8086指令系统一览表
ch3-3 8086指令系统(算术运算与逻辑运算)

AH为高8位,AL为低8位。
AL (8位)
s (8位)
AH AL (16位)
第三章 8086/8088 指令系统
b. 16位乘法 AL×OPRD AX DX为高16位,AX为低16位。
AX (16位)
s (16位)
DX AX (32位)
第三章 8086/8088 指令系统
• 该指令可以得到负数的绝对值。 • 执行该指令后一般都会使得CF为1
第三章 8086/8088 指令系统
(5) 比较指令 CMP d, s
功能:作一次减法运算d–s,但不送结果,
只根据结果设置标志位。 比较指令往往用于判断两数是否相 等,或两数大小关系。若相等,则零标 志ZF=1。
第三章 8086/8088 指令系统
01110011 00110111 相减
00111100 00000110 调整
00110110
最后结果 AL = 00110110B(代表36),CF=0
第三章 8086/8088 指令系统
(5) AAM 功能:对未组合型BCD的乘法结果进行调整。 例: MOV AL, 00001000B (代表8) MOV BL, 00001001B (代表9) MUL BL AAM
否则不作调整。
第三章 8086/8088 指令系统
例: MOV AH, 0 MOV AL, 00000110B ADD AL, 00000111B
AAA
;代表6 ;代表7
00000110 6 + 00000111 7
00001101 调整 + 00000110
00010011
清0
00000011 AL 00000000+1=00000001AH
04 8088(8086)的指令系统

INC OPRD
操作数:通用寄存器、存储器 (不能是段寄存器或立即数) 执行的操作:OPRD OPRD + 1
功能: 用于在循环中修改地址指针及循环次数等。
注:该指令影响标志位
例: INC BX INC byte ptr [SI]
1. 先将SP所指单元内容 送至AL, 然后 SP+1SP ;
2. 再SP所指单元内容送 至AH, 然后 SP+1 SP
例:MOV AX,5678H POP AX
(3) 交换指令 XCHG OPRD1, OPRD2
在寄存器间或寄存器与存储器间交换信息(不允许使用段寄存器)。
源操作数: 寄存器、存储器 目的操作数:寄存器、存储器 执行的操作:( OPRD1) (OPRD2 )
DS=1000h
buffer 10100h 00 02 00 20
0100h BX
(2) LDS 把源操作数指定的内存的4个相继字节的内容送至指定寄存器及DS中
LDS REG, SRC
(REG) (SRC)
(DS) (SRC+2)
目的操作数
源操作数
(16位通用寄存器) (内存操作数)
• 该指令完成一个32位地址指针的传送; • 该指令通常指定 SI 作寄存器 REG。
• CPU内部寄存器之间的数据传送(除CS,IP外) MOV AL,BL MOV DX, DI MOV SI, BP MOV DS, BX MOV AX,DX
• 立即数传送到CPU内部通用寄存器组(AX,BX,CX,DX,BP,SP,DI,SI)
MOV CL, 4 MOV DX, 03FFH MOV DI, 04BFH
DST+SRC+C
8086CPU指令系统

3.3.2 算术运算类指令
1.加法指令
(2)带进位加法指令ADC
【指令格式】ADC dst,src 【指令功能】(dst) ← (dst)+(src)+(CF) ADC指令在格式和功能上都与ADD指令类似,只是相加时要 把进位标志CF的当前值加到和中,结果送到目的操作数中。 【用途】ADC指令主要用于多字节加法运算。 例如,有两个4字节的无符号数相加,由于8086加法指令最 多只能进行16位的加法运算,我们可将加法分两次进行,先 进行低16位相加,然后再进行高16位相加,在完成高16位 相加时,注意要把低16位相加时可能出现的进位位加进去。
•堆栈操作指令PUSH和POP
由于堆栈顶部是浮动的,为了指示现在堆栈中存放数据的位 置,通常设置一个指针,即堆栈指针SP,始终指向堆栈的顶部。 这样,堆栈中数据的进出取决于SP。当将数据(1个字节)推 入堆栈时,SP自动减1,向上浮动而指向新的栈顶;当将数据 从堆栈弹出时,SP自动加1,向下浮动而指向新的栈顶。 堆栈有建栈、进栈和出栈3种基本操作。 ⑴建栈
出栈操作都是以字为单位的,即每次在堆栈中存取数据均是两 个字节(先存入高字节,再存入低字节,仍然遵循“高字节在 高地址,低字节在低地址”的原则)。
【指令格式】PUSH opr 【指令功能】PUSH指令将16位的源操作数推入堆栈,而目标
地址为当前栈顶,即由SP指示的单元。PUSH指令操作如下: ①(SP)←(SP)-2 ②((SP)+1: (SP) ) ← opr
③代码段寄存器CS和指令指针寄存器IP不能作为目的 操作数,但CS可以作为源操作数.
