人教版九年级数学上册图形的旋转》同步练习带答案

合集下载

人教版九年级数学上册23.1.1《图形的旋转》试题及答案

人教版九年级数学上册23.1.1《图形的旋转》试题及答案

23.1图形的旋转附答案班级姓名座号月日主要内容 : 旋转及对应点的相关观点及其应用一、讲堂练习:1. 把一个图形绕着某一点O 转动一个角度的图形变换叫做, 点O叫做,转动的角叫做.2. 如图 ,OAB 绕点 O 按顺时针方向旋转获得OEF ,在这个旋转过程中:(1) 旋转中心是点;旋转角是;(2) 经过旋转 , 点 A、 B 分别挪动到点的地点;(3) 对应线段 : 线段 OF 与线段, 线段 OE 与线段,线段 EF 与线段;(4) 对应角 :∠EOF 与,∠E与,∠F与.3.( 课本 63 页 ) 时钟的时针在不断地旋转, 从上午 6 时到上午9 时, 时针旋转的旋转角是多少度 ?从上午 9 时到上午 10 时呢 ?4.( 课本 63 页 ) 如图 , 杠杆绕支点转动撬起重物, 杠杆的旋转中心在哪里?旋转角是哪个角?二、课后作业 :1.在以下现象中 , 不属于旋转现象的是 ()A. 方向盘的转动B.水龙头开关的转动C. 电梯的上下挪动D. 钟摆的运动2.如图 , 将正方形图案绕点O旋转 180 后 , 获得的图案是 ()A B C D3. 钟表分针从 2 点 15 分到 2 点 20 分, 旋转的度数为 ()A. 20B. 26C. 30D. 364. 如图 , 在Rt ABC中 , ACB 90 , A 40 , 以直角极点C为旋转中心 , 将旋转到AB C的地点,此中A,B分别是A,B的对应点,且点 B 在斜边 A B CA 交 AB于D,则旋转角等于()A. 70B. 80C. 60D. 50第 4 题ABC 逆时针上, 直角边15. 如图 ,ABC 与ADE 都是等腰直角三角形, C 和AED 都是直角,点 E 在 AB 上,假如ABC 经逆时针旋转后能与ADE 重合,那么旋转中心是点;旋转的度数是.6. 如图 ,ABC 为等边三角形, D 为ABC 内一点,ABD 经过旋转后抵达ACP 的地点,则(1) 旋转中心是点;(2)旋转角度是;(3)ADP 是三角形.第5题第6题7.( 课本 66 页 ) 如图 , 说出压水机压水时的旋转中心和旋转角.8.( 课本 66 页 ) 如图 , 吃米的小鸡是站立的小鸡经过旋转获得的, 旋转中心是O .从图上量一量旋转角是多少度.三、新课预习 :1.对应点到旋转中心的距离;对应点与旋转中心所连线段的夹角等于;旋转前、后的图形.2.如图 , OAB绕O点按顺时针方向旋转获得OEF ,在这个旋转过程中,找出图中相等的角和相等的线段 .3. 如图 , E 是正方形ABCD 中, CD 边上随意一点,以点 B 为中心,把 EBC 逆时针旋转90 ,画出旋转后的图形 .2参照答案一、讲堂练习:1. 把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转, 点O叫做旋转中心,转动的角叫做旋转角.2. 如图 ,OAB 绕点 O 按顺时针方向旋转获得OEF ,在这个旋转过程中:(1) 旋转中心是点O;旋转角是∠ AOE、∠ BOF;(2) 经过旋转 , 点 A、 B 分别挪动到点E、F的地点;(3) 对应线段 : 线段 OF 与线段OB, 线段 OE 与线段OA,线段 EF 与线段AB;(4) 对应角 :∠EOF 与∠AOB,∠E与∠A,∠F 与∠B.3.( 课本 63 页 ) 时钟的时针在不断地旋转, 从上午 6 时到上午9 时, 时针旋转的旋转角是多少度 ?从上午 9 时到上午 10 时呢 ?解:时针1小时转30 ,从上午6时到9时,时针要旋转30 3 90 ;从 9时到 10时,时针要旋转 30 .4.( 课本 63 页 ) 如图 , 杠杆绕支点转动撬起重物, 杠杆的旋转中心在哪里?旋转角是哪个角?解 : 杠杆的旋转中心在点O,旋转角是∠ AOA .二、课后作业:1.在以下现象中 , 不属于旋转现象的是 ( C )A. 方向盘的转动B.水龙头开关的转动C.电梯的上下挪动D.钟摆的运动2. 如图 , 将正方形图案绕点O旋转 180 后, 获得的图案是( D )A B C D3.钟表分针从 2 点 15分到 2点 20分, 旋转的度数为 ( C )第 4 题A. 20B. 26C. 30D. 364. 如图 , 在Rt ABC中 ,ACB90, A 40, 以直角极点C为旋转中心 , 将ABC逆时针旋转到ABC的地点,此中A,B分别是 A,B 的对应点 , 且点B在斜边A B上, 直角边CA 交 AB于D ,则旋转角等于( B )A. 70B. 80C. 60D. 505.如图,ABC 与ADE 都是等腰直角三角形, C和AED都是直角 ,点E在 AB上,假如ABC 经逆时针旋转后能与ADE 重合,那么旋转中心是点A;旋转的度数是45°.6. 如图,ABC 为等边三角形, D 为ABC 内一点, ABD 经过旋转后抵达ACP 的地点,则(1) 旋转中心是点A; (2)旋转角度是60°;(3)ADP是等边三角形 .第5题第6题37.( 课本 66 页 ) 如图 , 说出压水机压水时的旋转中心和旋转角.解 : 压水机的旋转中心为把手柄与机体的连结点, 旋转角为把手柄旋转的角度 .8.( 课本 66 页 ) 如图 , 吃米的小鸡是站立的小鸡经过旋转获得的, 旋转中心是O .从图上量一量旋转角是多少度.解 : 经丈量旋转角AOA 约等于85.三、新课预习 :1.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等 .2.如图 , OAB绕O点按顺时针方向旋转获得OEF ,在这个旋转过程中, 找出图中相等的角和相等的线段 .答 : 相等的角是 :A E , B F ,AOBEOF ,AOE BOF .相等的线段是 : AB EF ,OA OE,OB OF .3.如图 , E 是正方形ABCD中 , CD边上随意一点 , 以点B为中心 , 把 EBC 逆时针旋转 90 , 画出旋转后的图形 .答 : E BA是由EBC逆时针旋转90后获得的 .4。

