八年级上第一次月考试题含答案

合集下载

八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)试题含答案

八年级上学期第一次月考(数学)(考试总分:120 分)一、单选题(本题共计6小题,总分18分)1.(3分)下列图形中,具有不稳定性的是()A. 钝角三角形B. 锐角三角形C. 直角三角形D. 长方形2.(3分)下列长度的三条线段能组成三角形的是()A.1,2,1B.2,2,4C.3,4,5 D.3,4,8 3.(3分)若一个三角形三个内角度数的比为3:4:7,则这个三角形的形状是()A.直角三角形B.钝角三角形C.锐角三角形D.无法确定4.(3分)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是()A.360度B.540度C.180或360度D.540或360或180度5.(3分)如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE的中点,S△ABC=4平方厘米,则S△BEF的值为()A.2平方厘米B.1平方厘米C.平方厘米D.平方厘米6.(3分)如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68二、 填空题 (本题共计6小题,总分18分)7.(3分)等腰三角形的两边长分别为3cm 和6cm ,则周长为 .8.(3分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于 .9.(3分)如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于 .10.(3分)将一副三角板按如图所示的位置摆放,则图中∠1= °.11.(3分)如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线,2CA 是1ACD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________12.(3分)在平面直角坐标系中,已知点A(1,2),B(3,3),C(3,2),若存在一点E,使△ACE和△ACB全等,请写出所有满足条件的点E的坐标:.三、解答题(本题共计11小题,总分84分)13.(6分)已知一个多边形,过一个顶点处可以引6条对角线,问(1)这是一个几边形?(2)这个多边形的内角和是多少?14.(6分)已知:如图,点B,D在线段AE上,AD=BE,AC//EF,∠C=∠F,求证:△ABC≌△EDF.15.(6分)如图,在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.16.(6分)(1)在图1中,沿图中的虚线画线,把下面的图形划分为两个全等的图形.(2)图2为边长为1个单位长度的小正方形组成的网格在△ABC的下方画出与△ABC全等的△EBC.图1图217.(6分)如图,AB=CB,AD=CD.AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE= OF.18.(8分)证明命题:全等三角形对应边上的中线相等,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证。

河北省邯郸市人和中学2024~2025学年八年级上学期第一次月考数学试题(含答案)

河北省邯郸市人和中学2024~2025学年八年级上学期第一次月考数学试题(含答案)