④立即数不能作为目的操作数. ⑤不能用立即寻址方式给段寄存器传数. ⑥段寄存器之间不能用MOV指令直接传送. ⑦在传送字单元时,遵循“高字节在高地址,低字节在 低地址”的原则。
8086汇编指令大全.

不允许寄存器或存储单元到除CS外的段寄存器
2入栈(出栈指令PUSH (POP
注意:
PUSH操作数不能是“立即数” POP操作数不能是段寄存器
CS
不影响标志位
先进后出
单操作符
3交换指令XCHG
注意:
只允许寄存器与存储单元之间的交换
不影响标志位
4换码指令XLAT
5地址传送指令LEA :偏移地址
ZF=0
SF符号标志位
OF溢出标志位
DF方向标志位
IF中断允许位IF=1时响应外部中断
TF跟踪标志位
操作数:[目的操作数(OPD ,源操作数(OPS ] ;立即操作数,寄存器操作数,存储器操作数。寻址方式:
1寄存器寻址例:INC AX ; MOV AX , BX
2寄存器间接寻址(寄存器只能是BX , DI , SI , BP ; [PA=(BX、DI、SI +DS》4或BP+SS》4]
6数据段指针送寄存器LDS :低地址的字送指定的通用寄存器(SI、高地址的字
送DS
7附加段指针送寄存器指令LES :与LDS相似,低地址的字送通用寄存器(DI、高
地址送ES
上三指令不影响标志位
8标志寄存器传送指令
LAHF :标志寄存器低八位送
AH
SAHF :AH送标志寄存器低八位
PUSHF :标志寄存器压入堆栈
标志寄存器:9个有效位,分6个状态寄存器和3个控制寄存器
CF当执行一个加法(减法使最高位产生进位(借位时CF=1否则
CF=0
PF指令执行的结果低8位有偶数个一时, CF=1否则
CF=0
AF当执行一个加法(减法使运算结果低4位向高4位有进位(借位时AF=1否则
48086CPU指令系统

XCHG DS,ES XCHG AX,DS XCHG DS,[ BX ] • 不能使用双存储器 XCHG [ BX ],[ SI ] • 不能使用立即数 XCHG AX,2000H XCHG 20H,BL
《例》用 MOV、PUSH,POP、XCHG 指令 完成两寄存器AX、BX 中数据的交换
• 指令格式
•
指令功能
OPR1、OPR2 两个操作数间交换数据
数据传送类指令
XCHG指令的应用范围
• 通用寄存器与通用寄存器间交换数据
XCHG AX,BX XCHG DL,CH • 通用寄存器与存储器间交换数据 XCHG AX,[ BX ] XCHG [ SI ],AL
数据传送类指令
XCHG指令的 禁用情况
通用传送指令 PUSH、POP 中 src、dst 操作数的使用
• 为通用寄存器、段寄存器操作数
PUSH AX、PUSH ES POP DS、 POP BX • 为存储器操作数 PUSH [ 2000H ]、PUSH [ BX ] POP [ BX ]、 POP [ 1000H ]
通用传送指令PUSH、POP中 src、dst 操作数的禁用
数据传送类指令
指令 LEA 与 LDS,LES 的区别
• LEA src
scr 表示存储器地址本身
• LDS r,src
LES r,src src 表示存储器地址中的值
地址传送指令的比较
已知:DS=09A0H,BX= 0048H
LEA DI,[BX] → 执行后:DI=0048H 等价于 MOV DI,OFFSET [BX] LDS DI,[BX] → 执行后:DI=003EH DS=0816H LES DI,[BX] → 执行后:DI=003EH ES=0816H Memory
8086指令系统总结

8086指令系统总结8086是一种x86架构的微处理器,由Intel公司于1978年推出。
它是16位的,拥有20位的物理寻址能力,可以访问1MB的内存空间。
8086指令系统是其所支持的一系列指令集合,下面将对8086指令系统进行详细总结。
数据传输指令是8086指令系统中的基础指令之一,用于将数据从一个位置传输到另一个位置。
