染料敏化太阳能电池的发展综述

合集下载

染料敏化太阳能电池的进展综述

染料敏化太阳能电池的进展综述

染料敏化太阳能电池的进展综述王若瑜(北京清华大学化学系100084 )【摘要】由于染料敏化太阳能电池具有优良的稳固性和高转换效率,它具有极大的应用前景。

本文就染料敏化太阳能电池的原理、齐电池组成结构的优化等,对国内外学者的研究工作做以综述评论。

【关键词】太阳能染料敏化电极TiO?薄膜在能源危机日趋加深的今天,由于化石能源的不可再生:氢能利用中的储氢材料问题仍然没有解决:风能、核能利用难以大而积推行;太阳能作为另一种可再生淸洁能源足以引发人们的重视。

利用太阳能,已是各相关学科一个很重要的方向。

1991年之前,人们对太阳能的利用停留在利用半导体硅材料太阳能电池【1】上,这种太阳能电池虽然已经达到了超过15%的转化效率,可是它的光电转化机理要求材料达到髙纯度且无晶体缺点,再加上硅的生产价钱居高,这种电池在生产应用上碰到了阻力。

1991年,瑞士的GFtzcl教授小组做出了染料敏化太阳能电池【2】,他们的电池基于光合作用原理,以拔酸联毗唳钉配合物为敏化染料,以二氧化钛纳米薄膜为电极,利用二氧化钛材料的宽禁带特点,使得吸收太阳光激发电子的区域和传递电荷的区域分开,从而取得了%的髙光电转换效率【3】,这种电池目前达到最高的转换效率是% (6L由于这种电池工艺简单,本钱低廉(约为硅电池的1/5-1/10) [4],而且可选用柔质基材而使得应用范用更广,最重要的是,它具有稳固的性质,有髙光电转换效率,这无疑给太阳能电池的进展带来了庞大的变革【9】。

正因为染料敏化电池的上述长处,许多学者就它的机理、各个组成部份的优化等相关内容作了一系列实验,这篇论文将就这些方面做以综述简介,并加以分析和评论。

2, 染料敏化太阳能电池工作原理染料敏化太阳能电池的选材TiO?材料具有稳固的性质,且廉价易想,是理想的工业材料。

由于它的禁带宽度是,超过了可见光的能量范围(~),所以需要用光敏材料对其进行修饰。

其中的染料敏化剂指多由钉(Ri「)和娥(Os)等过渡金属与多联毗咙形成的配合物;实验证明,只有吸附在TiO? 表面的单层染料分子才有有效的敏化作用【3】,所以人们往往采用多孔纳米TiO?薄膜,利用其大的比表而积吸附更多染料分子,利用太阳光在粗糙表面内的多次反射从而被染料分子反复吸收提高电池效率:电解质随染料的不同而有不同的选择,总的来讲,以含1% -离子对的固态或液态电解质为主。

染料敏化太阳能电池的发展综述

染料敏化太阳能电池的发展综述

染料敏化太阳能电池的发展综述染料敏化太阳能电池(Dye-sensitized Solar Cells,DSC)是一种新型的太阳能电池技术,于20世纪90年代初由瑞士杂交电车公司的Grätzel教授首次提出。

与传统的硅太阳能电池相比,DSC具有低成本、高转化效率和简单制备等优势。

其工作原理是通过将染料分子吸附在液态电解质和半导体电极之间的钙钛矿光敏剂上,实现对光的吸收和电子传输。

自问世至今,DSC在材料、结构和工艺等方面进行了不断的改进和创新,取得了巨大的进展。

在DSC的材料研究方面,钙钛矿材料是DSC中最重要的组成部分。

最早的染料敏化太阳能电池使用染料分子作为光敏剂,但其效率有限。

随着钙钛矿材料的问世,DSC的效率得到了显著提升。

最早的钙钛矿光敏剂是染料分子与三角锥晶格结构的二氧化钛表面有机酸形成络合物,后来发展出钙钛矿结构材料,如MAPbX3(MA代表甲胺离子,X代表卤素)和FAPbX3(FA代表氟化铵离子)等。

