高一数学下学期第一次月考试题1

合集下载

四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

武侯高中高2023级2023——2024下期第一次月考试题数学(答案在最后)学校:__________姓名:__________班级:__________考号:__________一、单选题1.如图,四边形ABCD 中,AB DC =,则必有()A.AD CB= B.DO OB= C.AC DB= D.OA OC= 【答案】B 【解析】【分析】根据AB DC =,得出四边形ABCD 是平行四边形,由此判断四个选项是否正确即可.【详解】四边形ABCD 中,AB DC =,则//AB DC 且AB DC =,所以四边形ABCD 是平行四边形;则有AD CB =-,故A 错误;由四边形ABCD 是平行四边形,可知O 是DB 中点,则DO OB =,B 正确;由图可知AC DB≠,C 错误;由四边形ABCD 是平行四边形,可知O 是AC 中点,OA OC =-,D 错误.故选:B .2.下列说法正确的是()A.若a b ∥ ,b c ∥,则a c∥ B.两个有共同起点,且长度相等的向量,它们的终点相同C.两个单位向量的长度相等D.若两个单位向量平行,则这两个单位向量相等【答案】C 【解析】【分析】A.由0b =判断;B.由平面向量的定义判断;C.由单位向量的定义判断; D.由共线向量判断.【详解】A.当0b = 时,满足a b ∥ ,b c ∥,而,a c 不一定平行,故错误;B.两个有共同起点,且长度相等的向量,方向不一定相同,所以它们的终点不一定相同,故错误;C.由单位向量的定义知,两个单位向量的长度相等,故正确;D.若两个单位向量平行,则方向相同或相反,但大小不一定相同,则这两个单位向量不一定相等,故错误;故选:C3.若a b ,是平面内的一组基底,则下列四组向量中能作为平面向量的基底的是()A.,a b b a --B.21,2a b a b++ C.23,64b a a b-- D.,a b a b+- 【答案】D 【解析】【分析】根据基底的知识对选项进行分析,从而确定正确答案.【详解】A 选项,()b a a b -=-- ,所以a b b a -- ,共线,不能作为基底.B 选项,1222a b a b ⎛⎫+=+ ⎪⎝⎭ ,所以12,2a b a b ++ 共线,不能作为基底.C 选项,()64223a b b a -=-- ,所以64,23a b b a --共线,不能作为基底.D 选项,易知a b a b +-,不共线,可以作为基底.故选:D4.将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,再向左平移3π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.12x π=B.6x π=-C.3x π=-D.12x π=-【答案】B 【解析】【分析】根据图像的伸缩和平移变换得到2cos(2)13y x π=++,再整体代入即可求得对称轴方程.【详解】将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,得到2cos 213y x π⎛⎫=-+ ⎪⎝⎭,再向左平移3π个单位,得到2cos[2()]12cos(2)1333y x x πππ=+-+=++,令23x k π+=π,Z k ∈,则26k x ππ=-,Z k ∈.显然,=0k 时,对称轴方程为6x π=-,其他选项不符合.故选:B5.设a ,b 是非零向量,“a a bb =”是“a b =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量相等、单位向量判断条件间的推出关系,结合充分、必要性定义即知答案.【详解】由a a b b =表示单位向量相等,则,a b 同向,但不能确定它们模是否相等,即不能推出a b =,由a b =表示,a b 同向且模相等,则a a b b = ,所以“a a bb =”是“a b =”的必要而不充分条件.故选:B6.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+=.则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .7.已知sin α=5,且α为锐角,tan β=-3,且β为钝角,则角α+β的值为()A.4π B.34π C.3π D.23π【答案】B 【解析】【分析】先求出tan α12=,再利用两角和的正切公式求出tan(α+β)=-1,判断出角α+β的范围,即可求出α+β的值.【详解】sin α,且α为锐角,则cos α5=,tan αsin 1cos 2αα==.所以tan(α+β)=tan tan 1tan tan αβαβ+-=13211(3)2--⨯-=-1.又α+β∈3(,22ππ,故α+β=34π.故选:B8.筒车亦称“水转筒车”,是一种以水流作动力,取水灌田的工具,唐陈廷章《水轮赋》:“水能利物,轮乃曲成.升降满农夫之用,低徊随匠氏之程.始崩腾以电散,俄宛转以风生.虽破浪于川湄,善行无迹;既斡流于波面,终夜有声.”如图,一个半径为4m 的筒车按逆时针方向每分钟转一圈,筒车的轴心O 距离水面的高度为2m .在筒车转动的一圈内,盛水筒P 距离水面的高度不低于4m 的时间为()A.9秒B.12秒C.15秒D.20秒【答案】D 【解析】【分析】画出示意图,结合题意和三角函数值可解出答案.【详解】假设,,A O B 所在直线垂直于水面,且4AB =米,如下示意图,由已知可得12,4OA OB OP OP ====,所以1111cos 602OB POB POB OP ∠==⇒∠=︒,处在劣弧 11PP 时高度不低于4米,转动的角速度为360660︒=︒/每秒,所以水筒P 距离水面的高度不低于4m 的时间为120206=秒,故选:D.二、多选题9.已知函数()cos f x x x =+,则下列判断正确的是()A.()f x 的图象关于直线π6x =对称 B.()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称C.()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增 D.当π2π,33x ⎛⎫∈-⎪⎝⎭时,()()1,1f x ∈-【答案】BC 【解析】【分析】利用辅助角公式化简函数()f x 的解析式,利用正弦型函数的对称性可判断AB 选项;利用正弦型函数的单调性可判断C 选项;利用正弦型函数的值域可判断D 选项.【详解】因为()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭,对于A选项,ππ2sin 63f ⎛⎫==⎪⎝⎭,故函数()f x 的图象不关于直线π6x =对称,A 错;对于B 选项,π2sin 006f ⎛⎫-== ⎪⎝⎭,故函数()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称,B 对;对于C 选项,当2π03x -≤≤时,πππ266x -≤+≤,则函数()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增,C 对;对于D 选项,当π2π33x -<<时,ππ5π666x -<+<,则1πsin 126x ⎛⎫-<+≤ ⎪⎝⎭,所以,()(]π2sin 1,26f x x ⎛⎫=+∈- ⎪⎝⎭,D 错.故选:BC.10.下图是函数()sin()(0π)f x A x ωϕϕ=+<<的部分图像,则()A.2πT =B.π3ϕ=C.π,06⎛⎫-⎪⎝⎭是()f x 的一个对称中心 D.()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦(Z k ∈)【答案】BCD 【解析】【分析】由图象可得πT =,由2πT ω=可求出ω,再将π12⎛⎝代入可求出ϕ可判断A ,B ;由三角函数的性质可判断C ,D .【详解】根据图像象得35ππ3ππ246124T T =-=⇒=⇒=ω,故A 错误;π12x =时,πππ22π2π1223k k ⨯+=+⇒=+ϕϕ,0πϕ<< ,π3ϕ∴=,故()π23f x x ⎛⎫=+ ⎪⎝⎭,故B 正确;因为πππ20663f ⎡⎤⎛⎫⎛⎫-=⋅-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,C 正确;令πππ2π22π232k x k -+≤+≤+,解得5ππππ1212k x k -+≤≤+,Z k ∈.故D 正确.故选:BCD .11.潮汐现象是地球上的海水受月球和太阳的万有引力作用而引起的周期性涨落现象.某观测站通过长时间观察,发现某港口的潮汐涨落规律为πcos 63y A x ω⎛⎫=++ ⎪⎝⎭(其中0A >,0ω>),其中y (单位:m )为港口水深,x (单位:h )为时间()024x ≤≤,该观测站观察到水位最高点和最低点的时间间隔最少为6h ,且中午12点的水深为8m ,为保证安全,当水深超过8m 时,应限制船只出入,则下列说法正确的是()A.π6ω=B.最高水位为12mC.该港口从上午8点开始首次限制船只出入D.一天内限制船只出入的时长为4h 【答案】AC 【解析】【分析】根据题意可求得6π=ω,可知A 正确;由12点时的水位为8m 代入计算可得4A =,即最高水位为10m ,B 选项错误;易知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,解不等式利用三角函数单调性可得从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,即可判断C 正确,D 错误.【详解】对于A ,依题意π62T ω==,所以6π=ω,故A 正确;对于B ,当12x =时,ππcos 126863y A ⎛⎫=⨯++=⎪⎝⎭,解得4A =,所以最高水位为10m ,故B 错误;对于CD ,由上可知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,令8y ≥,解得812x ≤≤或者2024x ≤≤,所以从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,故C 正确,D 错误.