其中包括mov指令、xchg指令、push指令和pop指令等。
mov指令用于将数据从一个存储位置复制到另一个存储位置;xchg指令用于交换两个存储位置中的数据;push指令用于将数据压入栈顶;pop指令用于将栈顶的数据弹出。
算术运算指令是用于进行各种算术运算的指令。
8086支持包括加法、减法、乘法和除法等多种算术运算指令。
例如,add指令用于将两个操作数相加,sub指令用于将第二个操作数从第一个操作数中减去,mul指令用于将两个操作数相乘,div指令用于将第一个操作数除以第一个操作数,并将结果保存在指定的寄存器中。
逻辑运算指令用于进行逻辑运算,包括与、或、非、异或等运算。
例如,and指令用于对两个操作数进行按位与运算,or指令用于对两个操作数进行按位或运算,not指令用于对一个操作数进行按位非运算,xor指令用于对两个操作数进行按位异或运算。
控制转移指令用于控制程序的执行流程。
包括无条件转移指令、条件转移指令和循环指令。
无条件转移指令用于无条件地跳转到指定的地址,例如jmp指令;条件转移指令用于根据一些条件是否成立来进行跳转,例如je指令(跳转到指定地址,如果上一次比较操作相等);循环指令用于循环执行指定的指令块,例如loop指令。
I/O指令用于进行输入输出操作,包括从外部设备读取数据和将数据写入外部设备。
例如,in指令用于将输入端口的数据读取到指定的寄存器中,out指令用于将指定的寄存器中的数据写入到输出端口。
此外,8086还支持一些特殊的指令,如访问标志寄存器的指令,控制指令(如hlt指令、nop指令)和字符串指令(如movsb指令、cmpsb指令)等。
2_第3章 8086指令系统_加减运算指令比较指令52

3.4.2 算术运算指令
算术运算指令涉及两种类型数据,即无符号数和有符号数 对加法指令和减法指令而言,无符号和有符号数可采用同
一套指令,其先决条件有两个: 一是参加的操作数必须同为无符号数或同为有符号数 二是要采用不同标志位来检查无符号数和有符号数的 运算结果是否溢出
而乘除运算指令则需要区分无符号数和有符号数
11 11
ADC指令的使用价值
主要用于由于数据较大(多字节),需要多次运算的加法 运算中。 例:有两个4字节的无符号数相加:
2D568F8CH+3C9E489BH=? 设 被加数存放在BUF1开始的存储区内
加数存放在BUF2开始的存储区内 要求和放回BUF1存储区 假设CPU进行8位的加法运算,为此将进行4次加法运算
.386
……
MOVZX AX, A
MOVZX BX, B
ADD
AX, BX
MOVZX BX, C
ADD
AX, BX
MOV
SUM, AX
;取第一个数,扩展0传送 ;取第二个数 ;加第二个数 ;取第三个数 ;加第三个数 ;保存三个数的和
20 20
[例] P,Q,R均为8位有符号数,求它们的和,送入TOTAL
这个问题的另一种方法:
MOV AL, A
;取第一个数
MOV AH, 0
;高8位清零,准备存放和的高8位
ADD AL, B
;加第二个数
ADC AH, 0
;如果有进位,存入AH
ADD AL, C
;加第三个数
ADC AH, 0
;如果有进位,加入AH
MOV SUM, AX ;保存三个数的和
19 19
这个问题的第三种方法:
8086指令系统一览表

RCR op1, 1 带进位位的循环右移 RCR op1, CL
reg mem reg mem
串 MOVSB 操 作 MOVSW 类
((DI)) ← ((SI)) (SI) ← (SI)±1, (DI) ← (DI)±1 ((DI)) ← ((SI)) (SI) ← (SI)±2, (DI) ← (DI)±2
SAR op1, 1 算术右移 SAR op1, CL
ROL op1, 1 循环左移 ROL op1, CL
ROR op1, 1 循环右移 ROR op1, CL