2024-2025学年人和中学第一学期阶段测试一.选择题(共14小题共38分,1~10小题每小题3分,11-14小题各2分)1.下列图形中,是正八边形的是( )A.B. C. D.2.如果三角形两条边的长度分别是4cm ,7cm ,那么第三条边不可能是( )A.10B.6C.4D.33.下列图形中,与如图全等的是( )A. B. C. D.4.下列四个图形中,线段AD 是的高的是( )A. B. C. D.5.如图,,B 、C 、D 在同一直线上,且,,则BD 长( )A.12B.14C.16D.186.如图所示的网格由边长相同的小正方形组成,点A ,B ,C ,D ,E ,F ,G 在小正方形的格点上,则的重心是( )A.点DB.点EC.点FD.点G7.如图均表示三角形的分类,下列判断正确的是()ABC △ABC DEC ≅△△6CE =8AC =ABC △A.①对,②不对B.①不对,②对C.①、②都不对D.①、②都对8.如图,直角三角形被挡住了一部分,小明根据所学知识很快就另外画出了一个与原来完全一样的三角形,这两个三角形全等的依据是( )A.SAS B.ASA C.AAS D.HL9.如图,要想知道黑板上两直线a ,b 所夹锐角的大小,但因交点不在黑板内,无法直接测量,小慧设计了间接测量方案(相关标记和数据如图所示),则直线a ,b 所夹锐角的度数为( )A.30°B.40°C.50°D.60°10.如图,用四颗螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两颗螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两颗螺丝的距离的最大值是( )A.7B.10C.11D.1411.如图,已知∠AOB ,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点E ,F ,再以点E 为圆心,以EF 长为半径画弧,交弧①于点D ,画射线OD .若,则的度数为( )A.32°B.54°C.64°D.68°12.如图,小明从A 地出发,沿直线前进15米后向左转18°,再沿直线前进15米,又向左转18°……,照这样走下去,他第一次回到出发地A 地时,一共走的路程是()32AOB ∠=︒BOD ∠A.200米B.250米C.300米D.350米13.已知,求作射线OC ,使OC 平分,那么作法的合理顺序是( )①作射线OC ;②在射线OA 和OB 上分别截取OD 、OE ,使;③分别以D 、E为圆心,大于的长为半径在内作弧,两弧交于点C .A.①②③ B.②①③C.②③①D.③①②14.为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A ,B 的距离无法直接测量,请同学们设计方案测量A ,B 的距离,甲、乙两位同学分别设计了如下两种方案:甲:如图1,在平地上取一个可以直接到达点A ,B 的点O ,连接AO 并延长到点C ,连接BO 并延长到点D ,使,,连接DC ,测出DC 的长即可.乙:如图2,先确定直线AB ,过点B 作直线BE ,在直线BE 上找可以直接到达点A 的一点D ,连接DA ,作,交直线AB 于点C ,最后测量BC 的长即可.其中可行的测量方案是( )图1图2A.只有方案甲可行B.只有方案乙可行C.方案甲和乙都可行D.方案甲和乙都不可行二、填空题(共3小题,共10分,15小题2分,16~17小题各4分,每空2分)15.如图,当自行车停车时,两个轮子和一个支撑脚着地,自行车就不会倒,其中蕴含的数学原理是______.AOB ∠AOB ∠OD OE =12DE AOB ∠CO AO =DO BO =ADB BDC ∠=∠16.按照图中所示的方法将多边形分割成三角形,图(1)中三角形可分割出2个三角形;图(2)中四边形可分割出3个三角形;图(3)中五边形可分割出 ______个三角形;由此你能猜测出,n 边形可以分害出______个三角形.17.如图,BD 平分的外角,,于点E ,于点F .(1)求证:______.(2)若,,______.三.解答题(共7小题,满分72分)18.(9分)已知在中,,,且AC 为奇数.(1)求的周长;(2)判断的形状.19.(9分)在五边形中,五个角的度数表示如图,求x 的值.20.(9分)如图所示,为了固定电线杆AD ,将两根长分别为10m 的电线一端同系在电线杆A 点上,另一端固定在地面上的两个锚上,那么两个锚离电线杆底部(D)的距离相等吗?为什么?ABC △ABP ∠DA DC =DE BP ⊥DF BP ⊥DEC ≅△5AB =3BC =BE =ABC △5AB =2BC =ABC △ABC △ABCDE (),B C21.(10分)如图,中,于点D ,BE 平分,若,.(1)求的度数;(2)若点F 为线段BC 上的任意一点,当为直角三角形时,求的度数.22.(10分)如图,课本上利用实验剪拼的方法,把和移动到的右侧,且使这三个角的顶点重合,再利用平行线的性质可以说明三角形内角和定理.具体说理过程如下:延长BC ,过点C 作.∴______(两直线平行,内错角相等),(______),∵(平角定义),∴(______).(1)请你补充完善上述说理过程;(2)请你参考实验1的解题思路,自行画图标注好顶点字母,写出实验2说明三角形内角和定理的过程.23.(12分)如图,在中,点D 在BC 边上,,的平分线交AC 于点E ,过点E 作,垂足为F ,且,连接DE .(1)求的度数;(2)求证:DE 平分;24.(13分)新定义:如果两个三角形不全等但面积相等,那么这两个三角形叫做积等三角形.【初步尝试】(1)如图1,在中,,,P 为边BC 上一点,若与是积等三角形,求BP的长;ABC △AD BC ⊥ABC ∠60ABC ∠=︒70AEB ∠=︒CAD ∠EFC △BEF ∠1∠2∠3∠CM BA ∥A ∠=2B ∠=∠12180ACB ∠+∠+∠=︒180A B ACB ∠+∠+∠=︒ABC △100BAD ∠=︒ABC ∠EF AB ⊥50AEF ∠=︒CAD ∠ADC ∠ABC △AB AC >4BC =ABP △ACP △【理解运用】(2)如图2,与为积等三角形,若,,且线段AD 的长度为正整数,求AD 的长.【综合应用】(3)如图3,在中,,过点C 作,点D 是射线CM 上一点,以AD 为边作,,,连接BE .请判断与是否为积等三角形,并说明理由.2024-2025学年人和中学第一学期阶段测试参考答案一.选择题(共14小题共38分,1~10小题每小题3分,11-14小题各2分)1.C2.D3.A4.D5.B6.A7.B8.B9.B 10.B 11.C 12.C 13.C 14.A二.填空题(共3小题,共10分,15小题2分,16~17小题各4分,每空2分)15.三角形具有稳定性16.4 17.(1) (2)1三.解答题(共7小题,满分72分)18.【解答】解:(1)由题意得:,即:,∵AC 为奇数,∴,∴的周长为;(2)∵,∴是等腰三角形.19.根据题意列方程得:,解得.20.【解答】解:两个锚离电线杆底部(D )的距离相等.理由如下:依题意知,,则.ABD △ACD △2AB =4AC =Rt ABC △90BAC ∠=︒AB AC =MN AC ⊥Rt ADE △90DAE ∠=︒AD AE =BAE △ACD △1n -DFA △5252AC -<<+37AC <<5AC =ABC △55212++=AB AC =ABC △()()207010540x x x x +++++-=115x =(),B C AD BC ⊥90ADB ADC ∠=∠=︒在与中,,∴,∴.即两个锚离电线杆底部(D )的距离相等.21.【解答】解:(1)∵BE 平分,若,∴,∵,∴,∵于点D ,∴;(2)∵,∴当为直角三角形时,有以下两种情况:①当时,如图1所示:∵,,∴,∴;图1②当时,如图2所示:∴,∵,∴.综上所述:当为直角三角形时,的度数是20°或60°.图222.(1) 两直线平行,同位角相等 等量代换(2)证明:如图2所示,过点A 作直线,∴,,∵(平角定义),Rt ABD △Rt ACD △AD AD AB AC=⎧⎨=⎩()Rt Rt HL ABD ACD ≅△△BD CD =(),B C ABC ∠60ABC ∠=︒11603022ABE CBE ABC ∠=∠=∠=⨯︒=︒70AEB CBE C ∠=∠+∠=︒70703040C CBE ∠=︒-∠=︒-︒=︒AD BC ⊥9050CAD C ∠=︒-∠=︒40C ∠=︒EFC △90FEC ∠=︒180BEC AEB ∠+∠=︒70AEB ∠=︒180********BEC AEB ∠=︒-∠=︒-︒=︒1109020BEF BEC FEC ∠=∠-∠=︒-︒=︒90EFC ∠=︒90BFE ∠=︒30CBE ∠=︒9060BEF CBE ∠=︒-∠=︒EFC △BEF ∠1∠DE BC ∥3EAC ∠=∠2DAB ∠=∠1180DAB EAC ∠+∠+∠=︒∴.23.【解答】(1)解:∵,,∴,∵,∴;(2)证明:过点E 作于G ,于H ,∵,,,∴,∵BE 平分,,,∴,∴,∵,,∴DE 平分;24.【解答】解:(1)过点A 作于H ,如图1,∵与是积等三角形,∴,∴,∴,∵,∴;图1(2)如图2,延长AD 至N ,使,连接CN ,∵与为积等三角形,∴,在和中,,∴,∴,在中,,∵,∴,∴,123180∠+∠+∠=EF AB ⊥50AEF ∠=︒905040FAE ∠=︒-︒=︒100BAD ∠=︒1801004040CAD ∠=︒-︒-︒=︒EG AD ⊥EH BC ⊥40FAE DAE ∠=∠=︒EF BF ⊥EG AD ⊥EF EG =ABC ∠EF BF ⊥EH BC ⊥EF EH =EG EH =EG AD ⊥EH BC ⊥ADC ∠AH BC ⊥ABP △CBP △ABP ACP S S =△△1122BP AH CP AH ⋅=⋅BP CP =BP CP BC +=2BP CP ==DN AD =ABD △ACD △BD CD =ADB △NDC △BD CD ADB CDN AD DN =⎧⎪∠=∠⎨⎪=⎩()SAS ADB NDC ≅△△2AB NC ==ACN △AC CN AN AC CN -<<+4AC =4242AN -<<+26AN <<∴,∴,∵AD 为正整数,∴;图2(3)积等三角形;证明:如图3,过点E 作于点H ,∵,∴,∵,∴,∴,∴,在和中,,∴,∴,,∵,,∵AB =AC ,∴,∴,∴与为积等三角形.图3226AD <<13AD <<2AD =EH AB ⊥MN AC ⊥90ACD AHE ∠=∠=︒90BAC DAE ∠=∠=︒90CAH DAE ∠=∠=︒CAH DAH DAE DAH ∠-∠=∠-∠EAH DAC ∠=∠HAE △CAD △EHA ACD EAH DAC AE AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS HAE CAD ≅△△AC AH =EH CD =12BAE S AB EH =⋅△12ACD S AC CD =⋅△12ACD S AB CD =⋅△BAE ACD S S =△△ABE △ACD △。