故选:AC.三、填空题12.设e为单位向量,2a =r ,当,a e 的夹角为π3时,a 在e 上的投影向量为______.【答案】e【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在e 上的投影向量为22π21cos 31a e e a e e e e ee e⨯⨯⋅⋅⋅=== .故答案为:e13.已知向量a 、b 满足5a = ,4b = ,a 与b 的夹角为120,若()()2ka b a b -⊥+ ,则k =________.【答案】45##0.8【解析】【分析】运用平面向量数量积公式计算即可.【详解】因为5a = ,4b = ,a 与b的夹角为120 ,所以1cos12054102a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭.因为()2ka b -⊥()a b +r r ,所以()()()()222222521610215120ka b a b kab k a b k k k -⋅+=-+-⋅=-⨯--=-=,解得45k =.故答案为:45.14.已知1tan 3x =,则1sin 2cos 2x x +=______【答案】2【解析】【分析】根据二倍角公式以及齐次式即可求解.【详解】2222222211121sin 2cos sin 2sin cos 1tan 2tan 332cos 2cos sin 1tan 113x x x x x x x x x x x ⎛⎫++⨯ ⎪+++++⎝⎭====--⎛⎫- ⎪⎝⎭.故答案为:2四、解答题15.已知1a b a == ,与b 的夹角为45︒.(1)求()a b a +⋅的值;(2)求2a b -的值【答案】(1)2(2【解析】【分析】(1)先求2,a a b ⋅ ,再根据运算法则展开计算即可;(2)先计算2b,再平方,进而开方即可.【小问1详解】因为22||1,||||cos 451122a a a b a b ==⋅=︒=⨯=所以2()112a b a a a b ++⋅=⋅=+=【小问2详解】因为22||2b b ==,所以2222|2|(2)444242a b a b a b a b -=-=+⋅=+--=所以|2|a b -=16.已知函数()222cos 1f x x x =+-.(1)求函数()f x 的最小正周期;(2)若3π,π4θ⎛⎫∈⎪⎝⎭且()85f θ=-,求cos 2θ的值.【答案】(1)π(2)410-【解析】【分析】(1)利用辅助角公式化简,求出最小正周期;(2)将θ代入可求出πsin 26θ⎛⎫+ ⎪⎝⎭,结合π26+θ的范围,求出πcos 26θ⎛⎫+ ⎪⎝⎭,因为ππ2266θθ=+-,由两角差的余弦公式求出结果.【小问1详解】()2π22cos 12cos 22sin 26f x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==【小问2详解】()π82sin 265f θθ⎛⎫=+=- ⎪⎝⎭,所以π4sin 265θ⎛⎫+=- ⎪⎝⎭,因为3π,π4θ⎛⎫∈⎪⎝⎭,1π25π3663π,θ⎛⎫∈ ⎪⎝⎭+,所以π3cos 265θ⎛⎫+== ⎪⎝⎭,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666θθθθ⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3414525210-⎛⎫=⨯+-⨯=⎪⎝⎭.17.如图,在ABC 中,6AB =,60ABC ∠=︒,D ,E 分别在边AB ,AC 上,且满足2AD DB = ,3CE EA =,F 为BC 中点.(1)若DE AB AC λμ=+,求实数λ,μ的值;(2)若8AF DE ⋅=-,求边BC 的长.【答案】(1)23λ=-,14μ=.(2)8【解析】【分析】(1)根据向量的线性运算以及平面向量的基本定理求得正确答案.(2)利用转化法化简8AF DE ⋅=-,从而求得BC 的长.【小问1详解】∵2AD DB = ,3CE EA= ,∴23AD AB = ,14AE AC = ∴1243DE AE AD AC AB =-=- ,∴23λ=-,14μ=.【小问2详解】12AF BF BA BC BA =-=- ,()1212154343412DE AC AB BC BA BA BC BA =-=-+=+ ,22115115241282412AF DE BC BA BC BA BC BC BA BA ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭设BC a = ,∵6AB = ,60ABC ∠=︒,221115668824212AF DE a a ⋅=-⨯⨯-⨯=- ,即2560a a --=,解得7a =-(舍)或8a =,∴BC 长为8.18.设(,)P x y 是角θ的终边上任意一点,其中0x ≠,0y ≠,并记r =cot x y θ=,sec r xθ=,csc r y θ=.(Ⅰ)求证222222sin cos tan cot sec +csc θθθθθθ+--+是一个定值,并求出这个定值;(Ⅱ)求函数()sin cos tan cot sec +csc f θθθθθθθ=++++的最小值.【答案】(Ⅰ)定值为3;(Ⅱ)min ()1f θ=-;【解析】【分析】(Ⅰ)由题可知,分别将6个三角函数分别代入,进行简单的化简,即可得到定值3;(Ⅱ)将()f x 中的未知量均用sin ,cos θθ来表示,得到1sin cos ()sin cos sin cos sin cos g θθθθθθθθθ+=+++,运用换元法设sin cos t θθ+=,化简成2()111g t t θ=-++-,再利用对勾函数的性质即可得到最值.【详解】解:(Ⅰ)222222222222222222sin cos tan cot sec +csc =y x y x r r r x y r y xθθθθθθ+--++--++2222222221113x y r y r x r x y+--⇒++=++=;(Ⅱ)由条件,1cot tan x y θθ==,1sec cos x θ=,1csc sin θθ=令()sin cos tan cot sec +csc g θθθθθθθ=++++sin cos 11sin cos +cos sin cos sin θθθθθθθθ=++++1sin cos sin cos sin cos sin cos θθθθθθθθ+=+++,令sin cos t θθ+=,则sin cos =2sin()4t πθθθ=++[2,2]∈-,1t ≠±,且21sin cos 2t θθ-=,从而2222()11t g y t t t θ==++--22(1)1t t t +=+-221111t t t t =+=-++--,令1u t =-,则21y u u =++,[21,21]u ∈---,且0u ≠,2u ≠-.所以,(,122][322,)y ∈-∞-⋃++∞.从而()221f y θ=≥-,即min ()221f θ=-.19.已知函数()2000ππ2sin sin 2sin 266f x x x x C ωωω⎛⎫⎛⎫=+++-+ ⎪ ⎪⎝⎭⎝⎭(R C ∈)有最大值为2,且相邻的两条对称轴的距离为π2(1)求函数()f x 的解析式,并求其对称轴方程;(2)将()f t 向右平移π6个单位,再将横坐标伸长为原来的24π倍,再将纵坐标扩大为原来的25倍,再将其向上平移60个单位,得到()g t ,则可以用函数()sin()H g t A t B ωϕ==++模型来模拟某摩天轮的座舱距离地面高度H 随时间t (单位:分钟)变化的情况.已知该摩天轮有24个座舱,游客在座舱转到离地面最近的位置进仓,若甲、乙已经坐在a ,b 两个座舱里,且a ,b 中间隔了3个座舱,如图所示,在运行一周的过程中,求两人距离地面高度差h 关于时间t 的函数解析式,并求最大值.【答案】(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,ππ32k x =+,Z k ∈(2)ππ()50sin 126f x t ⎛⎫=-⎪⎝⎭,50【解析】【分析】(1)由二倍角公式与两角和与差的正弦公式化简得()0π2sin 216f x x C ω⎛⎫=-++ ⎪⎝⎭,再结合最值及周期即可得解析式;(2)由正弦型函数的平移变换与伸缩变换得变换后的解析式为ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭,则ππ50sin 126h H H ⎛⎫=-==- ⎪⎝⎭甲乙,再求最值即可.【小问1详解】()00001cos 2π22sin 2cos 2cos 2126x f x x C x x C ωωωω-=⨯++=-++0π2sin 216x C ω⎛⎫=-++ ⎪⎝⎭,所以2121C C ++=⇒=-,因为相邻两条对称轴的距离为π2,所以半周期为ππ22T T =⇒=,故002ππ12=⇒=ωω,()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令ππππ2π6232k x k x -=+⇒=+,Z k ∈【小问2详解】()f t 向右平移π6得到π2sin 22y t ⎛⎫=- ⎪⎝⎭,将横坐标伸长为原来的24π倍,得到ππ2sin 122y t ⎛⎫=- ⎪⎝⎭,将纵坐标扩大为原来的25倍,得到ππ50sin 122y t ⎛⎫=- ⎪⎝⎭,再将其向上平移60个单位,得到ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭游客甲与游客乙中间隔了3个座舱,则相隔了2ππ4243⨯=,令ππ50sin 60122H t ⎛⎫=-+ ⎪⎝⎭甲,则π5π50sin 60126H t ⎛⎫=-+ ⎪⎝⎭乙,则πππ5π50sin sin 122126h H H t t ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭甲乙π1πcos 12212t t =-ππ50sin 126t ⎛⎫=- ⎪⎝⎭,π12ω=,24T =,024t ≤≤,故πππ11π61266t -≤-≤,当πππ1262t -=或3π82t ⇒=或20时,max 50h =。