reg mem mem, reg reg, mem reg, reg reg, imm mem, imm acc, imm reg, mem reg, reg reg, imm mem, imm acc, imm reg mem reg mem
9+22/rep 不重复:15 1 重复:
9+15/rep 1 不重复:15 重复:
9+15/rep
2
1
2
1
REPNE/REP (CX)=0 或(ZF)=1 退出重复,否则
NZ
(CX)←(CX)-1 并执行其后的串指令
ቤተ መጻሕፍቲ ባይዱ
string_instruc
控 JMP SHORT 无条件转移 制 op1 转 JMP NEAR 移 PTR op1 类 JMP FAR
reg mem
PTR op1
JMP WORD
PTR op1
JMP DWORD
PTR op1 JZ/JE op1 JNZ/JNE op1 JS op1
ZF=1 则转移 ZF=0 则转移 SF=1 则转移
JNS op1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录一ASCII码表
附录二8086指令系统一览表
类型
汇编指令格式
功能
操作数说明
时钟周期数
字节数
数
据
传
送
类
MOV dst, src
(dst)←(src)
mem, reg
reg, mem
reg, reg
reg, imm
mem, imm
seg, reg
seg, mem
mem, seg
reg, seg
mem, acc
mem, imm
acc, imm
16+EA
9+EA
3
4
17+EA
4
2 ~ 4
2 ~ 4
2
3 ~ 4
3 ~ 6
2 ~ 3
TEST op1, op2
(op1)∧(op2)
reg, mem
reg, reg
reg, imm
mem, imm
acc, imm
9+EA
3
5
11+EA
4
2 ~ 4
2
3 ~ 4
3 ~ 6
(SP)←(SP)+2
reg
seg
mem
8
8
17+EA
1
1
2 ~ 4
XCHG op1, op2
(op1)←→(op1)
reg, mem
reg, reg
reg, acc
17+EA
4
3
2 ~ 4
2
1
IN acc, port
IN acc, DX
(acc)←(port)
(acc)←((DX))
10
8
2
1
OUT port, acc
reg, imm
mem, imm
acc, imm
16+EA
9+EA
3
4
17+EA
4
2 ~ 4
2 ~ 4
2
3 ~ 4
3 ~ 6
2 ~ 3
DEC op1
(op1)←(op1) - 1
reg
mem
2 ~ 3
15+EA
1 ~ 2
2 ~ 4
NEG op1
(op1)←0 - (op1)
reg
mem
3
16+EA
2
1
1
CMPSB
CMPSW
((SI)) - ((DI))
(SI)←(SI)±1, (DI)←(DI)±1
((SI)) - ((DI))
(SI)←(SI)±2, (DI)←(DI)±2
不重复:22
重复:9+22/rep
不重复:22
重复:9+22/rep
1
1
SCASB
SCASW
(AL) - ((DI))
(DI)←(DI)±1
(AX)←((DI))
(DI)←(DI)±2
不重复:15
重复:9+15/rep
不重复:15
重复:9+15/rep
1
1
REP string_instruc
(CX)=0退出重复,否则(CX)←(CX)-1并执行其后的串指令
2
1
REPE/REPZstring_instruc
(CX)=0或(ZF)=0退出重复,否则(CX)←(CX)-1并执行其后的串指令
acc, mem
9+EA
8+EA
2
4
10+EA
2
8+EA
9+EA
2
10
10
2 ~ 4
2 ~ 4
2
2 ~ 3
3 ~ 6
2
2 ~ 4
2 ~ 4
2
3
3
PUSH src
(SP)←(SP)-2