八年级数学上册第一次月考试卷(附答案)

八年级数学上册第一次月考试卷(附答案)

八年级数学上册第一次月考试卷(附答案)一.单选题。

(每小题4分,共48分)1.在下列实数中:0,√2.5,﹣3.1415,√4,227,0.343343334.....,无理数有().A.1个B.2个C.3个D.4个2.下列x的值能使√x-6有意义的是()A.x=1B.x=3C.x=5D.x=73.将√33×2化简,正确的结果是()A.3√2B.±3√2C.3√6D.±3√64.下列判断中,你认为正确的是()A.0的倒数是0B.π是有理数C.√5大于2D.√9的值是±35.若点M(a+3,2a-4)在x轴上,则点M的坐标为()A.(0,﹣10)B.(5,0)C.(10,0)D.(0,5)6.若A(m+1,﹣2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.﹣1B.﹣4C.2D.37.与点P(5,﹣3)关于x轴对称的点的坐标是()A.(5,3)B.(﹣5,3)C.(﹣3,5)D.(3,﹣5)8.将点A(﹣4,﹣1)向右平移5个单位长度,再向上平移3个单位得到点B,则点B坐标是()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)9.如图,数轴上点A表示的实数是()A.√5B.√5-1C.2-√5D.1(第9题图)(第10题图)(第11题图)10.如图,在平面直角坐标系中,点P(﹣3,5)关于y轴的对称点坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)11.如图,每个小正方形的边长为1,四边形的四个顶点A,B,C,D都在格点上,则下面4条线段长度为√10的是()A.ABB.BCC.CDD.AD12.如图,某计算器有、、三个按键,以下是三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方,小宇输入一个数据后,按照以下不走操作,依次按照从第一步到第三步循环按键,,若一开始输入的数据为10,则第2022步之后,显示的结果是().A.100B.1C.0.01D.10二.填空题。