高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。

高一下学期第一次月考数学试题(解析版

高一下学期第一次月考数学试题(解析版
在 中角 所对的边分别为 __________.
(1)求角 ;
(2)求 的取值范围.
【18题答案】
【答案】(1)条件选择见解析
(2)
【解析】
【分析】(1)若选①由正弦定理得 即可求出 ;若选②由正弦定理得 即可求出 .
(2)用正弦定理得表示出 得到 利用三角函数求出 的取值范围.
【小问1详解】
若选①则由正弦定理得
【解析】
【分析】由题可得 .作差法可判断A;用基本不等式可判断B;分别化简不等式左边和右边可判断C;假设法可判断D.
【详解】如图
易知 .
A: (当 时取等号) 故A正确;
B: (当 时取等号)故B正确;
C:
又 (当 时取等号) 故C正确;
D:假设 成立



当 且 时上式不成立故D错误.
故选:ABC.
同理由 三点共线则存在实数 使得
所以 解得 所以 所以A正确.
又由 且
可得 解得 则
可得 所以B正确;
又由
当且仅当 时等号成立所以C正确.
又由 可得 所以D不正确.
故选:ABC.
12.设 分别为 中ab两边上的高 的面积记为S.当 时下列不等式正确的是( )
A. 【20题答案】
【答案】(1)
(2)
【解析】
【分析】(1)由最大值和最小值求得 的值由 以及 可得 的值再由最高点可求得 的值即可得 的解析式由正弦函数的对称中心可得 对称中心;
(2)由图象的平移变换求得 的解析式由正弦函数的性质可得 的值域令 的取值为 的值域解不等式即可求解.
【小问1详解】
由题意可得: 可得 所以
A. B.
C. D.

高一数学 第一次月考试卷(含答案)

高一数学 第一次月考试卷(含答案)

高一数学 第一次月考试卷班级______姓名________ 命题教师——一、选择题(本题12小题,每题5分,共60分)1、函数1y x=+ D ) A. [)4,-+∞ B .()()4,00,-+∞ C .()4,-+∞ D. [)()4,00,-+∞2、若集合{}{}21,02,A x x B x x =-<<=<<则集合A B 等于(D )A 、{}11x x -<<B 、{}21x x -<<C 、{}22x x -<<D 、{}01x x <<3、若集合{}2228x A x Z +=∈<≤,{}220B x R x x =∈->,则()R A C B 所含的元素个数为( C )A 、0B 、1C 、2D 、34、函数1()f x x x=-的图像关于( C )。