这些新型钙钛矿光敏剂具有更高的吸光度和更长的电子寿命,大大提升了DSC的光电转化效率。

除了钙钛矿材料的改进,DSC的结构和工艺也得到了不断的优化。

最早的DSC采用的是液态电解质,但其在长期稳定性方面存在问题。

为了克服这一问题,研究人员开发出了固态电解质和无电解质DSC,提高了DSC的长期稳定性。

此外,还有人将DSC与其他太阳能电池技术相结合,如有机太阳能电池和钙钛矿太阳能电池,形成了复合结构,提高了光电转化效率。

随着科技的不断进步,DSC逐渐成为了实际应用的焦点。

许多公司和研究机构投入到DSC的产业化开发和商业化推广中。

目前已经有一些商业化的DSC产品面市,如太阳能充电器、建筑一体化太阳能材料等。

此外,DSC还具有一些独特的应用特点,如透明、可弯曲、柔性等,使其在可穿戴设备、汽车、船舶等领域具有广阔的应用前景。

综上所述,染料敏化太阳能电池的发展经历了多个方面的改进和创新。

在材料、结构和工艺等方面的不断优化,使得DSC的光电转化效率得到了显著提升。

染料敏化太阳能电池的研究进展及发展趋势

染料敏化太阳能电池的研究进展及发展趋势

染料敏化太阳能电池的研究进展及发展趋势染料敏化太阳能电池(DSSC)是一种新型的太阳能电池,其性能不仅可以与传统的硅太阳能电池相媲美,而且具有制造成本低、工艺简单、颜色可控等优点,在可再生能源领域具有广泛的应用前景。

