=EO ,所以CD=GF 得证。
GF GH CD.如下图做 GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG, EO GO CO 即△GHF ∽△OGE,可得 EO = GO = CO= , ⼜ CO=EO ,所以 CD=GF 得证BC.如下图做 GH ⊥AB,连接EO 。
由于GOFE 四点共圆,所以∠GFH =∠OEG,2、已知:如图,P 是正⽅形 ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三⾓形.(初⼆)AGF GH CDEO GO CO即△GHF∽△OGE,可得EO= GO = CO ,⼜CO=EO,所以CD=GF得证。
GF GH CD3、如图,已知四边形 ABCD 、A 1B 1C 1D 1都是正⽅形,CC 1、DD 1的中点.求证:四边形 A 2B 2C 2D 2 是正⽅形.(初⼆)4、已知:如图,在四边形 ABCD 中,AD =BC ,M 、N 分别是AB 、1)求证:AH =2OM ;2)若∠BAC =600,求证:AH =AO .(初⼆)A2、求证:1、已知:ACD的中点,AD、BC2、设MN是圆O外⼀直线,过O作OA⊥MN于A,⾃A引圆的两条直线,交圆于B、C及D、E,直线EB 及CD 分别交MN 于P、Q .求证:AP=AQ.(初⼆)3、如果上题把直线MN由圆外平移⾄圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点 A 任作两弦BC、DE,设CD、EB 分别交MN于P 、Q .求证:AP=AQ.(初⼆)4、如图,分别以△ABC 的AC 和BC 为⼀边,在△ABC 的外侧作正⽅形ACDE 和正⽅形CBFG,点P是EF的中点.经典题(三)1、如图,四边形ABCD 为正⽅形,DE∥AC,AE=AC,AE 与CD相交于F.FGNAE求证:CE=CF.(初⼆)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD.(初三)如图,四边形ABCD 为正⽅形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .2、 E4、1、2、设P 是平⾏四边形ABCD 内部的⼀点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初⼆)B C4、平⾏四边形ABCD 中,设E 、F 分别是BC 、AB 上的⼀点,AE 与CF 相交于P ,且AE =CF .求证:∠DPA =∠DPC .(初⼆)3、P 为正⽅形 ABCD 内的⼀点,并且 PA =a ,PB =2a ,PC =3a ,求正⽅形的边长.经典难题(五)1、设 P 是边长为 1 的正△ABC 内任⼀点,L =PA +PB +PC ,求证: ≤L <2.2、已知:P 是边长为 1 的正⽅形 ABCD 内的⼀点,求 PA +PB +PC 的最⼩值.ADB C4、如图,△ABC 中,∠ABC=∠ACB=800,D、E 分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED 的度数.A经典题(⼀)1.如下图做GH⊥AB,连接EO。
初中经典几何证明练习题(含答案)

初中几何证明题【1】经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG∴FG EO =HG GO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CD COFG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG∴GN ∥AD ,GN=21AD∴∠DEN=∠GNM ∵AM=BM ,AG=CG∴GM ∥BC ,GM=21BC∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM=21∠BOC=60°∴∠OBM=30°∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC∴DF BGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC 求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CEG P 初 中 几 何 证 明 题经 典 题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二).如下图做 GH ⊥AB,连接 EO 。
由于 GOFE 四点共圆,所以∠GFH =∠OEG, EO GO CO即△GHF ∽△OGE,可得==,又 CO=EO ,所以 CD=GF 得证。
GF GH CDADOFB2、已知:如图,P 是正方形 ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) AD.如下图做 GH ⊥AB,连接 EO 。
由于 GOFE 四点共圆,所以∠GFH =∠OEG, EO GO CO即△GHF ∽△OGE,可得==,又 CO=EO ,所以 CD=GF 得证。