A. y 轴对称 B .直线y x =-对称 C .坐标原点对称 D.直线y x =对称5、已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (D) A.2 B.1 C.0 D.-26、若)(x f 是偶函数,其定义域为),(+∞-∞,且在[)+∞,0上是减函数,则)23(-f 与)252(2++a a f 的大小关系是 ( C ) A 、)252()23(2++>-a a f f B 、)252()23(2++<-a a f f C 、)252()23(2++≥-a a f f D 、)252()23(2++≤-a a f f 7、若)(x f ,)(x g 都是奇函数,且2)()()(++=x bg x af x F 在),0(+∞上有最大值8,则)(x F 在)0,(-∞上有 ( D )A 、最小值8-B 、最大值8-C 、最小值6-D 、最小值4-8、设253()5a =,352()5b =,252()5c =,则,,a b c 的大小关系是 ( A ) A 、a c b >> B 、a b c >> C 、c a b >> D 、b c a >>9、函数1()(0,1)x f x a a a +=>≠的值域为[)1,+∞,则(4)f -与(1)f 的关系是( A )A 、(4)(1)f f ->B 、(4)(1)f f -=C 、(4)(1)f f -<D 、不能确定10、若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范( B )A. 3(,3)2 B. 3,32⎡⎤⎢⎥⎣⎦ C. (]0,3 D. 3,32⎡⎫⎪⎢⎣⎭11、已知[]1,1-∈x 时,02)(2>+-=a ax x x f 恒成立,则实数a 的取值范围是( A ) A.(0,2) B.),(∞+2 C. ),(∞+0 D.(0,4) 12、奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( D ) A 、2- B 、1- C 、0 D 、1二、填空题(本题共4小题,每题5分,共20分)13、设集合{}{}21,1,3,2,4,A B a a =-=++{}3A B =,则实数a 的值为_1____ 。

高一年级数学第一次月考试题

高一年级数学第一次月考试题

高一数学第一次月考试题第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的.(1)已知集合{(,)|2},{(,)|4}M x y x y n x y x y =+==-=;那么集合M N ⋂为(A) x = 3;y = –1 (B) {3;–1} (C) (3;–1) (D) {(3;–1)}(2)不等式23440x x -<-≤的解集为 (A)13{|}22x x x ≤-≥或 (B)13{|}22x x -<< (C){|01}x x x ≤≥或 (D)1301}22{|x x x <≤≤<-或 (3)若p 、q 是两个简单命题;且“p 或q ”的否定是真命题;则必有(A) p 真q 真 (B) p 假q 假 (C) p 真q 假 (D) p 假q 真(4)“1a =”是“函数22cos sin y ax ax =-的最小正周期为π”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既非充分又非必要条件(5)下列各项中能表示同一函数的是 (A)211x y x -=-与1y x =+ (B)lg y x =与21lg 2y x =(C)1y =与1y x =- (D)y x =与log (01)x y a a a a =>≠且(6)已知62()log f x x =;则(8)f = (A)43 (B)8 (C)18 (D)12 (7)若|1|12()x f x +⎛⎫ ⎪⎝⎭=区间(,2)-∞上(A)单调递增 (B)单调递减 (C)先增后减 (D)先减后增(8)设()f x 是(,)-∞+∞上的奇函数;(2)()f x f x +=-;当01x ≤≤时()f x x =;则(7.5)f 等于(9)已知二次函数()y f x =满足(3)(3)f x f x +=-;且有两个实根1x ;2x ;则12x x += (A)0 (B)3 (C)6 (D)不确定(10)函数0.5()log (1)(3)f x x x =+-的增区间是(A)(1,3)- (B)[)1,3 (C)(,1)-∞ (D)(1,)+∞(11)若函数22log (2)y x ax a =-+的值域是R ;则实数a 的取值范围是 (A)01a << (B)01x ≤≤ (C)0a <或1a > (D)0a ≤或1a ≥(12)已知函数1()3x f x -=;则它的反函数1()f x -的图象是012y x012y x 012y x012yx (A) (B) (C) (D)第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题;每小题4分;共16分.把答案填在题中横线上.(13)函数2()1(0)f x x x =+≤的反函数为 .(14)函数f (x) 对任何x ∈R + 恒有f (x 1·x 2) = f (x 1) + f (x 2);已知f (8) = 3;则f (2) =_____.(15)已知函数2()65f x x mx =-+在区间[)2,-+∞上是增函数;则m 的取值范围是 .(16)如果函数22log (2)y x ax a =+++的定义域为R ;则实数a 的范围是 .三.解答题:本大题共6小题;共74分.解答应写出文字说明;证明过程或演算步骤.(17)(本小题满分12分)求不等式25||60x x -+>。

高一数学第一次月考试题含解析

高一数学第一次月考试题含解析

一中2021-2021学年下学期第一次月考高一数学一、选择题:本大题一一共12个小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.在△ABC中,,那么等于〔〕A. B. C. D.【答案】C【解析】设A=k,B=2k,C=3k,由,得6k=180°,k=30°,∴A=30°,B=60° ,C=90°,∴a∶b∶c=sin A∶sin B∶sin C=1∶∶2.应选C.2.是不同的直线,是不重合的平面,假设,,那么A. B. C. D.【答案】A【解析】【分析】根据两平面公一共点必在两平面交线上进展选择.【详解】因为,,所以M为公一共点,而为交线,因此,选A.【点睛】此题考察公理以及符号语言,考察根本分析判断才能,属根底题.中,角的对边分别是,假设,,那么A. 30°B. 60°C. 120°D. 150°【答案】A【解析】试题分析:先利用正弦定理化简得,再由可得,然后利用余弦定理表示出,把表示出的关系式分别代入即可求出的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.由及正弦定理可得,应选A.考点:正弦、余弦定理4.如图,是程度放置的的直观图,那么的面积为A. 6B.C. D. 12【答案】D【解析】△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB=×6×4=12.应选D中,角的对边分别是,,那么的形状为A. 直角三角形B. 等腰三角形或者直角三角形C. 等腰直角三角形D. 正三角形【答案】A【解析】【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择.【详解】因为,所以,,因此,选A.【点睛】此题考察二倍角公式以及正弦定理,考察根本分析转化才能,属根底题.的半圆卷成一个圆锥,那么它的体积为A. B. C. D.【答案】B【解析】【分析】根据圆锥侧面展开图求高,再根据体积公式得结果.【详解】设圆锥底面半径为,那么因为圆锥母线长为,所以圆锥高为,因此体积为,选B.【点睛】此题考察圆锥侧面展开图以及圆锥体积,考察根本分析求解才能,属根底题.是互不一样的空间直线,是不重合的平面,以下命题正确的选项是〔〕A. 假设,那么B. 假设,那么C. 假设,那么D. 假设,那么【答案】D【解析】试题分析:选项A中,除平行n外,还有异面的位置关系,那么A不正确.选项B中,与β的位置关系有相交、平行、在β内三种,那么B不正确.选项C中,与m的位置关系还有相交和异面,故C不正确.选项D中,由∥β,设经过的平面与β相交,交线为c,那么∥c,又⊥α,故c⊥α,又c⊂β,所以⊥β,正确.应选D.考点:空间中直线与平面之间的位置关系.点评:此题考察空间直线位置关系问题及断定,及面面垂直、平行的断定与性质,要综合断定定理与性质定理解决问题.中,角所对的边分别为,,,,那么的面积为〔〕A. B. C. D.【答案】A【解析】试题分析:由可得,即,由,据余弦定理,可得.由,那么.故此题答案选A.考点:1.正弦定理;2.余弦定理;3.三角形面积公式..9.如图,正四棱锥的所有棱长都等于,过不相邻的两条棱作截面,那么截面的面积为A. B.C. D.【答案】C【解析】【分析】由题意首先求得截面三角形的边长,然后求解其面积即可.【详解】根据正棱锥的性质,底面ABCD是正方形,∴AC=a.在等腰三角形SAC中,SA=SC=a,又AC=a,∴∠ASC=90°,即S△SAC=a2.此题选择C选项.【点睛】此题主要考察空间几何体的构造特征及其应用,三角形面积公式等知识,意在考察学生的转化才能和计算求解才能.10.如图,在中,,为角的平分线,且,那么等于A. B.C. D. 0【答案】C【解析】【分析】根据正弦定理得等量关系,即可求解.【详解】,由正弦定理得因为为角的平分线,所以选C.【点睛】此题考察正弦定理以及二倍角正弦公式,考察根本分析求解才能,属根底题.11.如图,正方体的棱线长为1,线段上有两个动点E、F,且,那么以下结论中错误的选项是A.B.C. 三棱锥的体积为定值D.【答案】D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,那么AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。