人教版九年级数学上册:23.1 图形的旋转同步练习卷 含答案

人教版九年级数学上册:23.1 图形的旋转同步练习卷   含答案

2020年人教版九年级上册:23.1 图形的旋转同步练习卷一.选择题1.下列运动属于旋转的是()A.火箭升空的运动B.足球在草地上滚动C.大风车运动的过程D.传输带运输的东西的运动2.时间经过25分钟,钟表的分针旋转了()A.150°B.120°C.25°D.12.5°3.下列现象中:①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.属于旋转的有()A.2个B.3个C.4个D.5个4.一辆模型赛车,先前进1m,然后沿原地逆时针方向旋转,旋转角为α(0<α<90°),被称为一次操作,若五次操作后,发现赛车回到出发点,则旋转角α为()A.108°B.120°C.72°D.36°5.如图,该图案绕它的中心至少旋转m度能与自身完全重合,则m的值是()A.45°B.90°C.135°D.180°6.如图,在△ABC中,∠CAB=∠ACB=25°,将△ABC绕点A顺时针进行旋转,得到△AED.点C恰好在DE的延长线上,则∠EAC的度数为()A.75°B.90°C.105°D.120°7.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4)B.(2,﹣2)C.(3,﹣2)D.(﹣1,4)8.如图,四边形ABCD中,∠DAB=30°,连接AC,将△ABC绕点B逆时针旋转60°,点C的对应点D重合,得到△EBD,若AB=5,AD=4,则点AC的长度为()A.5B.6C.D.二.填空题9.如图,将△ABC绕点A逆时针旋转50°得△ADE,若∠BAC=20°,则∠BAE的度数是.10.将一副三角板按图所示的方式叠放在一起,使直角的顶点重合于点O,并能绕O点自由旋转,设∠AOC=α,∠BOD=β,则α与β之间的数量关系是.11.如图,将△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,连接BB'.若AC=1,AB=3,则BC′=.12.如图,在平面直角坐标系中,将点P(4,6)绕坐标原点O顺时针旋转90°得到点Q,则点Q的坐标为.13.如图,△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点B旋转得到△A'BC',且点C的对应点C'刚好落在AB上,连接AA'.则∠AA'C'=.14.如图,在平面直角坐标系中,Rt△ABO直角点O在原点,AO在y轴上,BO在x轴上,且AO=4,BO=3,△ABO绕着各顶点向x轴正方向连续翻滚(始终保持一条边在x轴上)得到多个三角形,请问第2020个三角形的直角顶点坐标为.三.解答题(共6小题)15.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A、D、E在同一条直线上,且∠ACB=20°,求∠CAE及∠B的度数.16.在△AMB中,∠AMB=90°,AM=8,BM=6,将△AMB以B为旋转中心顺时针旋转90°得到△CNB.连接AC,求AC的长.17.在正方形ABCD中,∠EDF=45°,求证:EF=AE+CF.18.如图,△ABC是等边三角形,△ABP旋转后能与△CBP′重合.(1)旋转中心是哪一点?(2)旋转角度是多少度?(3)连结PP′后,△BPP′是什么三角形?简单说明理由.19.如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.(1)指出旋转中心;(2)若∠B=21°,∠ACB=26°,求出旋转的度数;(3)若AB=5,CD=3,则AE的长是多少?为什么?20.将两个全等的△ABC和△DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于F.(1)求证:AF+EF=DE;(2)若将图1中的△DBE绕点B顺时针旋转角a,且60°<α<180°,其他条件不变,如图2,请直接写出此时线段AF、EF与DE之间的数量关系.参考答案一.选择题1.解:A、火箭升空的运动,是平移,故此选项错误;B、足球在草地上滚动,不是绕着某一个固定的点转动,不是旋转,故此选项错误;C、大风车运动的过程,是旋转,故此选项正确;D、传输带运输的东西的运动,是平移,故此选项错误;故选:C.2.解:如图所示:因为分针每分钟转6°,所以25分钟旋转了6°×25=150度.故选:A.3.解:①地下水位逐年下降,是平移现象;②传送带的移动,是平移现象;③方向盘的转动,是旋转现象;④水龙头开关的转动,是旋转现象;⑤钟摆的运动,是旋转现象;⑥荡秋千运动,是旋转现象.属于旋转的有③④⑤⑥共4个.故选:C.4.解:由题意,得赛车所走路线为正五边形,正五边形外角之和为360°,所以五次旋转角之和为360°,所以α=360°÷5=72°.故选:C.5.解:由题意这个图形是中心旋转图形,m==45°,故选:A.6.解:∵将△ABC绕点A顺时针进行旋转,得到△AED,∴△ABC≌△AED,∴AD=AC,∠BAC=∠EAD=25°,∠ADE=∠ACB=25°,∴∠ADE=∠ACD=25°,∴∠DAC=180°﹣25°﹣25°=130°,∴∠EAC=∠DAC﹣∠DAE=130°﹣25°=105°,故选:C.7.解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.8.解:∵△EBD是由△ABC旋转得到,∴BA=BE,∠ABE=60°,AC=DE,∴△ABE是等边三角形,∴∠EAB=60°,∵∠BAD=30°,∴∠EAD=90°,∵AE=AB=5,AD=4,∴DE===,故选:D.二.填空题9.解:由题意可得,∠CAE=50°,∵∠BAC=20°,∴∠BAE=∠CAE﹣∠BAC=50°﹣20°=30°,故答案为:30°.10.解:∵使直角的顶点重合于点O,并能绕O点自由旋转,∴∠BOC=∠AOD,∵∠BOC+∠AOC=90°,∴∠AOD+∠AOC=90°,∵α+β=∠AOC+∠BOD=∠AOC+∠BOC+∠AOC+∠AOD=180°,∴α+β=180°,故答案为:α+β=180°.11.解:∵△ABC绕点A顺时针旋转得到△AB'C',点C′恰好落在线段AB上,∴AC′=AC=1,∴BC′=AB﹣AC′=3﹣1=2.故答案为2.12.解:作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,,∴△PMO≌△ONQ(AAS),∴PM=ON,OM=QN,∵P点坐标为(4,6),∴Q点坐标为(6,﹣4),故答案为(6,﹣4).13.解:根据旋转可知:∠A′BC=∠ABC=30°,A′B=AB,∴∠BA′A=∠BAA′=(180°﹣30°)=75°,∵∠BA′C=∠BAC=60°,∴∠AA'C'=∠BA′A﹣∠BA′C=75°﹣60°=15°.故答案为:15°.14.解:∵点A(0,4),B(3,0)∴OA=4,OB=3∴AB==5,∴三角形(3)的直角顶点坐标为:(12,0),∵每3个三角形为一个循环组依次循环,∵2020÷3=673…1,∴第2020个三角形是第674组的第一个直角三角形,其直角顶点与第673组的最后一个直角三角形顶点重合,∵673×12=8076,∴第2020个三角形的直角顶点的坐标是(8076,0).故答案为(8076,0).三.解答题15.解:根据旋转的性质可知CA=CE,且∠ACE=90°,所以△ACE是等腰直角三角形.所以∠CAE=45°;根据旋转的性质可得∠BDC=90°,∵∠ACB=20°.∴∠ACD=90°﹣20°=70°.∴∠EDC=45°+70°=115°.所以∠B=∠EDC=115°.16.解:在Rt△AMB中,根据勾股定理可得AB=.根据旋转的性质可知AB=BC,∠ABC=90°,∴AC=.17.证明:∵四边形ABCD为正方形,∴DA=DC,∠A=∠ADC=90°,把Rt△DAE绕点D逆时针旋转90°得到Rt△DCG,如图,∴AE=CG,DE=DG,∠EDG=90°,∠DCG=∠A=90°,而∠DCF=90°,∴点G在BC的延长线上,∴FG=FC+CG,∵∠EDF=45°,∴∠FDG=∠EDG﹣∠EDF=45°,在△DFE和△DFG中,,∴△DFE≌△DFG(SAS),∴EF=FG,∴EF=FC+CG=FC+AE.18.解:(1)∵△ABP旋转后能与△P'BC重合,点B是对应点,没有改变,∴点B是旋转中心;(2)AB与BC是旋转前后对应边,旋转角=∠ABC,∵△ABC是等边三角形,∴∠ABC=60°,∴旋转角是60°;(3)连结PP′后,△BPP′是等边三角形,理由:∵旋转角是60°,∴∠PBP′=60°,又∵BP=BP′,∴△BPP′是等边三角形.19.解:(1)旋转中心为点A;(2)∵∠B=21°,∠ACB=26°,∴∠BAC=180°﹣21°﹣26°=133°,∴旋转的度数为133°;(3)由旋转性质知:AE=AC,AD=AB,∴AE=AB﹣CD=2.20.证明:(1)连接BF,∵△ABC≌△DBE∴BC=BE,DE=AC,AB=BD,∵BE=BC,BF=BF∴Rt△BCF≌Rt△BEF(HL)∴EF=CF∴DE=AC=AF+CF=AF+EF (2)连接BF,∵△ABC≌△DBE∴BC=BE,DE=AC,AB=BD,∵BE=BC,BF=BF∴Rt△BCF≌Rt△BEF(HL)∴EF=CF∴AF=AC+CF=DE+EF。