该文将从DSSC的基本原理、研究进展及发展趋势三个方面进行分析。

一、DSSC的基本原理DSSC是一种基于电荷转移机制的太阳能电池,其组成由导电玻璃/氧化物电极、染料敏化剂、电解质以及对电子收集和传输的层等组件构成。

当太阳光照射到电极上的染料敏化剂时,其分子吸收太阳光能并将其转化成电能,产生电子-空穴对。

电解质负责将产生的电子传递到导电玻璃/氧化物电极上,从而实现电荷的分离和传输。

对电子收集和传输的层则负责将电子从导电玻璃/氧化物电极转移到电池外部,实现电能的输出。

二、DSSC的研究进展近年来,DSSC研究领域一直处于快速发展阶段,涉及到染料敏化剂、电解质、对电子收集和传输的层等方面的研究。

其中,染料敏化剂的设计和合成是DSSC研究中的关键问题之一。

早期的染料敏化剂是基于天然染料的,但其吸光光谱窄、稳定性较差等问题限制了其应用。

近年来,人们借鉴复杂有机分子或金属有机框架材料等方法,逐渐开发出吸光光谱宽、光稳定性好的新型染料敏化剂,如卟吩骨架材料、钴金属染料等。

另外,电解质的研究也取得了长足的进展。

传统的电解质为液态电解质,但其稳定性较差、易挥发等问题限制其应用。

因此,人们逐渐开发出了固态电解质、有机-无机混合电解质等替代电解质,并取得了良好的效果。

三、DSSC的发展趋势未来,DSSC的研究方向将主要集中在提高其效能和稳定性以及降低制造成本等方面。

首先,提高效能将是DSSC研究的主要方向之一。

研究人员可以通过改变电极、染料敏化剂等方面,进一步提高DSSC的光电转化效率。

特别是在染料敏化剂方面,新型高效染料敏化剂的研发将提升DSSC的效能。

其次,提高稳定性也是DSSC研究的重要方向之一。

目前,DSSC在长时间运作中会出现染料流失、电解质分解、对电子收集和传输的层老化等问题,必须寻求有效的解决方法。

染料敏化太阳能电池的研究及其应用前景

染料敏化太阳能电池的研究及其应用前景

染料敏化太阳能电池的研究及其应用前景染料敏化太阳能电池(DSSCs)是一种新型的太阳能电池技术,具有高效、环保、成本低等特点,并且可以适应各种光照条件。

这种太阳能电池的研究和应用前景备受关注。

DSSCs的研究始于20世纪90年代初期。

它的基本结构由硅基质、电解质、阳极和阴极四个部分组成,既有光电转换功能,又有储能和输出功能。

与传统的硅太阳能电池相比,DSSCs的成本低、制造工艺简单、光伏转换效率高且稳定性强,而且适应各种光照条件,性能优良。

根据实验室研发的结果,电压可以达到0.8V-1.0V,转换电效可以跨越12%-15%。

DSSCs的核心是敏化剂,这些敏化剂可以有效吸收光能,并将其转化为电能。

敏化剂通常用有机染料或半导体量子点制备。

有机染料通常选择比较富电子的化合物,这些化合物具有高吸光度和卓越的光电转换效率。

而半导体量子点是纳米尺度下的量子控制系统,具有单电子级别的光电转换效率。

同时,DSSCs还有许多其他有趣的研究方向,例如提高敏化剂的吸收性,增强电解质的电化学稳定性,改善电极材料和组装介质,提高输出电压和效率等。

在电解质的研究方面,有机电解质和固态电解质的研究尤其引人关注。

DSSCs的应用前景广泛。

它们可以用于户外太阳能装置、城市建筑立面材料、透明玻璃幕墙、电子设备的充电、电动车的充电等领域。

在家庭光伏系统的应用中,DSSCs可以替代传统硅太阳能电池,成为一项新型的太阳能转换技术。

同时,由于DSSCs可以根据不同光照条件自适应调节,因此在户外应用中也表现出良好的适应性和稳定性。

总的来说,染料敏化太阳能电池是一项前途广阔的技术研究领域,它具有高效、成本低、制造工艺简单、适应性好等特点。

未来,我们可以期待它在普及太阳能应用、推进可持续发展等方面发挥更大的作用。

染料敏化太阳能电池行业的发展

染料敏化太阳能电池行业的发展

染料敏化太阳能电池行业的发展染料敏化太阳能电池是一种新型的太阳能电池,它采用了全新的技术和原理,具有很高的发电效率和实用性。

随着环保意识的提高和新能源的逐渐普及,染料敏化太阳能电池行业的发展前景非常广阔。

本文将从这个角度出发,深入探讨染料敏化太阳能电池的技术原理、应用领域和未来发展方向等问题。

一、技术原理染料敏化太阳能电池是一种类似于传统晶体硅太阳能电池的装置,但它与传统太阳能电池不同的是采用了一种全新的电池材料——染料。

染料敏化太阳能电池的工作原理是利用染料分子吸收太阳能中的光子,将其转化成电子和空穴。

染料分子吸收光子后,电子从染料分子的价带跃迁到染料分子的导带中,同时留下一个具有正电荷的空穴。

在电池的两个电极(正极和负极)之间,这些电子和空穴被分别收集,构成电荷传输路线。

通过连接一定的电路,这些电子和空穴就可以被引导到获得电能的装置中,发挥最终功效。

二、应用领域染料敏化太阳能电池具有很高的发电效率和稳定性,它的应用领域非常广泛。

目前主要应用于以下几个方面:1.户外光伏产品——染料敏化太阳能电池可以制成柔性太阳能板,这种太阳能板可以贴在各种户外设备上,如行车记录仪、充电宝、户外摄像机、自行车等。

在户外野外等没有电源的环境下,可以利用它来为这些装备提供电源,十分便捷。

2.建筑光伏应用——染料敏化太阳能电池可以在建筑的门面、窗户、墙壁、屋顶等处应用,可以减少对建筑外观的破坏,美化建筑外观,同时还可以为建筑提供持续的电力,节省能源成本,使得建筑更加环保。

3.光伏无人机应用——染料敏化太阳能电池的重量轻、成本低,非常适合应用于无人机光伏电池上。

通过利用它提供的太阳能电能,无人机可以飞行更长时间,飞行高度也更高。

同时,它不会对固定翼强制要求的结构大小和重量带来影3.智能家居应用——染料敏化太阳能电池可以应用于各种家用电器、电子设备中,使得这些设备在电网停电或人为故意停电的情况下,仍然可以继续工作。

