第24章解直角三角形教案

合集下载

华东师大版九年级数学上册《24章 解直角三角形 24.4 解直角三角形 解直角三角形》教学案例_21

华东师大版九年级数学上册《24章 解直角三角形  24.4 解直角三角形  解直角三角形》教学案例_21

24.4解直角三角形(第一课时)一、教学目标知识与技能:1、理解解直角三角形的意义,能运用直角三角形的三种关系式解直角三角形。

2、能从从具体问题中化归出直角三角形,并解直角三角形。

过程与方法:让学生在探究并解决解直角三角形的过程中,体验实际问题化归为数学问题的过程,并初步形成数学化归、建模思想。

情感、态度与价值观:通过实际问题,让学生体验运用数学知识解决实际问题的乐趣,体验数学源于生活又用于生活的美好感受。

二、教学重难点重点:运用直角三角形的边角关系解直角三角形中的未知元素。

难点:1、将实际问题化归成解直角三角形的问题;2、解决问题时边角关系的选择。

三、教学过程: (一)复习1.直角三角形有几条边?几个角?点出:直角三角形的角和边称之谓“元素”。

2.直角三角形的5个不确定元素之间满足哪些关系式?(二)探究1.如图,在直角三角形ABC 中,∠C=90°,(1)如果∠A=30°,则∠B= 度。

(提问:能求出边的长度吗?)(2)如果a =1,b = 1,则 c = 。

(提问:能求出角的度数吗?)(3)如果∠A=30°,a =1,你能求出三角形哪些角,那些边?2.解直角三角形的定义:已知 求 未知解直角三角形两种类型:类型一、已知两边 类型二、已知一边一角练习:(1)如图,在Rt △ABC 中,∠C=900, AC= ,AB=4,则:BC= , ∠A= 度,∠B= 度。

(2)如图,在Rt △ABC 中,∠C=900, ∠A=450,AB=8,则:∠B= 度,AC= , BC= 。

(三)应用例1、如图,一棵大树在一次强烈的地震中于离地面3米折断倒下,树顶在离树根4米处,大树在折断之前高多少? (教师示例)例2、一艘船向东航行,上午8时到达B 处,看到有一灯塔在它的北偏东400,距离70海里的A 处;上午10时到达C 处,看到灯塔在它的正北方向,求这艘轮船的速度。

(参考数据sin50°≈0.77 ,cos50°≈0.64,tan50°≈1.19,精确到1海里/时)(教师点拨、学生练习)思考、小明(点B )在平地上放风筝(点A ),小明发现风筝在他上方的450方向,风筝线AC=米;小明的妈妈(点C )与他同样高,妈妈发现风筝在她上方的300方向.你知道小明和妈妈相距多远吗?(结果保留根号)(教师点拨、学生练习)(四)小结让学生自己小结这节课的收获,教师补充、纠正(课件展示)。

华东师大版九年级数学上册《24章 解直角三角形 24.4 解直角三角形 解直角三角形》公开课教案_19

华东师大版九年级数学上册《24章 解直角三角形  24.4 解直角三角形  解直角三角形》公开课教案_19

24.4.1 解直角三角形(1)第一课时学习目标设计依据一课程标准的相关要求:理解解直角三角形的含义,知道解直角三角形的常见类型,会利用直角三角形的边角关系解直角三角形二教材分析:本节课是在掌握了直角三角形的有关性质以及边角之间的各种关系的基础上解决实际问题。

三中招考点:1 会利用直角三角形的边角关系解直角三角形;2 会利用直角三角形的边角关系解决实际问题。

四学情分析:本节课是对于解直角三角形概念的理解,内容比较简单,绝大多数学生应该能够理解和接受,但对于数值的计算容易出错。

学习目标:1 体会解直角三角形的含义。

2 知道解直角三角形的常见类型,会利用直角三角形的边角关系解直角三角形。

3 重、难点:重点:知道解直角三角形的常见类型,会利用直角三角形的边角关系解直角三角形。

难点:会利用直角三角形的边角关系解直角三角形。

评价任务1 理解解直角三角形的含义;2 会利用直角三角形的边角关系解直角三角形。

教学过程:学习目标一理解解直角三角形的含义自学指导一内容:课本p111-例2以上时间:3分钟要求:认真阅读课本,判断什么是解直角三角形?完成自学检测一。

自学检测一1.结合课本p111-例2以上页内容,思考以下问题并和组内同学交流:(1)三角形有几个元素?(2)解直角三角形的概念是:(3)在例1中你能求出另外两个锐角是(可以用计算器).2解决练习第一题?学生能理解解直角三角形的概念要求学生能够说出怎样使用计算归纳总结:三角形的每一个内角;每一条边都叫做一个元素器。