2023-2024学年安徽省合肥市高一下学期第一次月考质量检测数学试题(含解析)

2023-2024学年安徽省合肥市高一下学期第一次月考质量检测数学试题(含解析)

2023-2024学年安徽省合肥市高一下册第一次月考数学试题一、单选题1.下列五个结论:①温度有零上和零下之分,所以温度是向量;②向量a b ≠ ,则a 与b的方向必不相同;③a b > ,则a b > ;④向量a 是单位向量,向量b 也是单位向量,则向量a 与向量b共线;⑤方向为北偏西50︒的向量与方向为东偏南40︒的向量一定是平行向量.其中正确的有()A .①⑤B .④C .⑤D .②④【正确答案】C【分析】根据向量的定义即可判断①;根据不相等向量的定义即可判断②;根据向量不能比较大小即可判断③;根据共线向量的定义即可判断④⑤.【详解】温度虽有大小却无方向,故不是向量,故①错;a b ≠ ,但a 与b的方向可以相同,故②错;向量的长度可以比较大小,但向量不能比较大小,故③错;单位向量只要求长度等于1个单位长度,但方向未确定,故④错;如图,作出这两个向量,则方向为北偏西50︒的向量与方向为东偏南40︒的向量方向相反,所以这两个向量一定是平行向量,故⑤正确.故选:C.2.若在△ABC 中,AB a =,BC b = ,且||||1a b == ,||a b += ABC 的形状是()A .正三角形B .锐角三角形C .斜三角形D .等腰直角三角形【正确答案】D【分析】利用向量加法的几何意义和模长之间的关系即可判定其为等腰直角三角形.【详解】由于||||1AB a == ,||||1BC b == ,||||AC a b =+则222||a b a b +=+ ,即222||||AB BC AC += ,所以△ABC 为等腰直角三角形.故选:D .3.已知a ,b 均为单位向量,(2)(2)2a b a b +⋅-=-,则a 与b 的夹角为()A .30°B .45°C .135°D .150°【正确答案】A【分析】根据(2)(2)2a b a b +⋅-=-,求得a b ⋅=r r ,再利用向量夹角公式即可求解.【详解】因为22(2)(2)232232a b a b a a b b a b +⋅-=-⋅-=-⋅-=-,所以2a b ⋅=r r .设a与b 的夹角为θ,则cos .2||||a b a b θ⋅==又因为0°≤θ≤180°,所以θ=30°.故选:A.4.如果用,i j 分别表示x 轴和y 轴正方向上的单位向量,且()()2,3,4,2A B ,则AB可以表示为()A .23i j+ B .42i j + C .2i j - D .2i j-+ 【正确答案】C【分析】先根据向量的坐标表示求出AB,再根据正交分解即可得解.【详解】因为()()2,3,4,2A B ,所以()2,1AB =-,所以2AB i j =- .故选:C.5.设平面向量()1,2a =r ,()2,b y =- ,若a b∥,则3a b + 等于()A B C D【正确答案】A【分析】由两向量平行得出b坐标中的y ,即可求出3a b + 的值.【详解】由题意,∵()1,2a =r ,()2,b y =- ,a b∥,∴()1220y ⨯⨯--=,解得4y =-,∴()2,4b =--∴()()()33,62,41,2a b +=+--=== 故选:A.6.已知向量(2,3)u x =+ ,(,1)v x = ,当()f x u v =⋅取得最小值时,x 的值为()A .0B .1-C .2D .1【正确答案】B【分析】直接利用向量数量积的坐标化运算得到2()(1)2f x x =++,利用二次函数性质得到其最值.【详解】22()(2)323(1)2f x u v x x x x x =⋅=++=++=++,故当=1x -时,f (x )取得最小值2.故选:B.7.在如图所示的半圆中,AB 为直径,点O 为圆心,C 为半圆上一点,且30OCB ∠=︒,2AB = ,则AC等于()A .1B CD .2【正确答案】A【分析】根据OC OB =,可得30ABC OCB ∠=∠=︒,进一步得出答案.【详解】如图,连接AC ,由OC OB =,得30ABC OCB ∠=∠=︒.因为C 为半圆上的点,所以90ACB ∠=︒,所以112AC AB ==.故选:A.8.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM = ,AC nAN =,则m n +=()A .1B .32C .2D .3【正确答案】C【分析】连接AO ,因为O 为BC 中点,可由平行四边形法则得1()2AO AB AC =+ ,再将其用AM,AN 表示.由M 、O 、N 三点共线可知,其表达式中的系数和122m n+=,即可求出m n +的值.【详解】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+ ,M 、O 、N 三点共线,122m n∴+=,2m n ∴+=.故选:C.本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.二、多选题9.在平面直角坐标系中,若点A (2,3),B (-3,4),如图所示,x 轴、y 轴同方向上的两个单位向量分别为i 和j,则下列说法正确的是()A .23OA i j=+ B .34O i j B =+ C .5AB i j =-+ D .5BA i j=+ 【正确答案】AC【分析】根据图象,由平面向量的坐标运算求解.【详解】解:由图知,23OA i j =+ ,34OB i j =-+,故A 正确,B 不正确;5AB OB OA i j =-=-+ ,5A A i j B B =-=-,故C 正确,D 不正确.故选:AC10.在ABC 中,若3330b c B ===︒,,,则a 的值可以为()A 3B .23C .33D .43【正确答案】AB【分析】根据余弦定理,直接计算求值.【详解】根据2222cos b a c ac B =+-,得2339232a a =+-⨯⨯,即23360a a -+=,解得:3a =23a =故选:AB11.如图,在海岸上有两个观测点C ,D ,C 在D 的正西方向,距离为2km ,在某天10:00观察到某航船在A 处,此时测得∠ADC=30°,5分钟后该船行驶至B 处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,则()A .当天10:00时,该船位于观测点C 的北偏西15°方向B .当天10:00时,该船距离观测点2C .当船行驶至B 处时,该船距观测点2D .该船在由A 行驶至B 的这5min 6km【正确答案】ABD【分析】利用方位角的概念判断A ,利用正弦定理、余弦定理求解后判断BCD .【详解】A 选项中,∠ACD=∠ACB+∠BCD=60°+45°=105°,因为C 在D 的正西方向,所以A 在C 的北偏西15°方向,故A 正确.B 选项中,在△ACD 中,∠ACD=105°,∠ADC=30°,则∠CAD=45°.由正弦定理,得AC=sin sin CD ADCCAD∠∠=,故B 正确.C 选项中,在△BCD 中,∠BCD=45°,∠CDB=∠ADC+∠ADB=30°+60°=90°,即∠CBD=45°,则BD=CD=2,于是BC=C 不正确.D 选项中,在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB=2+8-212=6,即,故D 正确.故选:ABD .12.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a c ≠,tan B =ABC 的面积为则2b a c-可能取到的值为()A .B .C .D .【正确答案】AC由tan B =sin 3B =,再利用ABC 的面积为6ac =,再利用余弦定理可得22()8b a c =-+,然后代入2||b ac -中利用基本不等式可求得其最小值.【详解】解:tan B = 1cos 3B ∴=,sin 3B =,又1sin 2==S ac B 6ac ∴=,由余弦定理可得2222222cos 4()8=+-=+-=-+b a c ac B a c a c ,22()88||||||||-+∴==-+≥---b a c a c a c a c a c ,当且仅8||||-=-a c a c 等号成立,故2b a c-的最小值为AC 选项.故选:AC.关键点睛:本题考查余弦定理的应用,考查基本不等式的应用,解题的关键是根据面积得出6ac =,再利用余弦定理得出22()8b a c =-+,结合基本不等式求解.三、填空题13.已知点()1,5A --和向量()2,3a =r,若3AB a =,则点B 的坐标为________.【正确答案】()5,4【分析】根据向量线性运算的坐标表示,由OA AB OB =+求向量OB 的坐标,由此可得点B 的坐标.