未来15年5大生物技术前沿技术
生物科技领域前沿技术的介绍

生物科技领域前沿技术的介绍生物科技作为现代科学发展的一个重要领域,在人类社会的发展进程中扮演着举足轻重的角色。
生物科技不仅涉及到人类健康、环境保护、粮食安全等方面,而且还能够为其他相关领域的发展提供技术支持。
随着科学技术的不断进步,新的生物科技前沿技术正在不断涌现。
下面,我们将简单介绍一下当前生物科技领域中的一些前沿技术。
一、基因编辑技术基因编辑技术是一种可以直接编辑一个生物体的DNA序列的手段,包括CRISPR-Cas9、TALEN、ZFN等技术。
这些技术的出现使生命科学领域的研究者能够“切除”、“插入”或“修复”特定基因,进而改变特定物种的特性或治疗人类疾病。
如CRISPR-Cas9的出现使基因编辑成本降低,水平进一步提高,为基因编辑技术的应用和推广带来了新的可能性。
二、纳米技术纳米技术是高速发展的跨学科领域,指的是研究和开发微小尺度(从纳米尺度到微米尺度)对象的新材料、新构造、新器件和新系统的科学和技术。
生物医学芯片(Biochip)、纳米药物载体、纳米生体传感器等均属于纳米技术应用的范畴。
生物纳米技术研究的基本方法是采用各种纳米加工技术和纳米测量技术。
纳米技术在药物研究、组织工程、生物检测、生物传感、生物成像和分子诊断等方面表现出了广泛的应用前景,将在未来的临床治疗中发挥越来越大的作用。
三、合成生物学合成生物学是一种新兴的科学领域,是将生命体系化为工程化的系统的学科,旨在设计和构建全新的生物系统或重新构造已有的生物系统以满足特定的需求。
这种新的技术手段带来的巨大潜能不仅意味着人类可以重新构造生物机体的基础架构,而且还可以为社会的发展带来很多好处。
合成生物学的应用前景包括生产新型抗菌药物、制造新型的生物能源、生产高效农业生产手段等。
四、基因组学基因组学是研究生物体的基因组的科学。
目前,人类基因组已经完整测序并得到指责,对于人类健康、疾病的病因和发展等方面具有重要的作用。
基因测序技术的快速发展是基因组学进步的推动力,随着新一代测序技术的问世,基因组学的研究更具可行性和准确性。
生物前沿领域研究的新技术与新方法

生物前沿领域研究的新技术与新方法随着科技不断进步,生物学领域也在不断涌现出各种新技术和新方法。
这些技术和方法的出现,为生物学的研究提供了更为广阔和深邃的视野,同时也极大地推动了生物领域的发展和进步。
本文将就生物前沿领域研究的新技术和新方法进行阐述和探究。
1、单细胞测序技术单细胞测序技术是目前生物领域中的一项较为新的技术,它可以帮助我们了解细胞内的基因表达情况、蛋白质表达水平等信息,并得出这些信息对于细胞生长、发育、分化等过程的影响。
单细胞测序技术的出现,使得研究人员可以对每一个细胞进行精细化分析,而非对所有细胞都进行相同的分析。
这种技术在生物医学、肿瘤学等领域,尤其是单细胞肿瘤学的研究中有着广泛应用。
2、蛋白质组学技术蛋白质组学是研究整个生物体内所有蛋白质在不同时间、不同状态下的表达变化情况,进而研究其功能和相互作用的学科。
随着蛋白质组学技术的不断发展,促进了对于蛋白质结构、功能、相互作用等方面的深入研究。
其中,液相色谱/质谱(LC-MS/MS)技术是蛋白质组学分析中的一项重要技术,可以对数以万计的蛋白质进行检测和定量,从而更加全面地了解蛋白质的表达情况以及其互作关系。
3、基因编辑技术基因编辑技术是一种针对某个基因进行编辑和改变的技术,在基因组研究和应用中具有广泛应用前景。
目前最为流行的基因编辑技术是CRISPR/Cas9技术,该技术可以利用RNA分子与酶分子保持的互补性,将酶分子引导到特定的DNA序列上进行切割和修改。
这种技术不仅可以用来探究基因遗传学、病理发生等方面的问题,还可以应用于重大疾病的治疗和预防。
4、生物信息学技术生物信息学技术是将计算机技术和生物学相结合,用计算方法处理、存储、管理、分析和解释生命科学的数据或信息的一种学科。