GF GH CDBC.如下图做 GH ⊥AB,连接 EO 。
由于 GOFE 四点共圆,所以∠GFH =∠OEG, EO GO CO即△GHF ∽△OGE,可得==,又 CO=EO ,所以 CD=GF 得证。
GF GH CDA 2D 2 A 1D 1B 1C 1B 2C 2F E NCDA D3、如图,已知四边形 ABCD 、A 1B 1C 1D 1 都是正方形,A 2、B 2、C 2、D 2 分别是AA 1、BB 1、CC 1、DD 1 的中点.求证:四边形 A 2B 2C 2D 2 是正方形.(初二)BC4、已知:如图,在四边形 ABCD 中,AD =BC ,M 、N 分别是 AB 、CD 的中点,AD 、BC的延长线交 MN 于 E 、F . 求证:∠DEN =∠F .经 典 题(二)ABM1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且 OM ⊥BC 于 M .(1)求证:AH =2OM ;A(2) 若∠BAC =600,求证:AH =AO .(初二)O· H EGECO ·B DF2、设 MN 是圆 O 外一直线,过 O 作 OA ⊥MN 于 A ,自 A 引圆的两条直线,交圆于B 、C 及 D 、E ,直线 EB 及 CD 分别交 MN 于 P 、Q . 求证:AP =AQ .(初二)MP AQ N3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC 、DE ,设 CD 、EB 分别交 MN于 P 、Q .求证:AP =AQ .(初二)4、如图,分别以△ABC 的 AC 和 BC 为一边,在△ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点 P 是 EF 的中点.求证:点 P 到边 AB 的距离等于 AB 的一半.(初二)DEFAQB经 典 题(三)1、如图,四边形 ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与 CD 相交于 F . 求证:CE =CF .(初二)ADEGCPB2、如图,四边形ABCD 为正方形,DE∥AC,且CE=CA,直线EC 交DA 延长线于F.求证:AE=AF.(初二)3、设P 是正方形ABCD 一边BC E 求证:PA=PF.(初二) A DFB PC E4、如图,PC 切圆O 于C,AC 为圆的直径,PEF 为圆的割线,AE、AF 与直线PO 相交于B、D.求证:AB=DC,BC=AD.(初三)AP B O DEF经典题(四)CA1、已知:△ABC 是正三角形,P 是三角形内一点,PA=3,PB=4,PC=5.求:∠APB 的度数.(初二)PB C2、设P 是平行四边形ABCD 内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)A DPB C3、设ABCD 为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)PPP4、平行四边形 ABCD 中,设 E 、F 分别是 BC 、AB 上的一点,AE 与 CF 相交于 P ,且AE =CF .求证:∠DPA =∠DPC .(初二)A DF经 典 难 题(五)PBE CA1、 设 P 是边长为 1 的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.BC2、已知:P 是边长为 1 的正方形 ABCD 内的一点,求 PA +PB +PC 的最小值.A DB C3、P 为正方形 ABCD 内的一点,并且 PA =a ,PB =2a ,PC =3a ,求正方形的边长.ADB CADBCED4、如图,△ABC 中,∠ABC=∠ACB=800,D、E 分别是AB、AC 上的点,∠DCA=300,∠EBA=200,求∠BED 的度数.AB C经典题(一)1.如下图做GH⊥AB,连接EO。
由于GOFE 四点共圆,所以∠GFH=∠OEG,EO GO CO即△GHF∽△OGE,可得= = ,又CO=EO,所以CD=GF 得证。
GF GH CD2..如下图做GH⊥AB,连接EO。
由于GOFE 四点共圆,所以∠GFH=∠OEG,EO GO CO即△GHF∽△OGE,可得= = ,又CO=EO,所以CD=GF 得证。
GF GH CD3.如下图连接 BC1和AB1分别找其中点 F,E.连接 C2F 与A2E 并延长相交于 Q 点,连接 EB2并延长交 C2Q 于 H 点,连接 FB2并延长交 A2Q 于 G 点,由 A2E= 1A1B1= 1B1C1= FB2,EB2= 1AB= 1 BC=F C1,又∠GFQ+∠Q=900 和2 2 2 2∠GE B2+∠Q=900,所以∠GE B2=∠GFQ 又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900 和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,同理可得其他边垂直且相等,从而得出四边形A2B2C2D2是正方形。