人教版九年级数学上册 23.1 图形的旋转 同步训练(含答案)

人教版九年级数学上册 23.1 图形的旋转 同步训练(含答案)

人教版九年级数学上册23.1 图形的旋转同步训练(含答案)一、选择题(本大题共10道小题)1. 将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是( )A.平行四边形B.矩形C.菱形D.正方形2. 如图所示,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心是( )A.点A B.点BC.点C D.点D3. 如图,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是△ABC经过怎样的图形变换得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是( )A.①④B.②③C.②④D.③④4. 如图,将△OAB绕点O逆时针旋转得到△OA′B′,使点B恰好落在边A′B′上.已知AB=4 cm,OB=1 cm,∠B′=60°,那么A′B的长是( )A.4 cm B.3 cmC.2 3 cm D.(4-3)cm5. 如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB边的中点是坐标原点O,将正方形绕点C按逆时针方向旋转90°后,点B的对应点B′的坐标是( )A.(-1,2) B.(1,4)C.(3,2) D.(-1,0)6. 如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( )A.10 B.2 2C.3 D.2 57. 在平面直角坐标系中,点A的坐标为(1,3),以原点为中心,将点A顺时针旋转30°得到点A′,则点A′的坐标为( )A.(3,1) B.(3,-1) C.(2,1) D.(0,2)8. 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为20,DE=2,则AE的长为( )A.4 B.2 5C.6 D.2 69. 如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是( )A.AC=AD B.AB⊥EBC.BC=DE D.∠A=∠EBC10. 如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是( )A.(3,-1) B.(1,-3)C.(2,0) D.(3,0)二、填空题(本大题共5道小题)11. 如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A 在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位长度,则变化后点A的对应点的坐标为________.12. 一副三角尺如图21-K-5放置,将三角尺ADE绕点A逆时针旋转α(0°<α<90°),使得三角尺ADE的一边所在的直线与BC垂直,则α的度数为________.图21-K-513. 分类讨论如图,点A的坐标为(-1,5),点B的坐标为(3,3),点C的坐标为(5,3),点D的坐标为(3,-1).小明发现线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,你认为这个旋转中心的坐标是_________.教师详解详析14. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D 恰好在同一直线上,则∠B的度数为________.15. 如图,AB⊥y轴,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-33x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-33x上,依次进行下去……若点B的坐标是(0,1),则点O12的纵坐标为________.三、解答题(本大题共3道小题)16. 如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与点A,B不重合),连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.17. 如图①是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC 的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD =30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长;②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外部的点D1处转到其内部的点D2处,连接D1D2,如图②,此时∠AD2C=135°,CD2=60,求BD2的长.18. (1)如图(a),在△ABC中,D是BC边的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.①求证:BE+CF>EF;②若∠A=90°,探索线段BE,CF,EF之间的数量关系,并加以证明.(2)如图(b),在四边形ABDC中,∠B+∠C=180°,BD=CD,∠BDC=120°,以D为顶点作一个60°的角,角的两边分别交AB,AC于E,F两点,连接EF,探索线段BE,CF,EF之间的数量关系,并加以证明.人教版九年级数学上册23.1 图形的旋转同步训练(含答案)-答案一、选择题(本大题共10道小题)1. 【答案】D [解析] 平行四边形绕其对角线的交点旋转能够与原来的图形重合的最小旋转角度数是180°,故A错误;矩形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是180°,故B错误;菱形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是180°,故C错误;正方形绕其对角线的交点旋转,能够与原来的图形重合的最小旋转角度数是90°.故选D.2. 【答案】B [解析] 旋转中心到对应点的距离相等.3. 【答案】D [解析] 先将△ABC绕着B′C的中点旋转180°,再将所得的三角形绕着B′C′的中点旋转180°,即可得到△A′B′C′;先将△ABC沿着B′C的垂直平分线翻折,再将所得的三角形沿着B′C′的垂直平分线翻折,即可得到△A′B′C′.故选D.4. 【答案】B [解析] ∵旋转前、后的两个图形是全等图形,AB=4 cm,OB=1cm,∴A′B′=AB=4 cm,OB′=OB=1 cm.在△OB′B中,∵∠B′=60°,OB′=OB,∴△OB′B是等边三角形,∴BB′=OB=1 cm,∴A′B=A′B′-BB′=4-1=3(cm).5. 【答案】C6. 【答案】A [解析] ∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=5. ∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1.在Rt△BED中,BD=BE2+DE2=10.故选A.7. 【答案】A [解析] 如图,过点A作AE⊥y轴于点E,过点A′作A′F⊥x轴于点F,∴∠AEO=∠A′FO=90°.∵点A的坐标为(1,3),∴AE=1,OE=3,∴OA=2,∠AOE=30°,由旋转可知∠AOA′=30°,OA′=OA=2,∴∠A′OF=90°-30°-30°=30°,∴A′F=12OA′=1,OF=3,∴A′(3,1).故选A.8. 【答案】D [解析] 由旋转可得,S正方形ABCD=S四边形AECF=20,即AD2=20,∴AD=2 5.∵DE=2,∴在Rt△ADE中,AE=AD2+DE2=2 6.故选D.9. 【答案】D [解析] 由旋转的性质可知,AC=CD,但∠A不一定是60°,所以不能证明AC=AD,所以选项A错误;因为旋转角度不定,所以选项B不能确定;因为不确定AB和BC的数量关系,所以BC和DE的数量关系不能确定,所以选项C不能确定;由旋转的性质可知∠ACD=∠BCE,AC=DC,BC=EC,所以2∠A=180°-∠ACD,2∠EBC=180°-∠BCE,从而可证选项D是正确的.10. 【答案】A二、填空题(本大题共5道小题)11. 【答案】(-2,2) [解析] △ABC绕点C逆时针旋转90°后,点A的对应点的坐标为(1,2),再向左平移3个单位长度,点A的对应点的坐标为(-2,2).12. 【答案】15°或60°[解析] 分情况讨论:①若DE⊥BC,设此时直线AD与BC交于点F,则∠BFA=90°-45°=45°,∴∠BAD=180°-60°-45°=75°,∴α=90°-∠BAD=15°;②若AD⊥BC,则∠BAD=30°,∴α=90°-∠BAD=60°.故答案为15°或60°.13. 【答案】(4,4)或(1,1)[解析] (1)若点A和点D、点B和点C分别为对应点,如图①,分别作线段AD,BC的垂直平分线,两条垂直平分线的交点P1(4,4)即为旋转中心;(2)若点A和点C、点B和点D分别为对应点,如图②,分别作线段AC,BD的垂直平分线,两条垂直平分线的交点P2(1,1)即为旋转中心.综上所述,旋转中心的坐标是(4,4)或(1,1).14. 【答案】15°[解析] 由旋转的性质可知AB=AD,∠BAD=150°,∴∠B=∠ADB=12×(180°-150°)=15°.15. 【答案】9+3 3 [解析] 将y=1代入y=-33x,解得x=- 3.∴AB=3,OA=2,且直线y=-33x与x轴所夹的锐角是30°.由图可知,在旋转过程中每3次一循环,其中OO2=O2O4=O4O6=O6O8=O 8O 10=O 10O 12=2+3+1=3+ 3. ∴OO 12=6×(3+3)=18+63. ∴点O 12的纵坐标=12OO 12=9+3 3.三、解答题(本大题共3道小题)16. 【答案】解:(1)证明:由题意可知,CD =CE ,∠DCE =90°.∵∠ACB =90°,∴∠ACB -∠DCB =∠DCE -∠DCB ,即∠ACD =∠BCE.在△ACD 与△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE(SAS).(2)∵∠ACB =90°,AC =BC ,∴∠A =45°.∵△ACD ≌△BCE ,∴AD =BE ,∠CBE =∠A =45°.∵AD =BF ,∴BE =BF ,∴∠BEF =12×(180°-45°)=67.5°.17. 【答案】 解:(1)①当A ,D ,M 三点在同一直线上时,AM =AD +DM =40或AM =AD-DM=20.②当A,D,M三点为同一直角三角形的顶点时,显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2-DM2=302-102=800,∵AM>0,∴AM=20 2.当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∵AM>0,∴AM=10 10.综上所述,满足条件的AM的长为20 2或10 10.(2)如图,连接CD1,由题意得,∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=30 2.∵∠AD2C=135°,∴∠CD2D1=∠AD2C-∠AD2D1=90°,∴CD1=(30 2)2+602=30 6.∵∠BAC=∠D1AD2=90°,∴∠BAC-∠CAD2=∠D1AD2-∠CAD2,∴∠BAD2=∠CAD1.又∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=30 6.18. 【答案】解:(1)①证明:如图(a),将△DBE绕点D旋转180°得到△DCG,连接FG,则△DCG≌△DBE.∴DG=DE,CG=BE.又∵DE⊥DF,∴DF垂直平分线段EG,∴FG=EF.∵在△CFG中,CG+CF>FG,∴BE+CF>EF.②BE2+CF2=EF2.证明:∵∠A=90°,∴∠B+∠ACD=90°.由①得,∠FCG=∠FCD+∠DCG=∠FCD+∠B=90°,∴在Rt△CFG中,由勾股定理,得CG2+CF2=FG2,∴BE2+CF2=EF2.(2)EF=BE+CF.证明:如图(b).∵CD=BD,∠BDC=120°,∴将△CDF绕点D逆时针旋转120°得到△BDM,∴△BDM≌△CDF,∴DM=DF,BM=CF,∠BDM=∠CDF,∠DBM=∠C.∵∠ABD+∠C=180°,∴∠ABD+∠DBM=180°,∴点A,B,M共线,∴∠EDM =∠EDB +∠BDM =∠EDB +∠CDF =∠BDC -∠EDF =120°-60°=60°=∠EDF.在△DEM 和△DEF 中,⎩⎪⎨⎪⎧DE =DE ,∠EDM =∠EDF ,DM =DF ,∴△DEM ≌△DEF ,∴EF =EM =BE +BM =BE +CF.。