生物信息学技术的广泛应用和推进,为整个生物学领域的研究和应用提供了有力保障。
常用的生物信息学技术有基因组学、转录组学、蛋白质组学等,它们可以实现生物学数据的快速处理和分析,为整个生物领域的研究提供了便利。
生物科学的前沿研究进展

生物科学的前沿研究进展生物科学是一门研究生命体特征、结构和功能的学科,包括生命的组成部分、生命的生长、发育、形态、功能、适应、演变及其与环境的关系等方面。
随着科技的不断发展,生物科学也在迅速地前进,下面就让我们来看看最新的前沿研究进展。
1. 基因编辑技术基因编辑技术是一种新兴的生物技术,通过对基因序列的直接修改来对生物体的性状进行调控,以此来治疗疾病、增强产出或改进生物特性。
其中,CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)技术是目前最为先进和有效的基因编辑技术。
在这项技术的帮助下,研究人员可以更加准确地修饰目标基因,进而改变生物个体的性状。
2. 人工智能在生物科学中的应用人工智能在生物科学中的应用越来越广泛。
例如,人工智能可以通过对全球生态变化数据的分析来预测不同动植物物种的适应性,从而提前采取有效措施来保护物种。
此外,利用人工智能技术可以更好地了解基因的功能、寻找新型疾病治疗办法等。
3. 免疫治疗免疫治疗是一种新型的肿瘤治疗方式,主要是通过激发或增强人体免疫系统的自我修复能力来治疗恶性肿瘤,可有效提高恶性肿瘤患者的生存率。
此外,近年来免疫治疗还被广泛应用于自体免疫性疾病、炎症等疾病的治疗中。
4. 细胞再生医学细胞再生医学是一种利用干细胞或成体细胞再生能力来治疗疾病的学科。
利用干细胞技术,科研人员可以调控干细胞分化方向,制造出多种成熟细胞,如神经元、肌细胞、心脏细胞等,将这些细胞放到合适的位置,能促进受损组织的修复和再生。
5. CRISPR进化技术CRISPR人工进化技术是一种运用基因编辑技术的新兴方法,该技术让CRISPR引导RNA成为一种高效、精准的人工选择器,可用于优化生物体的特定性状,这对于改善人类和其他生物的生存环境和健康状况具有深远的意义。
6. 基于细胞的免疫治疗基于细胞的免疫治疗是一种工程化癌症疗法,是通过收集患者自身的细胞,再进行基因修饰、扩增等处理后,重新注入患者体内,以激活患者自身的免疫系统,对肿瘤产生杀伤作用。
生物领域前沿技术解读

生物领域前沿技术解读一、基因编辑技术基因编辑技术是一种将指定的DNA序列切除并替换为新的序列的工具。
该技术利用CRISPR-Cas9系统,与RNA配对并识别特定的DNA序列。
技术的应用可用于修复遗传性疾病、制造新的治疗性蛋白质、改善作物产量等。
目前,基因编辑技术已经在动物和植物等领域得到了大力的推广和探索。
二、蛋白组学技术蛋白组学是一种用于研究蛋白质结构和功能的技术。
主要是通过分离完成对细胞中的蛋白质进行鉴定、表征和定量。
利用蛋白组学技术,科学家不仅可以快速识别蛋白质序列,而且也能发现新的作用和功能,从而为病理生理学、药物研发等领域提供了方便和支持。
三、CRISPR药物研究技术CRISPR-Cas9技术不仅在基因编辑领域内有着广泛的应用,还可以作为一种药物研究的技术使用。
利用改变某些基因的功能,CRISPR已经被用于治疗肿瘤,代谢性疾病,及基因型疾病。
四、人工合成生物技术人工合成生物是一种新兴的技术,旨在用人工组装的细胞来制造特定化合物或者产生新的功能。
这有待于创新并且把生命的工程化概念应用于化学工业,环境工程及基因工程技术中。
通过该技术,我们可以创造新的生物燃料,制造新型材料和药物。
五、生物传感器技术生物传感器是一种使用生物学分子来检测报告环境信息的科技。
这种技术具有高效、便携、高灵敏度等特点,因此,生物传感器技术已广泛应用于水资源,环境监测,食品卫生等领域,大大提升了生活质量。
六、人工通讯对于生物的影响随着人工智能和大数据技术的飞速发展,基于人工智能的通讯技术已经被赋予了更多的功能。