教学环节教学活动评价要点两类结构学习目标二:知道解直角三角形的常见类型,会利用直角三角形的边角关系解直角三角形。

.。

自学指导二内容:课本p112-113时间:5分钟要求:认真阅读课本,了解解直角三角形的类型,完成自学检测二。

自学检测练二:1、P113习题第2题(2)在电线杆离地面8米高的地方向地面拉一条长10米的缆绳,问这条缆绳应固定在距离电线杆底部多远的地方?要求90%以上学生能够熟练掌握归纳总结:已只一边和一角时应选择适当的边角关系计算时采用宁乘勿除的原则归纳总结:解直角三角形,只有下面两中情况:(1)已知两条边;(2)已只一边和一锐角课堂小结我的收获:我的疑惑:作业布置:习题24.4的第1、2、题课后反思:。

初中数学华东师大九年级上册(2023年新编)第24章 解直角三角形解直角三角形教案

初中数学华东师大九年级上册(2023年新编)第24章 解直角三角形解直角三角形教案

解直角三角形(一)教学设计一、教学目标[情感态度价值观]通过有趣的课堂,渗透数形结合的思想,激发学生的学习兴趣,培养勇于探索的精神。

[过程与方法]通过自学、合作、展示等方法让学生能运用直角三角形的相关知识解直角三角形,培养学生分析问题、解决问题的能力。

[知识与能力]知道解直角三角形的概念,能熟练地根据题目中的已知条件解直角三角形。

二、教学重难点[教学重点]掌握利用直角三角形边角关系解直角三角形。

[教学难点]选用边角关系正确、迅速地解直角三角形。

三、教学过程(一)设疑导入(1分钟)出示幻灯片,提问:请问你知道怎么测量高塔的高度和过不去的河的宽度吗?学生们举手发言。

老师总结:让我们一起走进有趣的数学世界吧!通过今天的学习,我们就知道怎样测量了。

(二)知识回顾(3分钟)一个直角三角形有几个元素?它们之间有何关系?有三条边和三个角,其中有一个角为直角。

三边之间的关系:a 2+b 2=c 2(勾股定理); 锐角之间的关系:∠ A + ∠ B = 90º; 边角之间的关系:锐角三角函数sinA = cosA= tanA= cotA=特殊角的三角函数值: (三)自读感悟(11分钟) 1、阅读课本P112——P113的内容,完成以下问题。

(1)、在直角三角形中,由 元素求 的过程, 叫(2)、在直角三角形的六个元素中,除直角外,如果知道 个元素(其中至少有一个是 ), 就可以求出其余 个元素.(3)、解直角三解形只有两种情况:(1) (2) 。

此时老师四处巡视,对有问题的学生适当引导。

2、请学生发表对例1的思路,并强调:本题是已知两直角边,求斜边。

3、请学生发表对例2的思路,并强调:本题是已知一边、一锐角,求其他两边。

4、抽生核对自读感悟的答案。

并设疑:为什么解直角三角形只有两种情况?请学生回答,再引导得出正确答案。

(四)【实战演练】(5分钟)例1.在Rt △ABC 中,∠C=90°,a=3,b=3,解这个三角形.抽两学生板演,待学生完成后,大家一起核对,强调注意事项。

第24章解直角三角形教案

第24章解直角三角形教案

第24章解直角三角形24.1 测量教学目标1、在探索基础上掌握测量。

2、掌握利用相似三角形的知识教学重难点重点:利用相似三角形的知识在直角三角形中,知道两边可以求第三边。

难点:应用勾股定理时斜边的平方等于两直角边的平方和。

教学过程当你走进学校,仰头望着操场旗杆上高高飘扬的五星红旗时,你也许很想知道,操场旗杆有多高?你可能会想到利用相似三角形的知识来解决这个问题.图24.1.1如图25.1.1,站在操场上,请你的同学量出你在太阳光下的影子长度、旗杆的影子长度,再根据你的身高,便可以利用相似三角形的知识计算出旗杆的高度.如果就你一个人,又遇上阴天,那怎么办呢?人们想到了一种可行的方法,还是利用相似三角形的知识.试一试如图25.1.2所示,站在离旗杆BE底部10米处的D点,目测旗杆的顶部,视线AB与水平线的夹角∠BAC为34°,并已知目高AD为1.5米.现在若按1∶500的比例将△ABC画在纸上,并记为△A′B′C′,用刻度直尺量出纸上B′C′的长度,便可以算出旗杆的实际高度.你知道计算的方法吗?图24.1.2实际上,我们利用图25.1.2(1)中已知的数据就可以直接计算旗杆的高度,而这一问题的解决将涉及直角三角形中的边角关系.我们已经知道直角三角形的三条边所满足的关系(即勾股定理),那么它的边与角又有什么关系?这就是本章要探究的内容.练习1.小明想知道学校旗杆的高度,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.2.请你与你的同学一起设计切实可行的方案,测量你们学校楼房的高度.习题25.11.如图,为测量某建筑的高度,在离该建筑底部30.0米处,目测其顶,视线与水平线的夹角为40°,目高1.5米.试利用相似三角形的知识,求出该建筑的高度.(精确到0.1米)(第1题)(第3题)2.在平静的湖面上,有一枝红莲,高出水面1米,阵风吹来,红莲被风吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深多少?3.如图,在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘A处.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,求这棵树的高度.小结与作业:利用相似三角形的知识在直角三角形中,知道两边可以求第三边作业:1.习题24.1; 2.练习册同步教后反思:24.2直角三角形的性质教学目标:1.复习“直角三角形的两个锐角互余”定理和“勾股定理”。