4.如下图连接 AC 并取其中点 Q,连接 QN 和QM,所以可得∠QMF=∠F,∠QNM=∠DEN 和∠QMN=∠QNM,从而得出∠DEN=∠F。
经典题(二)1.(1)延长 AD 到 F 连 BF,做 OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,从而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)连接 OB,OC,既得∠BOC=1200,从而可得∠BOM=600,所以可得OB=2OM=AH=AO,得证。
3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。
AD AC CD 2FD FD由于= = = = ,AB AE BE 2BG BG由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。
又因为PFOA 与QGOA 四点共圆,可得∠AFC=∠AOP 和∠AGE=∠AOQ,∠AOP=∠AOQ,从而可得AP=AQ。
EG + FH 4.过E,C,F 点分别作AB 所在直线的高EG,CI,FH。
可得PQ= 。
2由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。
AI + BI AB从而可得PQ= = ,从而得证。
2 2经典题(三)1.顺时针旋转△ADE,到△ABG,连接CG.由于∠ABG=∠ADE=900+450=1350从而可得B,G,D 在一条直线上,可得△AGB≌△CGB。
推出AE=AG=AC=GC,可得△AGC 为等边三角形。
∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。
又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。
2. 连接 BD 作 CH ⊥DE ,可得四边形 CGDH 是正方形。
由 AC=CE=2GC=2CH ,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,从而可知道∠F=150,从而得出 AE=AF 。
3. 作 FG ⊥CD ,FE ⊥BE ,可以得出 GFEC 为正方形。
令 AB=Y ,BP=X ,CE=Z ,可得 PC=Y-X 。
Xtan ∠BAP=tan ∠EPF== Y Y - Z X + Z,可得 YZ=XY-X 2+XZ ,即 Z(Y-X)=X(Y-X) ,既得 X=Z ,得出△ABP ≌△PEF , 得到 PA =PF ,得证 。
经典难题(四)1.顺时针旋转△ABP 600 ,连接PQ ,则△PBQ 是正三角形。
可得△PQC 是直角三角形。
所以∠APB=1500 。
2.作过 P 点平行于 AD 的直线,并选一点 E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:AEBP 共圆(一边所对两角相等)。
可得∠BAP=∠BEP=∠BCP,得证。
3.在BD 取一点 E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:BE AD= ,即AD•BC=BE•AC,①BC AC又∠ACB=∠DCE,可得△ABC∽△DEC,既得AB DE= ,即AB•CD=DE•AC,②AC DC由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证。
4. 过D 作AQ⊥AE ,AG⊥CF ,由SAE PQ=AE PQ,由AE=FC。
2 2 A D E=SABCD = S2 D F C,可得:可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。
经典题(五)1.(1)顺时针旋转△BPC 600 ,可得△PBE 为等边三角形。
既得PA+PB+PC=AP++PE+EF 要使最小只要AP,PE,EF 在一条直线上,即如下图:可得最小L= ;(2)过P 点作BC 的平行线交 AB,AC 与点D,F。
由于∠APD>∠ATP=∠ADP,推出AD>AP ①又BP+DP>BP ②和PF+FC>PC ③又DF=AF ④由①②③④可得:最大L< 2 ;由(1)和(2)既得:≤L<2 。
2.顺时针旋转△BPC 600 ,可得△PBE 为等边三角形。
既得PA+PB+PC=AP+PE+EF 要使最小只要AP,PE,EF 在一条直线上,即如下图:可得最小PA+PB+PC=AF。
1+ ( 3 + 1)2 4 22 +3 ( 3 + 1)2 2既得 AF===== 2 ( 2+ 1)=6 + 2 。
23. 顺时针旋转△ABP 900 ,可得如下图:既得正方形边长 L = (2 + 2)2 + ( 2 )2 a = 5 + 2 2 a 。
2 24 + 2 3234.在AB 上找一点 F,使∠BCF=600 ,连接EF,DG,既得△BGC 为等边三角形,可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF ,得到BE=CF ,FG=GE 。