利用这些技术,可以在固定的时间范围内收集生物的数据,分析并归纳。
这种分析的结果可以用于预测生物的行为和生理状况,从而为生物学研究、药物研发等领域提供更多的支持。
总体而言,这些生物技术的发展,使得人们不仅能够探索生命的奥秘,还为人类生活提供了更好的保障和服务。
相信随着技术的成熟和发展,我们将会看到更多创新的生物技术被应用于各行各业,并带来更好的生活体验。
生命科学的前沿进展

生命科学的前沿进展生命科学是当前世界范围内最具活力的科学领域之一,这个领域中不断涌现出各种革命性的技术和理论。
本文将介绍五个当今生命科学的前沿进展。
一、基因编辑技术基因编辑技术拥有无限可能,这个技术可以创造出新的真核生物,让人可以自由地操纵生物体的遗传物质。
这个技术一旦成熟,或许就可以完全治愈我们许多现在被认为是不治之症的疾病,如癌症、艾滋病等。
基因编辑技术对未来的医疗,特别是个性化治疗方向,注定将有深远的影响。
二、干细胞技术干细胞可以被转化成成体细胞,如心脏细胞、神经细胞和肝脏细胞等,其可用于治疗多种疾病。
干细胞技术也为人们提供了一种可以代替器官捐献的方法,因为它可以培养出个性化的匹配器官。
未来,干细胞技术对细胞治疗和组织工程学的成功将会有重要的贡献,可能使治愈那些目前还无法治愈的疾病成为现实。
三、人工智能人工智能技术正在被应用到生命科学中,例如,人工智能可以为药物发现提供有效的方法。
在药物发现中,人工智能可以发现传统方法难以发现的药物。
研究人员已经用人工智能成功地开发了许多新的药物,特别是肿瘤治疗方面。
人工智能还能够帮助提高病人的医疗保健水平,例如通过智慧医疗管理患者的电子病历,篡改药品管理等。
四、脑机接口技术脑机接口技术让人们可以通过大脑波来控制物体,例如,运动假肢等。
同时,脑机接口技术也可以学习思维和行为模式,可以让我们更好地了解大脑工作的方式。
这个技术一旦成熟,将会推动整个医疗行业向前发展。
未来的治疗趋势可能会像"黑镜"中一样,实现一些令人难以想象的操作,例如,通过脑机接口来直接传递感官体验,通过“黑镜”传递的信息,实现参与其中。
五、纳米技术纳米技术是一种利用微观材料的性质来设计、制造和操作材料和装置的技术。
在生命科学中,纳米技术可以用来制造人工器官和药物,纳米技术的效率相比传统的技术大大提高。
另外,纳米技术还可以用于控制药物的释放时间和合成方法,有望为治疗癌症等疾病带来新策略。
生物工程的前沿技术与应用

生物工程的前沿技术与应用生物工程是近年来发展迅速的领域,它将生物学与工程学相结合,致力于开发和应用生物技术来改善生命质量和解决人类所面临的各种问题。
在生物工程领域,有许多前沿技术正在不断推动着科学的进步,也为人类社会带来了许多重大的应用。
本文将介绍一些生物工程的前沿技术和它们在不同领域的应用。
一、基因编辑技术基因编辑技术是目前生物工程领域最为热门的研究方向之一。
通过对生物体的基因组进行精确的修改,基因编辑技术可以实现对基因的精准调控和修复。
其中,CRISPR-Cas9系统是最为突出的基因编辑工具之一。
它利用一种特殊的酶剪切DNA,并通过DNA修复系统来改变目标基因的序列。
基因编辑技术在农业、医学和能源等领域具有广泛的应用前景。
在农业领域,基因编辑技术可以用于改良作物品种,提高农作物的耐逆性和产量。
通过编辑植物基因组,科学家可以使作物在干旱、盐碱等恶劣环境中更好地生长,并提高其抗病虫害的能力,从而减少对化学农药的依赖。
在医学领域,基因编辑技术具有重要的应用潜力。
它可以用于治疗遗传性疾病,如囊性纤维化、血友病等。
通过对患者的基因进行编辑修复,基因编辑技术有望为患者提供一种有效和持久的治疗手段,并改善其生活质量。
二、合成生物学合成生物学是研究和设计生物系统的一门新兴学科。
通过合成生物学,科学家可以重新设计并合成具有特定功能的生物分子、细胞和组织。