部编版八年级语文上学期 第一次月考试题(含答案)【精品】

部编版八年级语文上学期   第一次月考试题(含答案)【精品】

第一次考试语文参考答案一、语言知识及其运用(10分)1. D(当dānɡ摧枯拉朽塞sài 从流飘荡屏bǐnɡ眼花缭乱)2. C(“震耳欲聋”形容声音很大。

用形容中国军人的力量是使用对象错误。

)3. B(A项,宾语残缺,应改为“出现了客户资金被非法挪用的现象。

”C项,谁“连胜三局”?表意不明。

D项,缺少主语,删除“随着”。

)4. A5. B(A比喻,本体:吕伟跳水时的姿态;喻体:敦煌壁画中凌空翔舞的“飞天”;B中的“犹如”表示想象;C对偶,“声如千骑疾,气卷万山”。

D拟人,“轻巧灵活地调整好姿态”、“对准”、“迅速”就是把事物人格化。

)二、古诗文阅读与积累(24分)6. B(诗人骑在马上,穿行于山间小路,安闲地欣赏着沿途的旖旎风光。

就在此时,诗人突然发现眼前村庄里的小桥和原野上的树木,与自己故乡的十分相似。

认真研读本诗,诗句中“兴长”“惆怅”很明显的表达出了作者的情感。

从“村桥原树似吾乡”一句中,写出了睹物思乡,触景生情,看到他乡景色与家乡景象相同,激起了作者思乡愁绪,心情自然有很大的变化。

)7. D(这首诗运用动静结合的写法。

以听觉写动景,傍晚秋声万壑起,这是耳闻;以视觉写静景数峰默默伫立在夕阳里,这是目睹。

)8. D(“凄然”跟后面“使人感而悲”属于“形容词+补语”的形式,后面的“使人感而悲”是用补充说明“凄然”的,很明显要由此化开,因此,句子的节奏划分,应当为“凄然/使人感而悲也”。

)9.(1)至,到(2)极,甚(3)跑10.(1)夜已经很深了,山愈发显得高峻与迫近,阴森森地好像要下与人搏斗。

(2)像是行走在空山深林间,听到一两声春鸟的叫声,自然而然使人惆怅惊骇。

11. 景物:一色荷花,风自两岸,红披绿偃,摇荡葳蕤,香气勃郁。

感受:冲怀罥袖,掩苒不脱。

作者最后写沈庆的歌声的作用:渲染此地凄凉、清冷的气氛。

【参考译文】第二天,(我们)又转向北边经过小桥,沿着溪水向东行走,又向西拐了三四个弯,就到了姚贵聪先生的家门前。

山东省菏泽市东明县第二初级中学2024-2025学年八年级上学期10月月考地理试题(含答案)

山东省菏泽市东明县第二初级中学2024-2025学年八年级上学期10月月考地理试题(含答案)

八年级地理第一次月考试题班级姓名准考证号一、选择题(每题1分,共20分)1、关于中国的地理位置,下列说法正确的是( )A. 位于亚洲东部,大西洋西岸B. 西部通过海上交通与多国交往C. 位于北半球,大部分在北温带D. 南北跨纬度广,温度差异小2、假如从天津乘船到海南岛的海口市,依次经过的海洋是( )A.渤海、东海、南海、黄海B. 南海、渤海、东海、黄海C.黄海、南海、东海、渤海D.渤海、黄海、东海、南海3、属于我国内海的是( )A. 渤海琼州海峡B. 渤海黄海C. 黄海东海D. 东海、琼州海峡4、“当灿烂的太阳跳出东海的碧波,帕米尔高原依然是群星闪烁。

”该现象说明我国( )A 南北跨纬度多 B. 东西跨经度多 C. 南北热量差异大 D. 东西降水差异大5、下列与我国陆地相邻的国家是( )A.日木菲律宾印度尼西业B. 越南老挝缅甸C. 印度文莱缅甸D. 文莱哈萨克斯坦俄罗斯6、北回归线自东向西依次穿过我国的省级行政单位是( )A.台粤桂云B. 云桂粤闽C.云桂鲁台D. 川桂粤台7、读下面我国四省区轮廓图,下列连接正确的是( )A.①-粤B.②- 蜀C.③- 晋D.④-宁8、我国人口分布的界线大体上是( )A. 秦岭-淮河-线B. 黑河-腾冲-线C.大兴安岭-太行山-巫山-雪峰山-线D. 长江-线9、在一次迎国庆知识抢答赛上,主持人问:“下列关于我国人口和民族的叙述,正确的是……”,小凯迅速按响了抢答器,并报出了自己的答案,主持人宜布小凯回答正确,你认为小凯选择的答案是( )A. 日前我国人口总数已经降至世界第二位 B. 人口分布在平原、盆地地区少,山区多 C. 少数民族中壮族人口最多D. 我国人口政策是增加人口数量,提高人口素质10、“五十六个星座,五十六枝花,五十六族兄弟姐妹是一家……”这首歌曲唱出了各族人民的心声。