人教版九年级上册数学第二十三章《旋转》练习题(附答案)

人教版九年级上册数学第二十三章《旋转》练习题(附答案)

人教版九年级上册数学第二十三章《旋转》练习题一、单选题1.在下列四个图案中,不是中心对称图形的是()A. B. C. D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列图形中,只是中心对称图形而不是轴对称图形的是()A. B. C. D.5.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A. ①B. ②C. ③D. ④7.下列标志既是轴对称图形又是中心对称图形的是()A. B. C. D.8.下列图案中,是中心对称图形的是()A. B. C. D.9.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转46°得到Rt△A′B′C,点A在边B′C 上,则∠ACB的大小为()A. 23°B. 44°C. 46°D. 54°10.下列图形,是中心对称图形的是( )A. B. C. D.11.将△ABC绕原点旋转180°得到△A′B′C′,设点A的坐标为(a,b),则点A′的坐标为()A. (−a,−b)B. (a,−b)C. (−a,b)D. (a,b)12.下列图形中,是中心对称图形,但不是轴对称图形的是()A. 平行四边形B. 线段C. 等边三角形D. 抛物线13.下列图形中,是中心对称图形的是()A. B. C. D.14.道路千万条,安全第一条,下列交通标志是中心对称图形的为()A. B. C. D.15.下列图形,既是中心对称图形又是轴对称图形的是()A. B. C. D.二、填空题16.如图,四边形ABCD中,AB=AD,AC=6,∠DAB=∠DCB=90°,则四边形ABCD的面积为________.17.如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是________.18.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为________.19.已知点A(﹣2,3)与A1关于点P(0,2)成中心对称,A1的坐标是________ .20.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为________度.21.一个长方形绕它的一条边旋转一周形成的几何体为________,将一个直角三角形绕着一条直角边旋转一周得到的几何体为________.22.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中̂,则图中阴影部分的面积为________.点C的运动路径为CC′23.如图,在Rt△ABC中,∠C=90°,∠B=30°,将△ABC绕着点C逆时针旋转后得到的△A′B′C的斜边A′B′经过点A,那么∠ACA'的度数是________ 度.24.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为________.25.如图,已知半⊙O的直径AB=8,将半⊙O绕A点逆时针旋转,使点B落在点B'处,AB'与半⊙O交于点C,若图中阴影部分的面积是8π,则弧BC的长为________.26.如图,在△ABC中,∠ACB=90°,且AC=BC.点D是△ABC内的一点,将△ACD以点C为中心顺时针旋转90°得到△BCE,若点A、D、E共线,则∠AEB的度数为________.27.如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动4次时,点P所经过的路程是________.28.如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为________.29.点(﹣2,1)关于原点对称的点的坐标为________.30.如图,将△AOB绕点O按逆时针方向旋转45后,得到△COD,如果∠AOB=15,则∠AOD的度数是________.三、解答题31.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.∠ABC(0°<∠CBE<32.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=121∠ABC),以点B为旋转中心,将△BEC按逆时针旋转,得到△BE′A(点C与点A重合,点E到点E′处)连接2DE′.求证:DE′=DE.∠ABC(0°<∠CBE (2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=12<∠45°).求证:DE2=AD2+EC2.33.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;②若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;③将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.34.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).①把△ABC向右平移2个单位得△A1B1C1,请画出△A1B1C1,并写出点A1的坐标;②把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.35.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.36.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.37.以给出的图形“○,○,△,△, =”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.38.在平面直角坐标系中,∆ABC的顶点坐标是A(-7,1)、B(1,1)、C(1,7),线段DE的端点坐标是D(7,-1)、E(-1,-7)(1)试说明如何平移线段AC,使其与线段ED重合将线段AC先向______(上,下)平移_______个单位,再向_______(左,右)平移_______个单位;(2)将∆ABC绕坐标原点逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的∆DEF,并和∆ABC 同时绕坐标原点O逆时针旋转90o,画出旋转后的图形.39.如图,已知反比例函数y=m(m是常数,m≠0),一次函数y=ax+b(a、b为常数,a≠0),其中一x次函数与x轴,y轴的交点分别是A(-4,0),B(0,2).(1)求一次函数的关系式;(2)反比例函数图象上有一点P满足:①PA⊥x轴;②PO=√17(O为坐标原点),求反比例函数的关系式;(3)求点P关于原点的对称点Q的坐标,判断点Q是否在该反比例函数的图象上.40.已知|2﹣m|+(n+3)2=0,点P1、P2分别是点P(m,n)关于y轴和原点的对称点,求点P1、P2的坐标.四、综合题41.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.42.将□OABC放在平面直角坐标系中,O为原点,点C(-6,0),点A在第一象限,OA=2,∠A=60°,AB 与y轴交于点N.