合成生物学在医药、能源和环境等领域具有广泛的应用前景。
在医药领域,合成生物学可以用于生产药物和疫苗。
通过对微生物基因组的工程和调控,科学家可以使微生物合成出更安全、更高效的药物和疫苗,从而降低制药成本,提高药物的治疗效果。
在能源领域,合成生物学可以用于生物燃料的生产。
科学家们通过改造微生物的代谢途径,使其能够高效地转化废弃物和植物秸秆等生物质为燃料,从而解决能源短缺和环境污染的问题。
三、人工智能与生物工程人工智能技术的快速发展对生物工程领域也带来了很多创新和突破。
生命科学领域中的前沿技术

生命科学领域中的前沿技术生命科学是一个广泛的领域,包括了生物学、医学、生态学、遗传学、细胞学、微生物学、分子生物学等诸多分支学科。
这个领域一直在不断地发展和创新,许多前沿技术也随之涌现。
本文将介绍一些在生命科学领域中备受瞩目的前沿技术。
1. 基因编辑技术基因编辑技术已经成为生命科学领域中最为重要的前沿技术之一。
通过基因编辑技术,研究人员可以对特定的基因进行精确编辑,从而改变生物个体的遗传信息。
CRISPR-Cas9技术是目前应用最为广泛的基因编辑技术。
它能够直接切割目标DNA并改变其序列,实现精确编辑。
基因编辑技术不仅可以用来研究基因功能,并挖掘新的药物靶点,还可以应用在生物医学和农业领域。
2. 人工智能在生命科学领域的应用近年来,人工智能在医学诊断、基因组学、药物研发等生命科学领域中的应用越来越广泛。
机器学习等技术能够处理海量的数据,并快速准确地挖掘出数据中潜在的价值和规律。
生命科学领域的数据量庞大、复杂性强,因此,人工智能的应用非常有前景。
3. 单细胞分析技术单细胞分析是一种分析单个细胞遗传信息和表达谱的技术。
随着技术的发展,单细胞测序技术已经可以对上千个细胞进行同时测序,从而实现单个细胞的全基因组信息和表达图谱的获取。
这种技术可在癌症个体化治疗和脑科学领域中得到广泛的应用。
4. 3D生物打印技术3D生物打印技术是一种可控制的三维支架材料,能够用来打印生物医学产品和组织工程。
这种技术可以打印出各种组织结构、细胞和生物分子的三维形态,如人工心脏瓣膜、人工肝脏等。
该技术可用于疾病模型建立和药物筛选,同时也为个性化医疗提供了新的思路。
5. 代谢组学技术代谢组学技术是研究组织、器官或生物体内代谢物的一种方法。
通过分析生物体内代谢产物的组成和变化,可以了解生物体内各个代谢通路的状态,进而推断某些物质可能对疾病的发生和发展有影响。
代谢组学技术在癌症、糖尿病、心脏疾病等疾病的研究中有着广泛的应用。
结语生命科学领域中的前沿技术不断创新,为人类提供了更为准确和有效的解决方案。
分子生物学前沿技术(一)2024

分子生物学前沿技术(一)引言分子生物学前沿技术在过去几十年中取得了巨大的发展和突破。
这些技术的出现和应用推动了基因组学、转录组学、蛋白质组学等领域的发展,为研究生物学的基本原理和疾病的发生机制提供了强大的工具和方法。
本文将介绍分子生物学前沿技术中的五个重要领域,包括:基因编辑技术、高通量测序技术、单细胞分析技术、蛋白质质谱技术和基因组编辑技术。
正文一、基因编辑技术1. CRISPR/Cas9系统的原理2. 基因编辑技术的应用领域3. 基因编辑技术的优势与局限性4. CRISPR/Cas9系统的改进与发展5. 基因编辑技术的伦理和安全性问题二、高通量测序技术1. 高通量测序技术的原理和发展历程2. 高通量测序技术的应用领域3. 核酸测序与蛋白质测序技术的对比分析4. 高通量测序技术的数据分析和解读5. 高通量测序技术的未来发展方向三、单细胞分析技术1. 单细胞分析技术的原理和发展历程2. 单细胞分析技术在研究中的应用3. 单细胞测序技术与传统细胞测序技术的比较4. 单细胞分析技术在疾病诊断与治疗中的应用5. 单细胞分析技术的挑战与解决方案四、蛋白质质谱技术1. 蛋白质质谱技术的原理和发展历程2. 蛋白质质谱技术在蛋白质组学中的应用3. 蛋白质质谱技术的数据分析与鉴定4. 蛋白质质谱技术在药物研发中的应用5. 蛋白质质谱技术的新兴发展方向五、基因组编辑技术1. 基因组编辑技术的原理和方法2. 基因组编辑技术在疾病研究中的应用3. 基因组编辑技术的伦理和法律问题4. 基因组编辑技术的限制与挑战5. 基因组编辑技术的未来发展方向总结分子生物学前沿技术的不断突破,为生物学研究提供了强有力的工具。