我各民族的分布特点是( )A. 集中分布B. 少数民族聚居区没有汉族分布C. 大散居,小聚居,交错杂居D. 分散分布11、谈图,婷婷想体验傣族的泼水节,她最好去( )乙丙A. 印省B. 乙省C. 丙省D. 丁省12、我国是一个多山的国家,山脉往往成为重要的地理界线,下列说法正确的是( )A. 甲是我国最大的平原东北平原B. 乙是我国海拔最高的盆地,有“聚宝盆”之称)C. 丙所在地区雪山连绵、冰川广布D. 丁所在地区地形崎岖,石灰岩广布13、读“地形刨面图”、若乙为大兴安岭、则甲、丙代表的地形区是①甲为内蒙古高原②甲为黄土高原③丙为东北平原④丙为华北平原,A.①④B.①③C.②③D.②④甲乙丙丁14、读四省区轮廓图、完成下题四幅图中的山脉不属于我国阶梯分界线的是()A.甲B. 乙C. 丙D. 丁15、右图中的山脉是太行山脉,其两侧的地形区①②分别是()A. 四川盆地、长江中下游平原B. 背藏高原、四川盆地C. 内蒙古高原、东北平原D. 黄土高原、华北平原16、下列高原与其特征搭配不正确的是( )A. 高原--青藏高原雪山连绵、冰川广布B. 内蒙古高原一地势坦荡、牧场广布C. 黄土高原--千沟万壑、支离破碎D.云贵高原-一黑土广布、河湖众多17、读右图,完成17--18题。

八年级上册生物第一次月考试卷【含答案】

八年级上册生物第一次月考试卷【含答案】

八年级上册生物第一次月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪种生物属于单细胞生物?A. 草履虫B. 蚂蚁C. 草莓D. 马铃薯2. 植物的光合作用主要发生在哪个部位?A. 根B. 茎C. 叶片D. 花3. 下列哪种动物属于哺乳动物?A. 青蛙B. 老虎C. 鲨鱼D. 鹦鹉4. 下列哪种生物是分解者?A. 植物B. 动物C. 细菌D. 真菌5. 下列哪种物质是植物生长的主要无机盐?A. 氮B. 磷C. 钾D. 钙二、判断题(每题1分,共5分)1. 动物细胞和植物细胞都有细胞壁。

()2. 种子植物和孢子植物都可以通过种子繁殖后代。

()3. 生物的分类单位从小到大依次是:界、门、纲、目、科、属、种。

()4. 鸟类是卵生动物,哺乳动物是胎生动物。

()5. 生物的遗传和变异现象是普遍存在的。

()三、填空题(每题1分,共5分)1. 生物的基本单位是______。

2. 植物的根、茎、叶被称为______。

3. 生物的变异包括______和______。

4. 生物的分类依据主要是生物的______和______。

5. 生态系统的组成包括生物部分和非生物部分,其中非生物部分包括______、______、______等。

四、简答题(每题2分,共10分)1. 简述生物多样性的内涵。

2. 简述食物链和食物网的概念。

3. 简述生物的遗传和变异现象。

4. 简述生物分类的意义。

5. 简述生态系统的组成和功能。

五、应用题(每题2分,共10分)1. 某种植物的花色有红色和白色两种,如果红色是显性性状,白色是隐性性状,请用遗传图解表示这种植物的花色遗传。

2. 生态系统中,草、兔、狐的食物链是什么?如果大量捕杀狐,会对生态系统产生什么影响?3. 植物的光合作用和呼吸作用有什么区别和联系?4. 如果在一片森林中发现了某种新生物,请简述如何对其进行分类。

5. 请简述如何保护生物多样性。

六、分析题(每题5分,共10分)1. 请分析人类活动对生态环境的影响,并提出保护生态环境的建议。

河北省沧州市献县2024-2025学年八年级上学期第一次月考语文试题(含答案)

河北省沧州市献县2024-2025学年八年级上学期第一次月考语文试题(含答案)

2024~2025学年第一学期八年级学情质量检测(一)语文(部编版)(考试时间:120分钟,满分:120分)总分核分人题号第一部分第三部分第二部分一二得分第一部分(1~3题13分)1.阅读下面文字,回答后面的问题。

(4分)2024年是中华人民共和国成立75周年,75年的历史,如同一幅画卷。

1949年的长江前线,英勇善战的人民解放军所向披靡,锐不可当;1982年,新德里亚运会上,中国姑娘吕伟(líng kōng)一跳,博得观众的赞叹;为了那惊天一着,中国科研人员殚精竭虑,多少人黑发变白发……他们的历史功绩必将(juān kè)在共和国的史册上。

(1)根据文段中的拼音写出相应的词语。

(2分)(líng kōng)________________(juān kè)_______________(2)给文段中加着重号的词语注音。

(2分)披靡_____________殚精竭虑_________________2.学校开展“阅读新闻,感受国潮”主题活动,请你参加。

(5分)(1)概括下面这则新闻的主要内容。

(2分)“繁花似锦”手镯、“凤栖梧桐”吊坠、“青山叠影”戒指……记者在连日的走访中发现,“国潮”类黄金珠宝首饰在年轻人中逐渐走俏,并占据北京各饰品商家的“C位”。