在智能家居领域,染料敏化太阳能电池的应用前景非常广泛。

染料敏化太阳能电池的研究现状及其应用前景

染料敏化太阳能电池的研究现状及其应用前景

染料敏化太阳能电池的研究现状及其应用前景染料敏化太阳能电池是一种新型的光电转换器件,其优点在于价格低廉、制备简单、可塑性强、光电转换效率高等。

目前,染料敏化太阳能电池的研究已经取得了一些进展,并得到了广泛的关注和应用。

本文将从染料敏化太阳能电池的原理、研究现状和应用前景等方面进行论述。

一、染料敏化太阳能电池的原理染料敏化太阳能电池的核心部件是一种染料分子,在阳光的照射下能够吸收光能,并将其转化为电能。

染料分子一般由两部分构成,即染料分子和电子受体。

染料分子吸收光能后,电子便被激发到受体的导带上,而染料分子中的空穴则被氧化剂捕获,在某些电解液中,电子和空穴便可以沿着电解液中的导电链传输,最终到达电极表面,从而产生电流。

二、染料敏化太阳能电池的研究现状染料敏化太阳能电池的研究始于90年代初期,并在近年来得到了广泛的发展和研究。

目前,重要的染料敏化太阳能电池有三种类型,即液态染料敏化太阳能电池、固态染料敏化太阳能电池和有机-无机钙钛矿太阳能电池。

其中,液态染料敏化太阳能电池是第一代染料敏化太阳能电池,具有可调谐能谱、制备容易等优点,但其使用寿命较短、稳定性差等缺点限制了其应用前景。

相比之下,固态染料敏化太阳能电池具有良好的光电性能和较好的稳定性,但其制备和性能调整难度大,仍存在需要优化的地方。

而有机-无机钙钛矿太阳能电池则被认为是最为重要的染料敏化太阳能电池之一,其光电转换效率高、稳定性好、制备简单等优点,使其在未来的能源领域中展现出良好的应用前景。

三、染料敏化太阳能电池的应用前景染料敏化太阳能电池在未来的应用前景广阔,其中最具有潜力的是其在建筑、车辆和电子设备等领域的应用。

在建筑领域中,染料敏化太阳能电池可以被直接塑造成为可替代建筑外墙、天窗等元素,使得建筑具有更好的一体化和更加环保的特点。

在车辆领域中,染料敏化太阳能电池可以利用随处可见的太阳能将车辆电池充电,使得车辆具有更加绿色和高效的特点。

而在电子设备领域中,染料敏化太阳能电池可以大大增加电子设备续航能力,使得电子设备具有更加灵活和无线的特点。

染料敏化太阳能电池的进展研究

染料敏化太阳能电池的进展研究

染料敏化太阳能电池的进展研究染料敏化太阳能电池(Dye-sensitized solar cells,DSSCs)是一种第三代太阳能电池技术。

它通过将染料敏化电子传输物质(纳米晶钛酸盐)涂覆在导电玻璃上,再将电解质涂覆在钛酸盐上,形成一个光敏层。

光在光敏层中被吸收,并激发电子,电子通过导电玻璃传输到负载。

染料敏化太阳能电池具有低成本、高效率、透明度高、制备工艺简单等优点,因此受到了广泛关注。

随着对染料敏化太阳能电池的研究深入,研究者们采用不同的方法和材料,不断提高其效率和稳定性。

例如,研究者使用无机半导体材料如TiO2、ZnO等作为电子传输材料,通过控制其晶粒尺寸和结构以提高电子传输效率。

同时,改进染料分子的设计和合成,可以增加染料的光吸收范围和光电转换效率。

在电解质方面,研究者已经替代了常用的有机电解质,如碘/碘离子电解液,使用无机电解质如柠檬酸锂盐电解液,提高了电池的稳定性和长期使用寿命。

此外,染料敏化太阳能电池的反应速度也是关注的焦点之一、使用催化剂如Pt、Ru等可以提高反应速度和光电转换效率。

另一个改进的方向是采用二维材料或金属有机框架(MOF)作为电子传输材料。

例如,石墨烯、二硫化钼等材料具有高导电性和光吸收能力,可以提高电子传输效率和光电转换效率。

MOF具有结构可调性和多孔性,可以通过调整结构和组分来提高电池的稳定性和性能。

此外,染料敏化太阳能电池的透明度也是研究的重点之一、目前,研究者们已经开发出透明的电解质和导电材料,可以用于制备透明的染料敏化太阳能电池,为建筑一体化光伏应用提供了可能。