基因编辑技术、高通量测序技术、单细胞分析技术、蛋白质质谱技术和基因组编辑技术都扮演着重要的角色,并在各自的领域取得了重要进展。
这些技术的不断发展和应用将进一步推动生命科学的发展,为研究者提供更强大的工具,加快科学研究进程,为人类的健康和未来发展做出重要贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
未来15年5大生物技术前沿技术与新科技介绍摘要:生物技术和生命科学将成为21世纪引发新科技GM的重要推动力量。
关键字:靶标发现技术新一代工业生物技术生物芯片生物柴油国务院日前发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》(以下简称《纲要》)中提出了五项生物技术作为未来15年我国前沿技术的重点研究领域。
这五项生物前沿技术分别是:——靶标发现技术。
靶标的发现对发展创新药物、生物诊断和生物治疗技术具有重要意义。
重点研究生理和病理过程中关键基因功能及其调控网络的规模化识别,突破疾病相关基因的功能识别、表达调控及靶标筛查和确证技术,“从基因到药物”的新药创制技术。
——动植物品种与药物分子设计技术。
动植物品种与药物分子设计是基于生物大分子三维结构的分子对接、分子模拟以及分子设计技术。
重点研究蛋白质与细胞动态过程生物信息分析、整合、模拟技术,动植物品种与药物虚拟设计技术,动植物品种生长与药物代谢工程模拟技术,计算机辅助组合化合物库设计、合成和筛选等技术。
——基因操作和蛋白质工程技术。
基因操作技术是基因资源利用的关键技术。
蛋白质工程是高效利用基因产物的重要途径。
重点研究基因的高效表达及其调控技术、染色体结构与定位整合技术、编码蛋白基因的人工设计与改造技术、蛋白质肽链的修饰及改构技术、蛋白质结构解析技术、蛋白质规模化分离纯化技术。
——基于干细胞的人体组织工程技术。
干细胞技术可在体外培养干细胞,定向诱导分化为各种组织细胞供临床所需,也可在体外构建出人体器官,用于替代与修复性治疗。
重点研究治疗性克隆技术,干细胞体外建系和定向诱导技术,人体结构组织体外构建与规模化生产技术,人体多细胞复杂结构组织构建与缺损修复技术和生物制造技术。
——新一代工业生物技术。
生物催化和生物转化是新一代工业生物技术的主体。
重点研究功能菌株大规模筛选技术,生物催化剂定向改造技术,规模化工业生产的生物催化技术系统,清洁转化介质创制技术及工业化成套转化技术。
有关专家指出,基因组学和蛋白质组学研究正在引领生物技术向系统化研究方向发展,基因组序列测定与基因结构分析已转向功能基因组研究以及功能基因的发现和应用;药物及动植物品种的分子定向设计与构建已成为种质和药物研究的重要方向;生物芯片、干细胞和组织工程等前沿技术研究与应用,孕育着诊断、治疗及再生医学的重大突破。
我国必须在功能基因组、蛋白质组、干细胞与治疗性克隆、组织工程、生物催化与转化技术等方面取得关键性突破。
一、生物芯片[关键词] 生物芯片; 细胞芯片; 细胞免疫芯片; 细胞检测细胞芯片技术是以活细胞作为研究对象的一种生物芯片技术。
它是适应后基因组时代人类对生命科学探索的要求而产生的。
作为细胞研究领域的一种新技术, 其既保持传统的细胞研究方法的优点如原位检测等, 又满足了高通量获取活细胞信息等方面的要求。
本文中扼要介绍细胞芯片的概念以及几种已报道的细胞芯片, 并对细胞免疫芯片进行了简述。