(1)如图①,求点A的坐标:(2)如图②,将平行四边形OABC绕点O逆时针旋转得到平行四边形OA'B'C',当点A的对应点A'落在y 轴正半轴上时,求旋转角及点B的对应点B'的坐标:(3)将平行四边形OABC绕点A旋转得到平行四边形DAEF,使点B的对应点E落在直线OA上,请在图③中画出旋转后的图形,并直接写出OE、AB、BC之间的关系.43.在数学课上,老师要求学生探究如下问题:(1)如图1,在等边三角形ABC内有一点P,PA=2,PB=√3,PC=1,试求∠BPC的度数.李明同学一时没有思路,当他认真分析题目信息后,发现以PA、PB、PC的长为边的三角形是直角三角形,他突然有了正确的思路:如图2,将△BPC绕点B逆时针旋转60°,得到△BP′A.连接PP',易得△P′PB 是正三角形,△P′PA是直角三角形,则得∠BPC=________;(2)如图3,在正方形ABCD内有一点P,PA=√5,PB=√2,PC=1,试求∠BPC的度数.(3)在图3中,若在正方形ABCD内有另一点Q,QA=a,QB=b,QC=c(a>b,a>c),试猜想当a,b,c满足什么条件时,∠BQC的度数与第(2)问中∠BPC的度数相等,请直接写出结论.44.如图1,四边形ABCD是边长为3√2的正方形,矩形AEFG中AE=4,∠AFE=30°。

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

人教版九年级数学上册第23章《旋转》基础练习含答案(4套)(含知识点)

旋转基础练习附答案时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J23-1-1,将△ABC旋转至△CDE,则下列结论中一定成立的是()A.AC=CE B.∠A=∠DEC C.AB=CD D.BC=EC2.如图J23-1-2,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°图J23-1-1 图J23-1-2 图J23-1-3 图J23-1-4二、填空题(每小题4分,共8分)3.如图J23-1-3,△ABC绕点C旋转后得到△CDE,则∠A的对应角是__________,∠B=________,AB=________,AC=________.4.如图J23-1-4,AC⊥BE,AC=EC,CB=CF,则△EFC可以看作是△ABC绕点________按________方向旋转了__________度而得到的.三、解答题(共11分)5.如图J23-1-5,△ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,△ABC旋转后能与△FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?图J23-1-5基础知识反馈卡·23.2.1时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.下列图形绕某点旋转180°后,不能与原来图形重合的是()2.如图J23-2-1,△ABC与△A′B′C′关于点O成中心对称,下列结论中不成立的是()A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′图J23-2-1 图J23-2-2 图J23-2-3二、填空题(每小题4分,共8分)3.如图J23-2-2,△ABC和△A′B′C′关于点O成中心对称,如果连接线段AA′,BB′,CC′,它们都经过点_____,且AB=________,AC=________,BC=________.4.如图J23-2-3,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:①四边形ABCD是菱形;②四边形ABCD是中心对称图形;③四边形ABCD是轴对称图形;④AC=BD.其中正确的是________(写上正确的序号).三、解答题(共11分)5.△ABC在平面直角坐标系中的位置如图J23-2-4所示,将△ABC沿y 轴翻折得到△A1B1C1,再将△A1B1C1绕点O旋转180°得到△A2B2C2.请依次画出△A1B1C1和△A2B2C2.图J23-2-4基础知识反馈卡·23.2.2时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.若点A(n,2)与点B(-3,m)关于原点对称,则n-m=()A.-1 B.-5C.1 D.52.点P关于原点的对称点为P1(3,4),则点P的坐标为()A.(3,-4) B.(-3,-4)C.(-4,-3) D.(-3,4)3.若点A(2,-2)关于x轴的对称点为B,点B关于原点的对称点为C,则点C的坐标是()A.(2,2) B.(-2,2)C.(-1,-1) D.(-2,-2)二、填空题(每小题4分,共8分)4.点A(-2,1)关于y轴对称的点坐标为________,关于原点对称的点的坐标为________.5.若点A(2,a)关于x轴的对称点是B(b,-3),则ab的值是________.三、解答题(共8分)6.如图J23-2-5,利用关于原点对称的点的坐标的特点,作出与线段AB 关于原点对称的图形.图J23-2-5基础知识反馈卡·23.3时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.下列选项中,能通过旋转把图a变换为图b的是()2.图J23-3-1的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的有()图J23-3-1A.1个B.2个C.3个D.4个3.在下图右侧的四个三角形中,不能由左侧的三角形经过旋转或平移得到的是()二、填空题(每小题4分,共8分)4.正六边形可以看成由基本图形________经过________次旋转而成.5.如图J23-3-2,一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是__________;在前16个图案中“”有______个.图J23-3-2三、解答题(共8分)6.认真观察图J23-3-3中的四个图案,回答下列问题:图J23-3-3(1)请写出这四个图案都具有的两个共同特征:特征1:____________________;特征2:____________________________.(2)请你在图J23-3-4中设计出你心中最美的图案,使它也具备你所写出的上述特征.图J23-3-4基础知识反馈卡·23.2.11.B 2.D3.O A′B′A′C′B′C′ 4.①②③5.解:如图DJ1.图DJ1基础知识反馈卡·23.2.21.D 2.B 3.D4.(2,1)(2,-1) 5.66.解:如图DJ2.图DJ2基础知识反馈卡·23.31.A 2.D 3.B4.正三角形 65. 56.解:(1)是轴对称图形是中心对称图形(2)如图DJ3(答案不唯一).图DJ3以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (1)第一章有理数 (1)第二章整式的加减 (3)第三章一元一次方程 (4)第四章图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容. 第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么a的倒数是a1;若ab=1⇔ a、b 互为倒数;若ab=-1 a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