古典诗词、京剧、书法……中华文化成为首饰设计师们的创作源泉,他们纷纷从中华文化中汲取营养,寻找创意灵感。

与此同时,独具匠心的中华传统工艺,如珠化、金筐宝钿、錾刻、花丝等,跨越千年,在当下仍大有“用武之地”。

植根于传统,与当代美学有机融合,是让“国潮”黄金珠宝首饰流行起来的密码。

____________________________________________________________________________________________________________________________________________________________________________________(2)小冀同学认为,国潮舞蹈太过传统,难以受到中学生欢迎。

八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷(含答案) (1)

八年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm6.六边形共有几条对角线()A.6B.7C.8D.97.下列图形具有稳定性的是()A.B.C.D.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.15.一个多边形的内角和是1800°,这个多边形是边形.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =.三、画图题17.(7分)作BC边上的中线AD,作∠B的角平分线线BE.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.22.(7分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;23.(8分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD =10°,∠B=50°,求∠C的度数.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.2.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形【分析】根据全等三角形的性质得出AB=DE,AC=DF,BC=EF,即可判断A;根据全等三角形的性质得出△ABC和△DEF放在一起,能够完全重合,即可判断B、C;根据图形即可判断D.【解答】解:A、∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴AB+AC+BC=DE+DF+EF,故本选项错误;B、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,即两三角形的面积相等,故本选项错误;C、∵△ABC≌△DEF,即△ABC和△DEF放在一起,能够完全重合,故本选项错误;D、如图△ABC和DEF不是等边三角形,但两三角形全等,故本选项正确;故选:D.【点评】本题考查了全等三角形的定义和性质的应用,能运用全等三角形的有关性质进行说理是解此题的关键,题目较好,但是一道比较容易出错的题目.3.能将三角形面积平分的是三角形的()A.角平分线B.高C.中线D.外角平分线【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选:C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<7,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.6.六边形共有几条对角线()A.6B.7C.8D.9【分析】根据对角线公式计算即可得到结果.【解答】解:根据题意得:=9,则六边形共有9条对角线,故选:D.【点评】此题考查了多边形的对角线,n边形对角线公式为.7.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【解答】解:三角形具有稳定性.故选:A.【点评】此题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.8.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【分析】先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.【解答】解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选:B.【点评】此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.9.如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度【分析】根据多边形的外角和等于360°即可得到结论.【解答】解:∵∠1+∠2+∠3+∠4=360°,∠2+∠3+∠4=320°,∴∠1=40°.故选:B.【点评】本题考查了多边形的内角和外角,熟记多边形的外角和等于360°是解题的关键.10.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD 中,AB =AD ,∠B =80°,∴∠B =∠ADB =80°,∴∠ADC =180°﹣∠ADB =100°,∵AD =CD ,∴∠C ===40°.故选:B .【点评】本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.二、填空题(本大题共6小题,每小题4分,共24分)11.要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加 3 根木条才能固定.【分析】首先根据三角形的稳定性,把六边形活动支架ABCDEF 分成三角形,然后根据从同一个顶点出发可以作出的对角线的条数解答即可.【解答】解:如图,,要想使一个六边形活动支架ABCDEF 稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.【点评】此题主要考查了三角形的稳定性,要熟练掌握,解答此题的关键是熟记三角形具有稳定性.12.若等腰三角形的两边长分别为3cm 和8cm ,则它的周长是 19cm .【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm 是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm 是腰时,周长=8+8+3=19cm .故它的周长为19cm .故答案为:19cm .【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.三角形三边长分别为3,2a﹣1,4.则a的取值范围是1<a<4.【分析】根据三角形的三边关系为两边之和大于第三边,两边之差小于第三边,列出不等式即可求出a的取值范围.【解答】解:∵三角形的三边长分别为3,2a﹣1,4,∴4﹣3<2a﹣1<4+3,即1<a<4.故答案为:1<a<4.【点评】考查了三角形的三边关系,解题的关键是熟练掌握三角形三边关系的性质.14.如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【分析】根据正多边形的每一个外角都相等,多边形的边数=360°÷60°,计算即可求解.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.【点评】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.15.一个多边形的内角和是1800°,这个多边形是12边形.【分析】首先设这个多边形是n边形,然后根据题意得:(n﹣2)×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:(n﹣2)×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.16.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A =40°.【分析】先根据角平分线的定义得到∠OBC =∠ABC ,∠OCB =∠ACB ,再根据三角形内角和定理得∠BOC +∠OBC +∠OCB =180°,则∠BOC =180°﹣(∠ABC +∠ACB ),由于∠ABC +∠ACB =180°﹣∠A ,所以∠BOC =90°+∠A ,然后把∠BOC =110°代入计算可得到∠A 的度数.【解答】解:∵BO 、CO 分别平分∠ABC 、∠ACB ,∴∠OBC =∠ABC ,∠OCB =∠ACB ,而∠BOC +∠OBC +∠OCB =180°,∴∠BOC =180°﹣(∠OBC +∠OCB )=180°﹣(∠ABC +∠ACB ),∵∠A +∠ABC +∠ACB =180°,∴∠ABC +∠ACB =180°﹣∠A ,∴∠BOC =180°﹣(180°﹣∠A )=90°+∠A ,而∠BOC =110°,∴90°+∠A =110°∴∠A =40°.故答案为40°.【点评】本题考查了三角形内角和定理:三角形内角和是180°.三、画图题17.(7分)作BC 边上的中线AD ,作∠B 的角平分线线BE .【分析】根据尺规作图的要求作出中线AD ,角平分线BE 即可.【解答】解:如图,△ABC 的中线AD ,角平分线BE 即为所求.【点评】本题考查作图﹣复杂作图,三角形的中线,角平分线等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.四、解答题18.(7分)如果直角三角形的一个锐角是另一个锐角的4倍,求这个直角三角形中这两个锐角的度数.【分析】根据直角三角形的两个角互余构建方程即可解决问题.【解答】解:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18°.答:这个直角三角形中这两个锐角的度数分别为18°和72°.【点评】本题主要考查了直角三角形的性质,两锐角互余,解题的关键是学会利用参数构建方程解决问题.19.(7分)一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.【分析】多边形的外角和是360度,根据多边形的内角和比它的外角和的3倍少180°,即可得到多边形的内角和的度数.根据多边形的内角和定理即可求得多边形的边数.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=3×360°﹣180°,n﹣2=6﹣1,n=7.∴这个多边形的边数是7.【点评】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.20.(7分)如图,AC=AD,BC=BD,AB是∠CAD的平分线吗?请说明理由.【分析】根据全等三角形的判定定理SSS证得△ACB≌△ADB,则其对应角相等:∠CAB =∠DAB,即AB是∠CAD的平分线.【解答】解:AB是∠CAD的平分线.理由如下:在△ACB与△ADB中,,∴△ACB≌△ADB(SSS),∴∠CAB=∠DAB,即AB是∠CAD的平分线.【点评】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(7分)如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.【分析】由角平分线的定义,结合平行线的性质,易求∠EDC的度数.【解答】解:∵DE∥BC,∴∠ACB=∠AED=70°.∵CD平分∠ACB,∴∠BCD=∠ACB=35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.【点评】本题考查了平行线的性质和角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,题目比较好,难度适中.22.(7分)如图所示,已知AD 是△ABC 的边BC 上的中线.(1)作出△ABD 的边BD 上的高;(2)若△ABC 的面积为10,求△ADC 的面积;【分析】(1)利用尺规作AE ⊥BC ,垂足为E ,线段AE 即为所求;(2)利用三角形的中线把三角形分成两个面积相等的三角形即可;【解答】解:(1)如图线段AE 即为所求;(2)∵AD 是△ABC 的中线,∵S △ABD =S △ADC ,∵S △ABC =10,∴S △ADC =•S △ABC =5.【点评】本题考查作图﹣复杂作图,三角形的面积等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.23.(8分)如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =10°,∠B =50°,求∠C 的度数.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=10°,∴∠AED=80°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=60°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.(8分)如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.【分析】连接AD并延长AD至点E,根据三角形的外角性质求出∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,即可求出答案.【解答】解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.【点评】本题考查了三角形的外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.25.(8分)如图,小明从点A出发,前进10m后向右转20°,再前进10m后又向右转20°,这样一直下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形.(1)小明一共走了多少米?(2)这个多边形的内角和是多少度?【分析】(1)第一次回到出发点A时,所经过的路线正好构成一个外角是20度的正多边形,求得边数,即可求解;(2)根据多边形的内角和公式即可得到结论.【解答】解:(1)∵所经过的路线正好构成一个外角是20度的正多边形,∴360÷20=18,18×10=180(米);答:小明一共走了180米;(2)根据题意得:(18﹣2)×180°=2880°,答:这个多边形的内角和是2880度.【点评】本题考查了正多边形的外角的计算以及多边形的内角和,第一次回到出发点A 时,所经过的路线正好构成一个外角是20度的正多边形是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市巴南区2017-2018学年七校共同体八年级数学上期第
一次月考题
(满分150分,考试时间120分钟)
注意事项:
1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答。