最后,染料敏化太阳能电池的商业化应用仍面临一些挑战。

首先,其稳定性和寿命需要进一步提高。

其次,生产成本仍然较高,需要降低制造成本来提高竞争力。

最后,其能量转换效率仍然有待提高,以满足实际应用的需求。

综上所述,染料敏化太阳能电池作为一种新型的太阳能电池技术,在效率、成本和特性方面具有优势。

不断的研究和改进使得其效率和稳定性得到了显著提高,为其商业化应用提供了可能。

染料敏化太阳能电池的研究与发展现状

染料敏化太阳能电池的研究与发展现状

染料敏化太阳能电池的研究与发展现状染料敏化太阳能电池(DSSC)是一种新型的太阳能转换技术,具有低成本、高效率和环保的特点,因此受到了广泛的关注和研究。

在过去的几十年里,DSSC的研究和发展取得了一些重要的进展,但仍然面临着一些挑战和障碍。

本文将对DSSC的研究现状进行综述,并探讨其未来的发展方向和前景。

首先,我们来看一下DSSC的基本原理和结构。

DSSC是一种以染料为光敏剂的太阳能电池,其工作原理类似于光合作用。

其基本结构包括纳米结构的二氧化钛(TiO2)电子传输层、染料敏化层、电解质和对电子传输的透明导电玻璃。

当阳光照射到DSSC上时,染料吸收光子并转化为电子-空穴对,电子被注入TiO2电子传输层,从而产生电流。

这种结构简单、制造成本低,因此受到了人们的青睐。

在DSSC的研究领域,染料的选择和设计是一个至关重要的方面。

传统的染料敏化太阳能电池所使用的染料主要是有机染料,但它们在光稳定性和光吸收范围方面存在着一些不足。

因此,近年来研究人员开始尝试使用无机染料和有机-无机杂化染料来提高DSSC的光电转换效率和稳定性。

同时,一些新型的染料敏化剂,如钙钛矿材料,也被引入到DSSC中,取得了较好的效果。

这些新型染料的研究为提高DSSC 的光电转换效率提供了新的途径。

除了染料的选择,DSSC的电解质也是一个关键的研究领域。

传统DSSC所使用的电解质是有机溶液,但它们在高温和长时间照射下会发生不稳定和蒸发的问题。

为了解决这一问题,研究人员开始尝试使用固态电解质来代替传统的有机溶液。

固态电解质不仅能够提高DSSC的稳定性,还可以减小DSSC的封装成本和提高其安全性。

因此,固态电解质被认为是DSSC未来发展的一个重要方向。

此外,DSSC的光电转换效率也是一个备受关注的问题。

目前,DSSC的光电转换效率已经超过了10%,但与硅基太阳能电池相比仍有一定差距。

为了进一步提高DSSC的光电转换效率,研究人员正在探索一些新的技术和方法,如表面修饰、光学结构优化和光伏材料的组合应用等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程论文
课程名称
论文题目
姓名学号专业年级学院年月日
总分
染料敏化太阳能电池的发展综述
【摘要】由于染料敏化太阳能电池具有优良的稳定性和高转换效率,它具有极大的应用前景。

本文就染料敏化太阳能电池的原理、各电池组成结构的优化等,对国内外学者的研究工作做以综述评论。

【关键词】太阳能染料敏化电极TiO2薄膜
1前言
在能源危机日益加深的今天,由于化石能源的不可再生;氢能利用中的储能材料问题依然没有解决;风能、核能利用难以大面积推广;太
阳能作为另一种可再生清洁能源足以引起人们的重视。

利用太阳能,已经
是各相关学科一个很重要的方向。

1991年之前,人们对太阳能的利用停留在利用半导体硅材料太阳能电池上,这种太阳能电池虽然已经达到了超过15%的转化效率,但是它的光电转化
机理要求材料达到高纯度且无晶体缺陷,再加之硅的生产价格居高,这种
电池在生产应用上遇到了阻力。