【详解】设O 为坐标原点,因为()1,5OA =--,()36,9AB a == ,故()5,4O A B OA B =+=,故点B 的坐标为()5,4.故答案为.()5,414.若向量()()(),3,1,4,2,1a k b c === ,已知23a b - 与c的夹角为钝角,则k 的取值范围是________.【正确答案】99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ 【分析】根据23a b - 与c 的夹角为钝角,由()230a b c -⋅< ,且23a b - 与c 的不共线求解.【详解】解:由()(),3,1,4a k b == ,得()2323,6a b k -=--.又23a b - 与c的夹角为钝角,∴()22360k --<,得3k <,若()23//a b c - ,则2312k -=-,即92k =-.当92k =-时,23a b - 与c 共线且反向,不合题意.综上,k 的取值范围为99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ ,故99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ .15.如图,设P 为ABC 内一点,且202PA PB PC ++=,则:ABP ABC S S =△△________.【正确答案】15##0.2【分析】设AB 的中点是D ,连接PD ,根据平面向量线性运算法则,得到14P C D P =-,即可得到面积比.【详解】设AB 的中点是D ,连接PD ,由202PA PB PC ++= ,可得12PA PB PC +=-,因为122PA PB PD PC +==- ,所以14P C D P =- ,所以P 为CD 的五等分点(靠近D 点),即15P D D C =,所以ABP 的面积为ABC 的面积的15.故答案为.1516.在ABC 中,3a =60A = ,求32b c +的最大值_________.【正确答案】219由正弦定理得2sin b B =,2sin c C =.代入,进行三角恒等变换可得326sin 4sin b c B C +=+219)B ϕ=+,由此可求得最大值.【详解】解:由正弦定理32sin sin sin 32ab cA B C ===,得2sin b B =,2sin c C =.326sin 4sin b c B C+=+()316sin 4sin 1206sin 4sin 22B B B B B ⎫=+︒-=++⎪⎪⎝⎭6sin 32sin B B B=++8sin)B B Bϕ=+=+)Bϕ=+,其中tan4ϕ=,所以max(32)b c+=故答案为.本题考查运用正弦定理解三角形,边角互化求关于边的最值,属于较难题.四、解答题17.已知向量12a e e=-,1243b e e=+,其中()()121,0,0,1e e==.(1)试计算a b⋅及a b+的值;(2)求向量a 与b 夹角的余弦值.【正确答案】(1)1a b⋅=,a b+(2)10【分析】(1)利用平面向量的数量积运算求解;(2)利用平面向量的夹角公式求解.【详解】(1)解:()()()1,00,11,1a=-=-,()()()41,030,14,3b=+=,∴()41311a b⋅=⨯+⨯-=,a b+(2)设a b,的夹角为θ,由cosa b a bθ⋅=⋅⋅,cos a ba bθ⋅=⋅.18.有一艘在静水中速度大小为10km/h的船,现船沿与河岸成60︒角的方向向河的上游行驶.由于受水流的影响,结果沿垂直于河岸的方向驶达对岸.设河的两岸平行,河水流速均匀.(1)设船相对于河岸和静水的速度分别为,u v,河水的流速为w,求,,u v w之间的关系式;(2)求这条河河水的流速.【正确答案】(1)u w v=+(2)河水的流速为5km/h,方向顺着河岸向下【分析】(1)根据题意可得v与u的夹角为30︒,则,,u v w三条有向线段构成一个直角三角形,其中,,O O O v u A BC w B C ====,再根据向量的加法法则即可得解;(2)结合图象,求出BC uu u r即可.【详解】(1)如图,u 是垂直到达河对岸方向的速度,v是与河岸成60︒角的静水中的船速,则v 与u的夹角为30︒,由题意知,,,u v w三条有向线段构成一个直角三角形,其中,,O O O v u A BC w B C ==== ,由向量加法的三角形法则知,OC OA OB =+,即u w v =+ ;(2)因为10km /h OB v == ,而1sin 30105km /h 2BC OB =︒=⨯= ,所以这条河河水的流速为5km /h ,方向顺着河岸向下.19.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A cos B .若b =3,sin C =2sin A ,求a ,c 的值.【正确答案】ac =【分析】由b sin Acos B 边化角求得B ,由sin C =2sin A 得c =2a ,再结合余弦定理即可求解.【详解】因为b sin Acos B .所以由正弦定理,得sin sin cos .B A A B =sin 0,sin cos A B B ≠∴ ,即tan B =π0π,=3B B <<∴ ∵sinC =2sin A ,∴由正弦定理,得c =2a ,由余弦定理得b 2=a 2+c 2-2ac cos B ,即9=a 2+4a 2-2a ·2a cosπ3,解得a c =2a =20.如图,在ABC ∆中,点D 在BC 边上,7,,cos 4210CAD AC ADB π∠==∠=-.(1)求sin C ∠的值;(2)若5BD =,求ABD ∆的面积.【正确答案】(1)45;(2)7.【详解】试题分析:(1)先由2cos 10ADB ∠=得出72sin 10ADB ∠=sin sin 4C ADB π⎛⎫∠=∠- ⎪⎝⎭展开,代入求值即可;(2)由正弦定理sin sin AD AC C ADC =∠∠得到AD 的值,再利用三角形面积公式即可.试题解析:(1)因为2cos 10ADB ∠=,所以2sin 10ADB ∠=.又因为4CAD π∠=,所以4C ADB π∠=∠-.所以722224sin sin sin cos cos sin 4441021025C ADB ADB ADB πππ⎛⎫∠=∠-=∠⋅-∠⋅=⨯+⨯= ⎪⎝⎭.(2)在ACD ∆中,由sin sin AD AC C ADC=∠∠,得74sin 2522sin 7102AC C AD ADC ⨯⋅∠==∠所以1172sin 22572210ABD S AD BD ADB ∆=⋅⋅∠=⨯=.1、两角差的正弦余弦公式;2、正弦定理及三角形面积公式.21.设两个向量,a b 满足()132,0,22a b ⎛== ⎝⎭,(1)求a b + 方向的单位向量;(2)若向量27ta b + 与向量a tb + 的夹角为钝角,求实数t 的取值范围.【正确答案】(1)57211414⎛⎫ ⎪ ⎪⎝⎭(2)17,222⎛⎫⎛⎫-⋃-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)根据()12,0,,22a b ⎛== ⎝⎭,求得a b + 的坐标和模后求解;(2)根据向量27ta b + 与向量a tb + 的夹角为钝角,由()()270ta b a tb ++< ,且向量27ta b + 不与向量a tb + 反向共线求解.【详解】(1)由已知()152,0,,2222a b ⎛⎛+=+= ⎪ ⎪⎝⎭⎝⎭,所以a b +=所以14a b +=⎪⎭,即a b +方向的单位向量为1414⎛⎫ ⎪ ⎪⎝⎭;(2)由已知1a b ⋅= ,2,1a b == ,所以()()()22222722772157ta b a tb ta t a b tb t t +⋅+=++⋅+=++ ,因为向量27ta b + 与向量a tb + 的夹角为钝角,所以()()270ta b a tb ++< ,且向量27ta b + 不与向量a tb + 反向共线,设()()270ta b k a tb k +=+< ,则27t k kt =⎧⎨=⎩,解得2t =-,从而2215702t t t ⎧++<⎪⎨≠-⎪⎩,解得17,,222t ⎛⎛⎫∈--⋃-- ⎪ ⎪⎝⎭⎝⎭.22.在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【正确答案】(1)4;(2)存在,且2a =.【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果;(2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则sin 8C ==,因此,11sin 4522ABC S ab C ==⨯⨯△(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.。