2.作答前认真阅读答题卡(卷)上的注意事项。

3.考试结束,由监考人员将试题和答题卡(卷)一并收回。

一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了四
个答案,其中只有一个是正确的,请将正确答案填写在答题卡
...中对应的位置上.
1.下列哪组线段的长能够组成三角形()
A.1、2、3
B.2、3、4
C.4、5、9
D.4、4、8.
2.如图,王师傅用4根木条钉成一个四边形木架,要使这个木架不变形,他至少要再订上木
条的根数是()
A.0.
B.1.
C.2. D3.
3.将一副常规的三角尺如图放置,则图中∠AOB的度数是()
A.75°.
B. 95°.
C. 105°.
D.120°
4.下列说法错误的是()
A.一个三角形中至少有一个角不少于60°
B.三角形的中线不可能在三角形的外部.
C.三角形的中线把三角形的面积平均分成相等的两部分
D.直角三角形只有一条高. 5.如果一个多边形的每一个外角都是45°,那么这个多边形的内角和是()
A.540°.
B.720°.
C. 1080°.
D.1260°.
6.下列说法:
①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等
③面积相等的两个三角形全等④全等三角形的周长相等
其中正确的说法为()
A.①②③④
B. ①②③
C. ②③④
D. ①②④
7.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.以上都不对
8.已知在ΔABC中,AB=AC,周长为24,AC边上的中线BD把ΔABC分成周长差为6的两个三
角形,则
ΔABC各边的长分别变为______。