1991年,瑞士的Gr' tzel教授小组做出了染料敏化太阳能电池,他们的电池基于光合作用原理,以羧酸联吡啶钌配合物为敏化染料,以二氧
化钛纳米薄膜为电极,利用二氧化钛材料的宽禁带特点,使得吸收太阳光
激发电子的区域和传递电荷的区域分开,从而得到了7.1%的高光电转换效
率,这种电池目前达到最高的转换效率是10.4%。

由于这种电池工艺简单,
成本低廉(约为硅电池的1/5~1/10),并且可选用柔质基材而使得应用范
围更广,最重要的是,它具备稳定的性质,有高光电转换效率,这无疑给
太阳能电池的发展带来了巨大的变革。

正因为染料敏化电池的上述优点,许多学者就它的机理、各个组成部分的优化等相关内容作了一系列实验,这篇论文将就这些方面做以综
述简介,并加以分析和评论。

2,染料敏化太阳能电池工作原理
2.1染料敏化太阳能电池的选材
TiO2材料具备稳定的性质,且廉价易得,是理想的工业材料。

由于它的禁带宽度是3.2eV ,超过了可见光的能量(1.71eV~3.1eV),所以需要用
光敏材料对其进行修饰。

其中的染料敏化剂指多由钌(Ru)和锇(Os)等
过渡金属与多联吡啶形成的配合物;实验证明,只有吸附在TiO2表面的单
层染料分子才有有效的敏化作用,所以人们往往采用多孔纳米TiO2薄膜,利用其大的比表面积吸附更多染料分子,利用太阳光在粗糙表面内的多次
反射从而被染料分子反复吸收提高电池效率;电解质随染料的不同而有不
同的选择,总的来说,以含I-/I3 -离子对的固态或液态电解质为主。


于电解质状态的不同,染料敏化太阳能电池分为液相电解质的湿化学太阳
能电池和固相电解质的固态太阳能电池。

2.2湿化学染料敏化太阳能电池结构及原理
主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、对电极和导电基底等几部分组成。

纳米多孔半导体薄膜通常为金属氧化物
(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为DSC的负极。

对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。

敏化染料吸附在纳米多孔二氧化钛膜面上。

正负极间填充的是含有氧化还原电对
-/I-。

的电解质,最常用的是I
3
(1)染料分子受太阳光照射后由基态跃迁至激发态(D*)[2];
(2) 处于激发态的染料分子将电子注入到半导体的导带中;
电子扩散至导电基底,后流入外电路中;
(3) 处于氧化态的染料被还原态的电解质还原再生;
(4) 氧化态的电解质在对电极接受电子后被还原,从而完成一个循环;
(5) 和(6) 分别为注入到TiO2 导带中的电子和氧化态染料间的复合及导带上的电子和氧化态的电解质间的复合
研究结果表明:只有非常靠近TiO2表面的敏化剂分子才能顺利把电子注入到TiO2导带中去,多层敏化剂的吸附反而会阻碍电子运输;染料色激发态寿命很短,必须与电极紧密结合,最好能化学吸附到电极上;染料分子的光谱响应范围和量子产率是影响DSC的光子俘获量的关键因素。

到目前为止,电子在染料敏化二氧化钛纳米晶电极中的传输机理还不十分清楚,有Weller等的隧穿机理、Lindquist等的扩散模型等,有待于进一步研究。

3染料敏化太阳能电池的特点
染料敏化太阳能电池与传统的太阳电池相比有以下一些优势:
⑴寿命长:使用寿命可达15-20年;
⑵结构简单、易于制造,生产工艺简单,易于大规模工业化生产;
⑶制备电池耗能较少,能源回收周期短;
⑷生产成本较低,仅为硅太阳能电池的1/5~1/10,预计每蜂瓦的电池的成本在10元以内。

⑸生产过程中无毒无污染;
经过短短十几年时间,染料敏化太阳电池研究在染料、电极、电解质等各方面取得了很大进展。

同时在高效率、稳定性、耐久性、等方面还有很大的发展空间。

但真正使之走向产业化,服务于人类,还需要全世界各国科研工作者的共同努力。

这一新型太阳电池有着比硅电池更为广泛的用途:如可用塑料或金属薄板使之轻量化,薄膜化;可使用各种色彩鲜艳的染料使之多彩化;另外,还可设计成各种形状的太阳能电池使之多样化。