1 细胞芯片概念生物芯片技术系指先将大量探针分子固定于支持物上, 然后与标记的样品分子进行杂交, 通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息, 以实现对细胞、蛋白质、基因及其他生物组分的准确、快速、大信息量的检测。
细胞作为生物有机体结构和功能的基本单位, 其生物学功能容量巨大。
利用生物芯片技术研究细胞, 在细胞的代谢机制、细胞内生物电化学信号识别传导机制、细胞内各种复合组件控制以及细胞内环境的稳定等方面,都具有其它传统方法无法比拟的优越性。
目前, 细胞芯片在国内外已有报道, 一般指的是充分运用显微技术或纳米技术, 利用一系列几何学、力学、电磁学等原理, 在芯片上完成对细胞的捕获、固定、平衡、运输、刺激及培养等精确控制, 并通过微型化的化学分析方法, 实现对细胞样品的高通量、多参数、连续原位信号检测和细胞组分的理化分析等研究目的。
新型的细胞芯片应满足以下3个方面的功能: ①在芯片上实现对细胞的精确控制与运输; ②在芯片上完成对细胞的特征化修饰; ③在芯片上实现细胞与内外环境的交流和联系[1]。
2 细胞芯片的特点基于细胞芯片的研究分析是一种具有较高通量的技术, 以细胞作为实验平台的细胞芯片至少具有以下3个方面的特点: ①在芯片上实现对活细胞的原位监测, 可以多参数高通量的直接获得与细胞相关的大量功能信息(即关于细胞对各种刺激的应答信息), 这是细胞芯片最重要的特点; ②通过活细胞分析, 获得细胞相关的分析信息(主要是关于各种刺激物的数量、质量等相关方面的信息);③利用显微技术和纳米技术能精确的控制细胞内的生物化学环境, 以细胞作为化学反应的纳米反应器, 便于详细的研究揭示细胞内一系列过程和原理的本质[1]。
3 细胞芯片的分类和应用3.1 整合的微流体细胞芯片(an integrated microfluidic system) 整合的微流体细胞芯片是一种高度平行化、自动化的集成微型芯片装置, 对细胞样品具有预处理和分析的能力, 又称微全分析系统(integrated micro total analysis system, μTAS)[1]。
通过在芯片上构建各种微流路通道体系, 并运用不同的方法在流体通道体系中准确控制细胞的传输、平衡与定位, 进而实现对细胞样品进行药物刺激等实验过程的原位监测和细胞组分的分析等研究。
Larry等[2]在芯片上设计了一种具有三维流动控制概念的装置, 该装置包含一条流体通道和一个中心伸展的V型屏障, 屏障以具有斜坡的一面对应于流体通道。
屏障斜坡是细胞平衡、固定的关键结构, 细胞的平衡、固定是通过控制流体通道中试剂流体的流动速度、斜坡对细胞的支持力和细胞向下的重力相互作用完成的。
他们在该装置上实现了单个酵母细胞的培养、去除胞壁、扫描、梯度药物浓度刺激和细胞荧光测量等研究。
Yang等[3]在芯片上设计了一种并行于流体通道的带有“码头”的“坝”结构, 该流路和“坝”的作用类似于Larry等设计的V型屏障和流路, 通过网状流体通路和“坝”的长短分配药剂流, 产生药剂的浓度梯度。
他们选择了Ca2+吸收呈ATP依赖型的HL60细胞作为模型, 检测了诱导显著的细胞内Ca2+信号行为的ATP浓度阈值, 利用细胞芯片原位监测细胞对系列药物浓度梯度刺激的胞内应答行为。
瑞典兰德大学神经生理学院的Davidsson等[4]选用HeLa 细胞作为模式细胞, 在芯片上监测细胞内已报道的基因活性并检测了这些基因表达的条件, 以减少基因的不确定表达。
Munce等[5]在芯片上进行了单细胞毛细管电泳分离, 他们在芯片上构建多重并联的毛细管通道, 以满足高通量分析和避免分离样品交叉污染的需求。
此外, 还有在芯片上同时构建流路和分离、排列、定位细胞所需空间的微孔或沟槽等结构的芯片类型, 用于细胞的多参数检测筛选。
整合的微流体细胞芯片制作方法多样, 类型不一, 发展较快, 应用的范围也比较广泛, 内容涉及细胞的固定培养、鉴定筛选、分化刺激、原位检测、药物开发筛选和组分分析等各个方面。