人教版九年级上册数学《图形的旋转》同步练习(含答案)

人教版九年级上册数学《图形的旋转》同步练习(含答案)

图形的旋转知识点1. 图形旋转的性质是:(1) 旋转前后的图形;(2)对应点到旋转中心的距离;(3) 对应点与旋转中心所连线段的夹角等于2. 简单的旋转作图--- 旋转作图的步骤(1)确立旋转;( 2)找出图形的重点点;( 3)将图形的重点点与旋转中心连结起来,而后按旋转方向分别将它们旋转一个角,获得此重点点的对应点;(4) 按图形的次序连结这些对应点,所获得的图形就是旋转后的图形。

一、选择题1.在图形旋转中,以下说法错误的选项是()A .在图形上的每一点到旋转中心的距离相等B .图形上每一点挪动的角度同样C .图形上可能存在不动的点D .图形上随意两点的连线与其对应两点的连线长度相等2.如图,下边的四个图案中,既包括图形的旋转,又包括图形的轴对称的是()3. 如下图的图案绕旋转中心旋转后能够与自己重合,那么它的旋转角可能是()。

A. 60°B.90°C. 72°D.120°4.如图,摆放有五杂梅花,以下说法错误的选项是(以中心梅花为初始地点)(? )A .左上角的梅花只要沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转C .右下角的梅花需先沿对角线平移后,再顺时针旋转D .左下角的梅花需先沿对角线平移后,再顺时针旋转5 △ ABC 绕着 A 点旋转后获得△ AB ′ C ′,若∠ BAC ′ =130°,∠ BAC=80°, ?则旋转角等于( )A . 50°B .210°C . 50°或 210°D.130°二、填空题6.图形的平移、旋转、轴对称中,其同样的性质是_________.45° 180 90°7.如,△ ABC和△ ADE均是角42°的等腰三角形,BC、DE分是底,中的△ABDA 旋 42°后获得的形是 ________,它之的关系是 ______,?此中 BD=_________.8、如,将△ OAB点 0 按逆方面旋至△0A′B′,使点 B 恰巧落在A′ B′上.已知 AB=4cm,BB′ =lcm, A′ B 是 _______cm.9、如,在平面直角坐系中,点 A 的坐(1 ,4) ,将段O A点O旋90°获得段OA′,点A′的坐是___________.10.如,自正方形 ABCD的点 A 引两条射分交 BC、CD于 E、F, ?∠ EAF=45°,在保持∠EAF=45°的前提下,当点 E、F 分在 BC、 CD上移, BE+?DF?与 EF 的关系是________ .11. 如,在直角坐系中,已知点A( 3,0) 、 B(0,4) ,△OAB作旋,挨次得到三角形①、②、③、④⋯,三角形⑩的直角点的坐__________ .三、合提升12.察以下形,它能够看作是什么“基本形”通怎的旋而获得的?13.如图:若∠AOD=∠BOC=60°,A 、O、C 三点在同一条线上,△图形。

九年级数学上册《图形的旋转》同步练习_人教新课标版

九年级数学上册《图形的旋转》同步练习_人教新课标版

FB'C'23.1.1图形的旋转1、下列说法正确的是( )A 、平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B 、平移和旋转的共同点是改变图形的位置C 、图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D 、在平移和旋转图形中,对应角相等,对应线段相等且平行2、将一图形绕着点O 顺时针方向旋转700后,再绕着点O 逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转多少度?( )A 、顺时针方向,500B 、逆时针方向,500C 、顺时针方向,1900D 、逆时针方向,19003、如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是A 、300B 、600C 、900D 、1204、如图,在正方形ABCD 中,E 为DC 边上的点,连结BE ,将△BCE 绕点C顺时针方向旋转900得到△DCF,连结EF ,若∠BEC=600,则∠EFD 的度数为( )A 、100B 、150C 、200D 、2505、等边三角形至少旋转__________度才能与自身重合。

6、如图,△ABC 以点A 为旋转中心,按逆时针方向旋转600,得△AB'C '则△ABB'是__________三角形。

7、如图,△ABC 绕点B 逆时针方向旋转到△EBD 的位置,若∠A=150,∠C=100,E ,B ,C 在同一直线上,则∠ABC=________,旋转角度是__________。

【拓展探究】8、四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7, 求:(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?【答案】1、 B ;2、 A ;3、C;4、B;5、120;6、等边;7、155°,25°;8、(1)旋转中心:点A,旋转角度:90°;(2)DE=3;(3)垂直关系.23.2.2中心对称图形基础训练1. 下列图形中,既是轴对称图形又是中心对称图形的是( ). A .角 B .等边三角形 C .线段 D .平行四边形2. 下列说法:(1)中心对称与中心对称图形是两个不同的概念,它们既有区别,又有联系;(2)中心对称图形是指两个图形之间的一种对称关系;(3)中心对称和中心对称图形有一个共同的特点是它们都有且只有一个对称中心;(4)任何一条经过对称中心的直线都将一个中心对称图形分成两个全等的图形,其中说法正确的序号是( )A .(1)(2)B .(1)(2)(3)C .(2)(3)(4)D .(1)(3)(4) 3.国旗上的每个五角星( )A .是中心对称图形而不是轴对称图形B .是轴对称图形而不是中心对称图形C .既是中心对称图形又是轴对称图形D .既不是中心对称图形,又不是轴对称图形4. 下列图形是中心对称图形的是( )5 ) 初中数学资源网能力提升1.如图所示,△ABC 中,点O 是AC 的中点,画出△ABC 关于点O 中心对称的图形△CAD ,其中点B 与点D 是对称点,观察四边形ABCD 的形状,你能说出它的名称吗?2.如图是正六边形ABCDEF ,请找出它的对称中心.3.分别画出下列图形关于点O 对称的图形. (1) (2)4.如下的两个图形是关于某点中心对称的图形吗?如果不是,请说明理由;如果是,找出它们的对称中心,并指出点A 和点B 的对称点.发展创新 1.如图(a ),A B C D的面积被过其对称中心的直线l 直线,使其将图(b )、(c )分成面积相等的两部分.23.2中心对称 23.2.1中心对称 23.2.2中心对称图形 基础训练 1.C 2.D 3.B 4.C 5.B能力提升 1.图略,四边形ABCD 是平行四边形. 2.画两条对角线的交点. 3.图略.4.是关于某点D C FAODCBA(c)(b)(a)O CB ABA中心对称的图形.图略.发展创新23.2.3关于原点对称的点的坐标知识网络:在平面直角坐标系中,两个点关于原点对称时,它们的坐标符号相反,即点P(,x y)关于原点的对称点为P′(,x y--).基础训练1.点A(2,-3)关于原点对称的点的坐标是.点B(-5,0)关于原点对称的点的坐标是.2.如图,⊿DEF是由⊿ABC经过某种变换后得到的图形,观察各顶点的坐标,可知点A和点D 的坐标分别是;点B和点E的坐标分别是;点C和点F的坐标分别是,如果⊿ABC边上任意一点M的坐标为(,x y),则它对应于⊿DEF上点的坐标是.能力提升1.如图,四边形ABCD各顶点坐标分别为A(-5,0),B(-5,2),C(-3,3),D(-1,1),作出与四边形ABCD关于原点O对称的图形。