((SP)+1, (SP))←(src)
reg
seg
mem
11
10
16+EA
1
1
2 ~ 4
POP dst
(dst)←((SP)+1, (SP))
mem, reg
reg, mem
reg, reg
reg, imm
mem, imm
acc, imm
16+EA
9+EA
3
4
17+EA
4
2 ~ 4
2 ~ 4
2
3 ~ 4
3 ~ 6
2 ~ 3
SBB dst, src
(dst)←(src) - (dst) - CF
mem, reg
reg, mem
reg, reg
mem, imm
acc, imm
16+EA
9+EA
3
4
17+EA
4
2 ~ 4
2 ~ 4
2
3 ~ 4
3 ~ 6
2 ~ 3
NOT op1
(op1)←( )
reg
mem
3
16+EA
2
2 ~ 4
XOR dst, src
(dst)←(dst)⊕(src)
mem, reg
reg, mem
reg, reg
reg, imm
(DI)←(DI)±1
((DI))←(AX)
(DI)←(DI)±2
不重复:11
重复:9+10/rep
不重复:11
重复:9+10/rep
1
1
LODSB
LODSW
(AL)←((SI))
(SI)←(SI)±1
(AX)←((SI))
(SI)←(SI)±2
不重复:12
重重复:9+13/rep
2
2 ~ 4
ROL op1, 1
ROL op1, CL
循环左移
reg
mem
reg
mem
2
15+EA
8 + 4/bit
20+EA+ 4/bit
2
2 ~ 4
2
2 ~ 4
ROR op1, 1
ROR op1, CL
循环右移
reg
mem
reg
mem
2
15+EA
8 + 4/bit
20+EA+ 4/bit
2
2 ~ 4
(IP)←(IP) + D16
段内间接:(SP)←(SP)-2
((SP)+1, (SP))←(IP)
(IP)←EA
段间直接:(SP)←(SP)-2
((SP)+1, (SP))←(CS)
(SP)←(SP)-2
((SP)+1, (SP))←(IP)
(IP)←目的偏移地址
(CS)←目的段基址
PF=0则转移
16/4
2
JC op1
CF=1则转移
16/4
2
JNC op1
CF=0则转移
16/4
2
JO op1
OF=1则转移
16/4
2
JNO op1
OF=0则转移
16/4
2
JB/JNAE op1
CF =1且ZF=0则转移
16/4
2
JNB/JAE op1
CF =0或ZF=1则转移
16/4
2
JBE/JNA op1
2
2 ~ 4
SHR op1, 1
SHR op1, CL
逻辑右移
reg
mem
reg
mem
2
15+EA
8 + 4/bit
20+EA+ 4/bit
2
2 ~ 4
2
2 ~ 4
SAR op1, 1
SAR op1, CL
算术右移
reg
mem
reg
mem
2
15+EA
8 + 4/bit
20+EA+ 4/bit
2
2 ~ 4
mem, reg
reg, mem
reg, reg
reg, imm
mem, imm
acc, imm
16+EA
9+EA
3
4
17+EA
4
2 ~ 4
2 ~ 4
2
3 ~ 4
3 ~ 6
2 ~ 3
INC op1
(op1)←(op1)+1
reg
mem
2 ~ 3
15+EA
1 ~ 2
2 ~ 4
SUB dst, src
(dst)←(src) - (dst)
类
ADD dst, src
(dst)←(src) + (dst)
mem, reg
reg, mem
reg, reg
reg, imm
mem, imm
acc, imm
16+EA
9+EA
3
4
17+EA
4
2 ~ 4
2 ~ 4
2
3 ~ 4
3 ~ 6
2 ~ 3
ADC dst, src
(dst)←(src) + (dst) + CF
16/4
2