3.2 微量电穿孔细胞芯片(microelectroporation cell chip) 当给细胞一定的阈电压时, 细胞膜具有短暂的强渗透性。
利用细胞膜的这种特性将外源DNA、RNA、蛋白质、多肽、氨基酸和药物试剂等精确的转导入靶细胞的技术称为电穿孔技术。
该技术能直接应用于基因治疗。
微量电穿孔细胞芯片正是将这种技术与生物芯片技术相结合的产物, 是细胞操作调控微型化的一种手段。
该技术采用一种微型装置, 将细胞与芯片上的电子集成电路相结合, 利用细胞膜微孔的渗透性, 通过控制电子集成电路使细胞面临一定的电压, 电压使细胞膜微孔张开, 从而在不影响周围细胞的情况下可将外源DNA, RNA、蛋白质、多肽、氨基酸和药物试剂等生物大分子或制剂等顺利的导入或从靶细胞中提取出来, 并进行后续研究。
这种技术为研究细胞间遗传物质的转导、变异、表达以及控制细胞内化学反应提供了可能。
最先进行这种单细胞电穿孔尝试的是Huang和Rubinsky[6]的科研小组, 他们最终找到了一种利用电穿孔细胞芯片控制人体细胞活动的方法。
Shin等[7]运用聚二甲基硅氧烷等材料构建了电穿孔细胞芯片, 他们在芯片上构建一条长2 cm高20 μm的流体通道, 通过指数衰变式脉冲发生器对通道内的细胞进行电穿孔实验, 测量了细胞电穿孔时各种参数, 原位观察了碘化丙啶被SKOV3细胞株吸收的全过程, 并成功的将绿色荧光标志的蛋白基因转染了SKOV3细胞, 监测了活细胞内DNA逆传的规律。
需要指出的是, Shin等制作的芯片也是通过流体通路来实现对细胞的控制的。
此外, 也可以采用纳米针和纳米管等显微操作穿刺细胞膜, 并在芯片上构建纳米通道, 完成向单细胞注射或提取所需样品。
3.3 细胞免疫芯片(cell immunochip) 细胞免疫芯片是一种新型的细胞芯片技术, 是在蛋白质芯片的基础上发展起来的。
它是以细胞为研究对象, 利用免疫学原理和微型化操作方法, 实现对细胞样品的快速检测和分析。
它的免疫学基础是抗原或抗体的固相化、抗原抗体特异性反应及抗原或抗体的检测方法(如荧光标记、酶标记及放射标记等)。
在芯片上固定的抗体或抗原必须保持原有的免疫学活性, 在测定时, 受检标本(测定一般为细胞表面的抗体或抗原)与固相载体表面的抗原或抗体进行反应, 通过免疫学特异性反应捕获目标细胞,然后根据标记与否以及标记物的不同选择不同的检测方法, 快速完成对细胞的检测, 并且可以对细胞进行免疫化学测定等后续研究[8, 9]。
它是一种应用范围广、经济实用性强的生物芯片技术。
3.3.1 细胞免疫芯片的原理根据捕获细胞的检测要求将不同的抗原或抗体以较高密度固定在经过修饰的玻片等载体上并保持其活性不变, 形成抗原或抗体微阵列, 然后利用细胞表面抗原与抗体等免疫学特异性反应原理, 通过抗原或抗体微阵列和细胞悬液样品的反应捕获待测目的细胞, 将未结合在芯片上的细胞和非特异性结合的细胞从芯片上洗脱, 则靶向细胞将结合在微阵列的不同抗体或抗原点上。
结合在不同抗体或抗原点上的细胞代表了不同的细胞免疫表型, 从而完成对细胞分离、分类及检测目的, 或者继续对细胞样品进行标记和其他方面的后续研究[8, 9]。
3.3.2 细胞免疫芯片的特点目前, 细胞免疫芯片主要应用于细胞的检测, 与其它的细胞检测方式相比, 它具有以下几个特点: ①利用抗体和细胞表面抗原的特异性反应原理, 检测表达特异性表面抗原的细胞, 具有较高的特异性; ②由于芯片的密度较高, 获得的信息量较大, 可以高通量、高平行性的综合检测、分析细胞样品, 一次可以检测同一或不同样品细胞的多种表达抗原; ③适用范围广, 凡是可以制成细胞悬液的样品均可进行检测; ④操作简便灵活, 染色、标记等步骤可根据实验要求增加或删减, 经济方便, 无须价格昂贵的检测设备, 普通显微镜即可检测, 经济实用。