高一数学下学期第一次月考试卷卷一 试题

高一数学下学期第一次月考试卷卷一 试题

智才艺州攀枝花市创界学校瑶厦08-09高一下学期第一次月考〔卷一〕〔数学〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个是符合题目要求的〕1.将-300o化为弧度为〔〕A.-43π;B.-53π;C.-76π;D.-74π;2.函数)421sin(2π+=xy的周期,振幅,初相分别是〔〕A.4,2,4ππB.4,2,4ππ--C.4,2,2ππD.4,2,4ππ3.假设点)cos2,cos(sinθθθP位于第三象限,那么角θ所在象限是〔〕A.第一象限B.第二象限C.第三象限D.第四象限4.假设1弧度的圆心角,所对的弦长等于2,那么这圆心角所对的弧长等于〔〕A.1sin2B.6πC.11sin2D..12sin25.假设角α的终边落在直线y=2x上,那么sinα的值是〔〕A.B.C.15±D.12±6.函数sin()y A x Bωϕ=++的一局部图象如右图所示,假设0,0,||2Aπωϕ>><,那么〔〕A.4=A B.1ω=C.6πϕ=D.4=B7.在ABC∆中,①sin()sinA B C++;②cos()cosB C A++;③2tan2tanCBA+;④cos()sinB C A++,其中恒为定值的是〔〕A.①②B.③④C.②④D.②③8.点O是平行四边形ABCD对角线的交点,那么下面结论正确的选项是()A.AB CB AC+=B.AB AD AC+=C.AD CD BD+≠D.0AO CO OB OD+++=9.函数)sin(φϖ+=xAy在同一周期内,当3π=x时有最大值2,当x=0时有最小值-2,那么函数的解析式为〔〕A.xy23sin2=B.)23sin(2π+=xyC.)23sin(2π-=xyD.xy3sin21=10.假设α角的终边落在第三或者第四象限,那么2α的终边落在〔〕A .第二或者第四象限B .第一或者第三象限C .第一或者第四象限D .第三或者第四象限11.定义新运算“a ※b 〞为a ※b=,,a a b b a b ≤⎧⎨>⎩,例如1※2=1,3※2=2,那么函数 ()sin f x x =※cos x 的值域是()A.[-B.C .[1,1]-D.[ 1021年8月,在召开的国际数学家大会会标如下列图,它是由4个一样的直角三角形与中间的小正方形拼成的一大正方形,假设直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于〔〕A .1B.2524-C .257 D.725-二、填空题〔本大题一一共4小题,每一小题4分,一共16分,请把答案写在题中横线上〕13.函数sin 1y a x =+的最大值是3,那么它的最小值______________________14.向量,8b =,那么a b+的最大值是,a b-的最小值是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宁夏石嘴山市2016-2017学年高一数学下学期第一次月考试题第I 卷(选择题)一、选择题(每题5分,共60分)1.用秦九韶算法计算多项式()234561235879653f x x x x x x x =+-++++在4x =-时的值时,3V 的值为 ( )A. -845B. 220C. -57D. 34 2.执行如图所示的程序框图,则输出s 的值为( )第2题 第3题 (A )34 (B )56 (C )1112 (D )25243.执行图所示的程序框图,若输入2x =,则输出y 的值为( ) A.2 B.5 C.11 D.23 4.下列各组数据中最小的数是( )A 、()985B 、()6210C 、()41000D 、()2111111 5.如图,给出的是计算29151311+⋯+++的值的一个程序框图,则图中执行框内①处和判断框中的②处应填的语句是( )A. n=n+2, i>15?B. n=n+1, i>15?C. n=n+2, i>14?D. n=n+1, i>14 ? 6.由一组样本数据1122(,),(,),,(,)n n x y x y x y ,得到回归直线方程ˆybx a =+,那么下面说法不正确的是( )A .直线ˆybx a =+必经过(,)x y ; B .直线ˆybx a =+至少经过1122(,),(,),,(,)n n x y x y x y 中的一个点;C .直线ˆybx a =+的斜率为22i iix y nx y x nx-⋅-∑∑; D .直线ˆybx a =+的纵截距为.y bx - 7.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:x3 4 5 6 y 2.5t44.5根据上表提供的数据,若求出y 关于x 的线性回归方程为ˆ0.70.35y x =+,那么表中t 的值为( )A .3B .3.15C .3.5D .4.5 8.下列叙述错误的是( ).A .若事件A 发生的概率为()P A ,则()01P A ≤≤B .互斥事件不一定是对立事件,但是对立事件一定是互斥事件C .5张奖券中有一张有奖,甲先抽,乙后抽,则乙与甲中奖的可能性相同D .某事件发生的概率是随着试验次数的变化而变化的9.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13 B .12 C.23 D .3410.一个袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和小于15的概率为( ) (A)(B)(C)(D)11.如下图,矩形ABCD 中,点E 为边CD 上任意一点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )(A )14 (B )13(C )12 (D )2312.假设小明订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到,小明离家的时间在早上7:00—8:00之间,则他在离开家之前能拿到报纸的概率() A.13 B.18 C.23 D. 78第II 卷(非选择题)二、填空题(每题5分,共20分)13.用辗转相除法求240和288的最大公约数时,需要做____次除法;利用更相减损术求36和48的最大公约数时,需要进行______次减法。