A.10、10、4
B.6、6、12
C.4、5、10
D.以上都不对
9.在ΔABC和ΔDEF中,已知∠C =∠D, ∠B=∠E,要判断这两个三角形全等,还需添加条件()
A. AB=ED.
B.AB=FD.
C.AC=F
D. D. ∠A =∠F.
10.如图,点P是AB上任一点,∠ABC=∠ABD,从下列各条件中补充一个条件,
不一定能推出ΔAPC≌ΔAPD.的是( )
A.BC=BD.
B. ∠ACB=∠ADB.
C.AC=A
D. D. ∠CAB=∠DAB
11.已知ΔABC是等边三角形,点D、E分别在AC、BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为( )
A.60°
B.45°
C.75°
D. 70°
12.如图ΔABC中,∠B =∠C,BD=CF,BE=CD, ∠EDF=α,则下列结论正确的是()
A.2α+∠A=90°
B. .2α+∠A=180°
C.α+∠A=90°
D.α+∠A=180
二、填空题(每小题3分,共24分)
13.如图,将一张直角三角形纸片剪去直角后,得到一个四边形,则∠1+∠2=___ ___。

14.ΔABC中,∠A=60°,∠ABC和∠ACB的平分线相交于点P,则∠BPC=____
15.在ΔABC中,∠C=90°,AD平分∠CAB,交BC与D,过点D作DE⊥AB于E,BC=8cm,BD=5cm,
则DE=______。

16.如图所示,已知AB=DC,要得到ΔABC≌ΔDCB,还需加一个条件是。

(一个即可)
17.如图,B、C、E共线AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=______。

18.已知在ΔABC中,AD=BD,AC=5,BD=3,H是高AD和BE的交点,则线段BH的长度为______。

三、完成下列各题(每小题7分,共14分)
19. 如图,在ΔABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数。

20.如图:已知AB=AD,BC=DC,求证∠B=∠D
四.解答及证明题(每小题10分共40分)
21.如图,已知AE⊥BC,AD平分∠BAE,∠ADB=110°.求∠B的度数。

22、如图,AC=DF,AD=BE,BC=EF.求证(1) △ABC≌△DEF ; (2) AC∥DF.
23、如图所示,点B、F、C、E在同一条直线上,AB∥DF,AC∥DE,AC=DE,FC与BE相等吗?请说明理由.
23题图
24.如图, 在ΔABC与ΔDCB 中, AC与BD 交于点E,且,∠A=∠D,AB=DC.
⑴.求证:ΔABE≌ΔDCE
⑵.当∠AEB=70°时,求∠EBC的度数。

五,(每题12分,共24分)
25. 在ΔABC中,∠ABC的平分线与∠ACB的外角∠ACE的平分线相交于点D。

⑴.若∠ABC=60°,∠ACB=40°,求∠A和∠D的度数。

⑵.由⑴小题的计算结果,猜想,∠A和∠D有什么数量关系,并加以证明。

26.如图(1)在ΔABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE
⊥MN于点E。

(1)求证:①ΔADC≌ΔCEB ②DE=AD+BE
(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE 有怎样的关系?并加以证明。

第26题图
八年级数学参考答案
一、选择题
1.B
2.B
3.C 4 .D 5. C 6 .D 7 C 8 .A 9. C 10 C 11A 12B
二、填空题
13.270° 14.120° 15. 3cm. 16. ∠ABC=∠DCB或AC=BD 17. 3cm. 18. 5cm
三、
19.解:设∠A =x,则∠C=∠ABC =2x,又x+2x+2x=180,得x=36, ∠C =72°∵BD⊥AC
∴∠DBC=18°
20,证明:连接AC,在ABC和ADC中.
∴ABC≌ADC ∴∠
21.∠B=50°
22.略。

23略
24. ⑴在ABE和DCE中.
∴ABE≌DCE (AAS)
⑵∠EBC=35°
25. ∠A=80°,∠D=40°
∠A=2∠D
证明:∵CD 平分∠ACE ∴∠ACE=2∠DCE又∠DCE=∠D+∠DBC∴2∠DCE=2∠D+2∠DBC ∵BD平分∠ABC∴∠ABC=2∠DBC即∠ACE=2∠D+∠ABC而∠ACE=∠A+∠ABC
∴2∠D=∠A
26. 证出ΔADC≌ΔCEB得
由ΔADC≌ΔCEB得AD=CE DC=BE ∴DC+CE=AD+BE即DE=AD+BE
(2)DE=AD-BE
易证ΔADC≌ΔCEB ∴AD=CE CD=BE 又DE=CE-CD∴DE=AD-BE。

相关文档
最新文档