总之染料敏化纳米晶太阳能电池有着十分广阔的产业化前景,是具有相当广泛应用前景的新型太阳电池。

相信在不久的将来,染料敏化太阳电池将会走进我们的生活。

4染料敏化剂
染料光敏化剂的性质是将直接影响染料敏化纳米晶太阳能电池的光电转换效率。

对敏化染料分子的一般要求是:
(1) 能紧密吸附在TiO2 表面,要求染料分子中含有羧基、羟基等极
性基团;
(2) 对可见光具有吸收性能好;
(3) 激发态能级与TiO2导带能级匹配,激发态的能级高于TiO2导带
能级,保证电子的快速注入;
(4) 其氧化态和激发态要有较高的稳定性和活性;
(5) 激发态寿命足够长,且具有很高的电荷传输效率。

在近20年染料研究中,人们合成了近千种染料,其中只有少数具有良好的光电敏化性能。

这一类染料主要是钌的多联吡啶络合物。

除了钌的
多联吡啶络合物系列染料外,其他几类染料也具备一定的应用价值和潜力。

这包括:
(1)有机类染料;紫菜碱和酞菁类有机物首先引起了研究者的注意。

(2)复合染料;为了最大限度的吸收可见光,近红外光波段的太阳光
能,除了研究像钌的多联吡啶络合物那样的全黑染料以外,还有一种途径
就是把两种或多种在不同光谱段有敏化优势的染料嫁接在一起,形成一种
综合了各种嫁接染料优势在可见,近红外全波段均有较强光响应的复合染
料。

之前,已有研究者把紫菜碱和酞菁染料嫁接在一起, 并敏化到纳米晶
TiO2电极表面,结果显示该复合染料叠加了两种染料的敏化优势。

(3)半导体量子点染料;此类染料是由PbS或者InAs这类
II,VI,III,V族窄禁带的纳米半导体颗粒组成。

(4)天然染料;从自然界提取天然叶绿素用作染料也是一种途径.研究
表明,Cu叶绿素敏化纳米晶TiO2膜在630nm处,能达到10%的光电转换效
率,用它制得的太阳能电池总的光电转换效率为2.6%。

(5)透明染料;能源科学家们都有一个共同的理想,就是用太阳能电池
板做窗玻璃.这在传统的硅太阳能电池领域简直不可思议,但是具备与窗
玻璃实现一体化的潜力。

5存在的问题及发展趋势
目前,染料敏化型太阳能电池已引起全世界范围内研究者的广泛兴趣和重视,但它的发展仍有一些制约因素,如染料和电解质。

目前这种电池
研究方向主要有以下几个方面。

1. 电极的制备,寻找简易、适于批量生产的制备工艺,制备出性能优
异的TiO2纳米晶多孔膜;其纳米粒子具有合适的尺寸、形状、晶体结构、表面结构和能级。

2.染料分子的光点化学反应机理和染料的设计合成。

研究和改善分子
结构,提高电荷分离效率.
3.双敏化.为了使敏化剂具有更好的与太阳光相匹配的吸收光谱,人们也在探索使用双敏化剂。

两种敏化剂在可见光区有不同的吸收范围,他们共同修饰可使TiO2电极在可见光区的光谱吸收和光电流响应具有更宽的范围.
4.固态空穴传输材料.寻找合适的固态空穴传输材料来代替液态电解质,制备全固态的染料敏化太阳能电池也是重要的研究方向.
5研究纳米多孔电极与燃料间能量传递及电子转移的微观本质.
6结语
总体看来,染料敏化太阳能电池具备的低成本、高效率优点非常吸引人, 但目前若想实现大批量生产, 还有几个核心技术问题。

随着各学科的快速发展,新材料、新技术的涌现,打开思路,综合技术,有理由相信,染料敏化电池是会有光明的前景的.
参考资料:
杨术明,《染料敏化纳米晶太阳能电池》【M】, 郑州大学出版社,2007, 方靖淮,等.双染料共敏化的纳米晶二氧化钛多孔电极的光伏特性研究[J].太阳能学报,1997,l8(2):164-167.
百度—百度百科。

相关文档
最新文档