14.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋牛奶进行检验,利用随机数表抽样时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列开始向右读,请你写出抽取检测的第5袋牛奶的编号_________.(下面摘取了随机数表第7行至第9行)8442 1753 3157 2455 0688 7704 7447 6721 7633 5025 8392 1206 76 6301 6378 5916 9556 6719 9810 5071 7512 8673 5807 4439 5238 79 3321 1234 2978 6456 0782 5242 0744 3815 5100 1342 9966 0279 5415.图2-1是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到12次的考试成绩依次记为A1,A2,…,A12.图2-2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是 .第15题16.连续掷两次骰子,以先后得到的点数n m ,作为点),(n m P 的坐标,那么点P 落在圆1722=+y x 外部的概率为三、解答题(共70分)17(本小题满分10分)某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,,第五组[]17,18,下图是按上述分组方法得到的频率分布直方图.(1)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数; (2)请估计学校1800名学生中,成绩属于第四组的人数;(3)请根据频率分布直方图,求样本数据的众数、中位数、平均数和方差.18.(本小题满分12分)为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表. 组号分组回答正确 的人数回答正确的人数占本组的频率第1组 [15,25) a 0.5第2组 [25,35) 18 x第3组 [35,45) b 0.9 第4组 [45,55) 9 0.36第5组 [55,65] 3y(1)分别求出y x b a ,,,的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.19.(本小题满分12分)某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:i x (月) 1 2 3 4 5iy (千克) 0.5 0.9 1.7 2.1 2.8(1)在给出的坐标系中,画出关于x 、y 两个相关变量的散点图.0.0100.030 0.025 0.020 0.015组距频率(2)请根据上表提供的数据,用最小二乘法求出变量y 关于变量x 的线性回归直线方程ˆˆya bx =+. (3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).(参考公式:1221()ni ii nii x y b nx yxn x ==--=∑∑,ˆay bx =-)20(本小题满分12分)某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的损坏,可见部分如下:试着根据表中的信息解答下列问题:(Ⅰ)求全班的学生人数及分数在[70,80)之间的频数;(Ⅱ)为快速了解学生的答题情况,老师按分层抽样的方法从位于[70,80)和[80,90)分数段的试卷中抽取7份进行分析,再从中任选2人进行交流,求交流的学生中,成绩位于[70,80)分数的人恰有一人被抽到的概率.21(本小题满分12分)做投掷2颗骰子试验,用(x ,y )表示点P 的坐标,其中x 表示第1颗 骰子出现的点数,y 表示第2颗骰子出现的点数. (I )求点P 在直线y = x 上的概率;(II)求点P满足x+y 10的概率.22(本小题满分12分)某班甲、乙两名同学参加100米达标训练,在相同的条件下两人10次训练的成绩(单位:秒)如下:12345678910甲11.612.213.213.914.011.513.114.511.714.3乙12.313.314.311.712.012.813.213.814.112. 5(1)请画出茎中图。

如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(需计算);(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.(3)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8的概率。

2016-2017-2市三中高一3月份考卷参考答案及评分标准一.选择题(每小题5分,共12分). 1 2 3 4 5 6 7 8 9 10 11 12 CDDDABADADCD二、填空题(每小题5分,共12分) 13. 2,3 14. 175 15. 9 16.13/18 三、解答题17. 解:(1)样本在这次百米测试中成绩优秀的人数0.22×50=11(人) …(1分) (2)学校1800名学生中,成绩属于第四组的人数0.32×1800=576(人) …(2分) (3)由图可知众数落在第三组[15,16),是15+162=15.5 …(3分)因为数据落在第一、二组的频率=1×0.06+1×0.16=0.22<0.5 …(4分) 数据落在第一、二、三组的频率=1×0.06+1×0.16+1×0.38=0.6>0.5 …(5分) 所以中位数一定落在第三组[15,16)中. …(6分)假设中位数是x ,所以1×0.06+1×0.16+(x-15)×0.38=0.5 …(7分) 解得中位数x =29919≈15.7368≈15.74 …(8分)平均数13.50.0614.50.1615.50.3816.50.3217.50.0815.7⨯+⨯+⨯+⨯+⨯= …(9分)22222(13.515.7)0.06(14.515.7)0.16(15.515.7)0.38(16.515.7)0.32(17.515.7)0.081-⨯+-⨯+-⨯+-⨯+-⨯=…(10) 18. 解:(1)由频率表中第4组数据可知,第4组总人数为2536.09=, …(1分) 再结合频率分布直方图可知=n 10010025.025=⨯,∴ 1000.01100.55a =⨯⨯⨯=279.01003.0100=⨯⨯⨯=b ,2.0153,9.02018====y x…(4) (2)因为第2,3,4组回答正确的人数共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:265418=⨯人;第3组:365427=⨯人; 第4组:16549=⨯人 …(8分) (3)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1.则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2, B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)共15个基本事件,其中恰好没有第3组人共3个基本事件, …(10分) ∴所抽取的人中恰好没有第3组人的概率是:51153==P . …(12分) 19.解: (1)散点图如图所示…(4分)(2)由题设 3x =, 1.6y =, …(5分)2()45n x =,24nx y =,5129.8i i i x y ==∑,52155i i x ==∑ …(6分)故51522129.8240.585545()i ii ii x y nx yxn x b ==--===--∑∑ …(7分)1.60.5830.14ˆay bx =-⨯=-=- …(8分) 故回归直线方程为ˆˆ0.580.14yx b a x =+=- …(9分) (3)当12x =时,ˆ0.58120.14 6.82y=⨯-= …(11分)∴饲养满12个月时,这种鱼的平均体重约为6.82千克.…(12分)20解:(Ⅰ)由茎叶图可知,分数在[50,60)上的频数为4人,频率为0.008×10=0.08,参赛人数为=50人,…(2分)分数在[70,80)上的频数等于50﹣(4+14+8+4)=20人.…(4分)(Ⅱ)按分层抽样的原理,三个分数段抽样数之比等于相应频率之比.又[70,80),[80,90)分数段频率之比等于5:2,且按分层抽样的方法从位于[70,80)和[80,90)分数段的试卷中抽取7份,由此可抽出样本中分数在[70,80)的有5人,编为a,b,c,d,e,分数在[80,90)的有2人,编为1,2。

相关文档
最新文档