人教版九年级上册数学同步练习《图形的旋转》(习题+答案)

人教版九年级上册数学同步练习《图形的旋转》(习题+答案)

23.1图形的旋转内容提要1.在平面内,将一个图形绕一个定点沿某个方向(顺时针或逆时针)转动一个角度,这样的图形运动称为旋转.定点叫旋转中心,转动的角度叫做旋转角.2.旋转的三要素:旋转中心、旋转方向、旋转角.3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.4.旋转作图步骤:(1)首先确定旋转中心和图形中的关键点(如线段的端点、角的顶点等);(2)将这些关键点沿指定的方向旋转指定的角度;(3)然后连接对应部分,形成相应的图形.23.1.1旋转的特征基础训练1.将如图的图案按逆时针方向旋转90︒后得到的是()2.下列说法不正确的是()A.旋转后的图形与原来图形面积相等B.旋转后的图形改变了图形的大小C.旋转不改变图形的大小D.旋转不改变图形的形状3.如图,将ABC∆绕点A旋转后得到ADE∆,则旋转方式是()A.顺时针旋转90︒B.逆时针旋转90︒C.顺时针旋转45︒D.逆时针旋转45︒4.如图,ABC∆,图中旋转中心是,旋∆按顺时针方向转动一个角度后成为''A B C转了度.5.如图,Rt ABC ∆的斜边16AB =,Rt ABC ∆绕点O 顺时针旋转后得到'''Rt A B C ∆,则'''Rt A B C ∆的斜边''A B 上的中线'C D 的长度为.6.如图,将OAB ∆绕着点O 逆时针旋转两次得到OA B ''''∆,每次旋转的角度都是50︒,若120B OA ''∠=︒,则AOB ∠=.7.如图,在正方形ABCD 中,点E 在AB 边上,点F 在BC 边的延长线上,且AE CF =. (1)求证AED CFD ∆∆≌;(2)将AED ∆按逆时针方向至少旋转多少度才能与CFD ∆重合,旋转中心是什么?8.如图,ABC ∆中,1AB AC ==,45BAC ∠=︒,AEF ∆是由ABC ∆绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D .(1)求证BE CF =;(2)当四边形ACDE 为菱形时,求BD 的长.9.在ABC ∆中,AB BC =,120ABC ∠=︒,将ABC ∆绕点B 顺时针旋转角()090αα︒<<︒得11A BC ∆,1A B 交AC 于点E ,11A C 分别交AC ,BC 于D ,F 两点.(1)如图(1),观察并猜想,在旋转过程中,线段BE 与BF 有怎样的数量关系?并证明你的结论.(2)如图(2),当30α=︒时,试判断四边形1BC DA 的形状,并说明理由.10.如图,在直角坐标系中,Rt AOB ∆的两条直角边OA ,OB 分别在x 轴的负半轴,y 轴的负半轴上,且2OA =,1OB =.将Rt AOB ∆绕点O 按顺时针方向旋转90︒,再把所得的图象沿x 轴正方向平移1个单位,得CDO ∆.(1)写出点A ,C 的坐标; (2)求点A 和点C 之间的距离.23.1.2 简单的旋转作图及图案设计基础训练1.将如图所示的图案以圆心为中心,旋转180︒后得到的图案是( )2.……依次观察左边这三个图形,并判断照此规律从左到右第四个图形是( )3.如图,在44⨯的正方形网格中,MNP ∆绕某点旋转一定的角度,得到111M N P ∆,则其旋转中心一定是.4.如图,将图①绕某点经过几次旋转后得到图②,则每次旋转的最小角度是.5.如图,把五角星图案绕着它的中心点O至少旋转(角度)时,它与自身重合;把等边三角形绕着它的中心O至少旋转(角度)时,它与自身重合.6.如图所示的图案由三个叶片组成,绕点O旋转120︒后可以和自身重合,若每个叶片的面积为24cm,AOBcm.∠为120︒,则图中阴影部分的面积之和为27.在格纸上按以下要求作图,不用写作法:(1)作出“小旗子”向右平移6格后的图案;(2)作出“小旗子”绕O点按逆时针方向旋转90︒的图案.8.如图,在等腰直角ABC ∆中,90C ∠=︒,2BC cm =,如果以AC 的中点O 为旋转中心,将这个三角形旋转180︒,点B 落在点'B 处,求'BB 的长度.9.如图所示,画出ABC ∆绕点A 顺时针旋转90︒后的图形.10.如图,在平面直角坐标系中,有一Rt ABC ∆,且()1,3A -,()3,1B --,()3,3C -.已知11A AC ∆是由ABC ∆旋转得到的, (1)请写出旋转中心的坐标是,旋转角是度;(2)以(1)中的旋转中心为中心,分别画出11A AC ∆顺时针旋转90︒,180︒的三角形.能力提高1.如图,在方格纸中,ABC∆经过变换得到DEF∆,正确的变换是()A.把ABC∆绕点C逆时针方向旋转90︒,再向下平移2格B.把ABC∆绕点C顺时针方向旋转90︒,再向下平移5格C.把ABC∆向下平移4格,再绕点C逆时针方向旋转180︒D.把ABC∆向下平移5格,再绕点C逆时针方向旋转180︒2.图ABC∆,且'C在BC上,则∆中,67AB C∆绕点A顺时针旋转后,得到''C∠=︒,将ABC∠的度数为()''B C BA.56︒B.50︒C.46︒D.40︒3.下列图形中,旋转60︒后可以和原图形重合的是()A.正六边形B.正五边形C.正方形D.正三角形4.如图,已知直线443y x =-+与x 轴、y 轴分别交于A ,B 两点,把AOB ∆绕点A 按顺时针方向旋转90︒后得到''AO B ∆,则点'B 的坐标是.5.如图,在等边ABC ∆中,6AB =,D 是BC 的中点,将ABD ∆绕点A 旋转后得到ACE ∆,那么线段DE 的长度为.6.如图,把ABC ∆绕着点C 顺时针旋转35︒,得到''A B C ∆,''A B AC ⊥于点D ,则A ∠的度数是.7.如图所示,在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,1AC =,60ACD ∠=︒,求四边形ABCD 的面积.8.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别是()3,2A -,()1,4B -,()0,2C . (1)将ABC ∆以点C 为旋转中心旋转180︒,画出旋转后对应的11A B C ∆; (2)平移ABC ∆,若点A 的对应点2A 的坐标为()5,2--,画出平移后的222A B C ∆; (3)若将222A B C ∆绕某一点旋转可以得到11A B C ∆,请直接写出旋转中心的坐标.9.如图①,正方形ABCD是一个66⨯网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图②的程序移动.(1)请在图①中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).拓展探究1.如图,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,90∆绕点A旋转,AF,AG与边BC的∆固定不动,AFGBAC AGF∠=∠=︒,若ABC交点分别为D ,E (点D 不与点B 重合,点E 不与点C 重合),在旋转过程中,等量关系222BD CE DE +=是否成立?若成立,请证明;若不成立,请说明理由.2.在ABC ∆中,90BAC ∠=︒,AB AC =,P 是ABC ∆内一点,2PA =,1PB =,3PC =,求APB ∠的度数.3.在ABC ∆中,AB AC =,BAC α∠=(060α︒<<︒),将线段BC 绕点B 逆时针旋转60︒得到线段BD .(1)如图①,直接写出ABD ∠的大小(用含α的式子表示);(2)如图②,150BCE ∠=︒,60ABE ∠=︒,判断ABE ∆的形状并加以证明; (3)在(2)的条件下,连接DE ,若45DEC ∠=︒,求α的值.23.1 参考答案:23.1.1 旋转的特征基础训练1.D 2.B 3.B 4.点C 40 5.8 6.20︒7.(1)证明:在正方形ABCD 中,90A BCD ∠=∠=︒,AD CD =,90FCD ∴∠=︒.90A FCD ∴∠=∠=︒.又AE CF =,(SAS)AED CFD ∴∆∆≌.(2)90ADC ∠=︒,∴将AED ∆按逆时针方向至少旋转90度才能与CFD ∆重合,旋转中心是点D .8.(1)证明:由旋转可知EAF BAC ∠=∠,AF AC =,AE AB =.EAF BAF BAC BAF ∴∠=∠=∠+∠,即BAE CAF ∠=∠.又AB AC =,AE AF ∴=.ABE ACF ∴∆∆≌.BE CF ∴=.(2)四边形ACDE 是菱形,1AB AC ==,AC DE ∴∥,1DE AE AB ===. 又45BAC ∠=︒,45AEB ABE BAC ∴∠=∠=∠=︒.180AEB BAE ABE ∠+∠+∠=︒,90BAE ∴=︒.2222112BE AB AE ∴=++=21BD BE DE ∴=-=.9.(1)AB BC =,A C ∴∠=∠.由旋转可知,1AB BC =,1A C ∠=∠,1ABE C BF ∠=∠,1ABE C BF ∴∆∆≌.BE BF ∴=.(2)四边形1BC DA 是菱形.证明:1130A ABA ∠=∠=︒,11AC AB ∴∥,同理1AC BC ∥.∴四边形1BC DA 是平行四边形.又1AB BC =,∴四边形1BC DA 是菱形.10.(1)点A 的坐标是(2,0)-,点C 的坐标是(1,2);(2)连接AC ,在Rt ACD ∆中,3AD OA OD =+=,2CD =,222222313AC CD AD ∴=+=+=,13AC ∴=.23.1.2 简单的旋转作图及图案设计基础训练1.D 2.D 3.B 4.60︒ 5.72︒ 120︒ 6.4 7.如图 8.25 9.如图10.(1)(0,0) 90 (2)画出图形如图能力提高1.B 2.C 3.A 4.(7,3) 5.33 6.55︒ 7.3 8.(1)图略 (2)图略 (3)旋转中心的坐标为(1,0)-9.(1)如图;(2)因为12364ππ⨯⨯=,所以点P 经过的路径总长为6π.拓展探究1.如图,将ACE ∆绕点A 顺时针旋转90︒至ABH ∆的位置,则CE HB =,AE AH =,45ABH C ∠=∠=︒,旋转角90GAH ∠=︒. 连接HD ,在EAD ∆和HAD ∆中,AE AH =,45HAD EAH FAG EAD ∠=∠-∠=︒=∠,AD AD =,EAD HAD ∴∆∆≌. DH DE ∴=.又90HBD ABH ABC ∠=∠+∠=︒,222BD HB DH ∴+=,即222BD CE DE +=.2.135︒3.(1)1302α︒-. (2)ABE ∆为等边三角形.证明:连接AD ,CD ,ED . 线段BC 绕点B 逆时针旋转60︒得到线段BD ,BC BD ∴=,60DBC ∠=︒.60ABE ∠=︒,160302ABD DBE EBC α∴∠=︒-∠=∠=︒-. 又BD BC =,60DBC ∠=︒,BCD ∴∆为等边三角形,BD CD ∴=. 又AB AC =,AD AD =,(SSS)ABD ACD ∴∆∆≌.1122BAD CAD BAC α∆∠=∠=∠=. 150BCE ∠=︒,11180(30)15022BEC αα∴∠=︒-︒--︒=.BAD BEC ∴∠=∠. 在ABD ∆与EBC ∆中,,,,BEC BAD EBC ABD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)ABD EBC ∴∆∆≌.AB BE ∴=. 又60ABE ∠=︒,ABE ∴∆为等边三角形.(3)60BCD ∠=︒,150BCE ∠=︒,1506090DCE ∴∠=︒-︒=︒. 45DEC ∠=︒,DCE ∴∆为等腰直角三角形.CD CE BC ∴==. 150BCE ∠=︒,(180150)152EBC ︒-︒∴∠==︒. 又130152EBC α∠=︒-=︒,30α∴=︒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册《图形的旋转》同步练习
带答案
The document was prepared on January 2, 2021
2014人教版九年级数学上册第23章《图形的旋转》
同步练习1带答案
一、选择题
1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有(). A.6个 B.7个 C.8个 D.9个
2.从5点15分到5点20分,分针旋转的度数为().
A.20° B.26° C.30° D.36°
3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于
().
A.70° B.80° C.60° D.50°
(1) (2) (3)
二、填空题.
1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.
2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点
_________;旋转的度数是__________.
3.如图3,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是
________;•(•3)•△ADP•是________三角形.
三、综合提高题.
1.阅读下面材料:
如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.
如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.
(4) (5) (6) (7)
如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,•其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.
回答下列问题
如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,
AF=1
2
AB.
(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,•
使△ABE移到△ADF的位置
(2)指出如图7所示中的线段BE与DF之间的关系.
2.一块等边三角形木块,边长为1,如图,•现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少
答案:
一、1.B 2.C 3.B
二、1.旋转旋转中心旋转角 2.A 45° 3.点A 60°等边
三、1.(1)通过旋转,即以点A为旋转中心,将△ABE逆时针旋转90°.
(2)BE=•DF,BE⊥DF
2.翻滚一次滚120°翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.。

相关文档
最新文档