(华东师大新版) 数学第24章 解直角三角形 导学案

(华东师大新版) 数学第24章 解直角三角形 导学案

第24章《解直角三角形》单元导学计划一、课标要求:1.经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学,用数学的意识与能力。

2.通过实例认识直角三角形的边角关系,即锐角三角函数(sinA, cosA 、tanA、 cotA);知道30°,45°,60°角的三角函数;会用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应角的锐角。

3.运用三角函数解决与直角三角形有关的简单实际问题。

4.能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题。

二、教学目标1.理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步形成分析问题、解决问题的能力.3.渗透数形结合的数学思想,养成良好的学习习惯.三、教学重点及难点1.重点:直角三角形的概念和直角三角形的解法。

2.难点:锐角三角函数的概念及解直角三角形中的灵活运用。

3. 疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边。

四、教学用具准备三角尺、多媒体设备.24.1测量总课时第一课时导学目标:1.知识与技能目标:利用前面学习的相似三角形的有关知识,探索测量距离的几种方法,初步接触直角三角形的边角关系。

2.过程与方法目标:通过测量,找出解决问题的方案。

3.情感态度与价值观:通过测量计算,体会学习数学的趣。

导学核心点:1.导学重点:借助相似三角形进行计算。

2.导学难点:设计测量方案。

3.导学关键:利用相似三角形的性质。

4.导学方法(用具):三角板,标杆直尺导学课时:1课时24.2直角三角形的性质(一)总课时第二课时导学目标:1.知识与技能目标:1、掌握“直角三角形的两个锐角互余”定理。

2、巩固利用添辅助线证明有关几何问题的方法。

2.过程与方法目标:观察、比较、合作、交流、探索.找出解决问题的方案。

华师大版数学九年级上册24.4 解直角三角形 教案1

华师大版数学九年级上册24.4   解直角三角形  教案1

24.4 解直角三角形1. 解直角三角形【知识与技能】1.使学生理解解直角三角形的意义;2.能运用直角三角形的三个关系式解直角三角形.【过程与方法】让学生学会用直角三角形的有关知识去解决某些简单的实际问题,从而进一步把形和数结合起来,提高分析和解决问题的能力.【情感态度】通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模〞的思想.【教学重点】用直角三角形的三个关系式解直角三角形.【教学难点】用直角三角形的有关知识去解决简单的实际问题.一、情境导入,初步认识前面的课时中,我们学习了直角三角形的边角关系,下面我们通过一道例题来看看大家掌握得怎样.例在Rt△ABC中,∠C=90°,AB=5,BC=3,求∠A的各个三角函数值.二、思考探究,获取新知把握好直角三角形边角之间的各种关系,我们就能解决直角三角形有关的实际问题了.例1如图,一棵大树在一次强烈的地震中于离地面5米折断倒下,树顶在离树根12米处,大树在折断之前高多少?例子中,能求出折断的树干之间的夹角吗?学生结合引例讨论,得出结论:利用锐角三角函数的逆过程.通过上面的例子,你们知道“解直角三角形〞的含义吗?学生讨论得出“解直角三角形〞的含义:在直角三角形中,由元素求出未知元素的过程,叫做解直角三角形.【教学说明】学生讨论过程中需使其理解三角形中“元素〞的内涵,至于“元素〞的定义不作深究.问:上面例子中,假设要完整解该直角三角形,还需求出哪些元素?能求出来吗?学生结合定义讨论目标和方法,得出结论:利用两锐角互余.【探索新知】问:上面的例子是给了两条边.那么,如果给出一个角和一条边,能不能求出其他元素呢?例2如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,在炮台A处测得敌舰C在它的南偏东40°的方向,在炮台B处测得敌舰C在它的正南方,试求敌舰与两炮台的距离〔准确到1米〕.解:在Rt△ABC中,∵∠CAB=90°-∠DAC=50°,BCAB=tan∠CAB,∴BC=AB·tan∠CAB=2000×tan50°≈2384〔米〕.∵ABAC=cos50°,∴AC=20005050ABcos cos=︒︒≈3111〔米〕.答:敌舰与A、B两炮台的距离分别约为3111米和2384米.问:AC还可以用哪种方法求?学生讨论得出各种解法,分析比拟,得出:使用题目中原有的条件,可使结果更准确.问:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?〔几个学生展示〕学生讨论分析,得出结论.问:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?学生交流讨论归纳:解直角三角形,只有下面两种情况:〔1〕两条边;〔2〕一条边和一个锐角.【教学说明】使学生体会到“在直角三角形中,除直角外,只要知道其中2个元素〔至少有一个是边〕就可以求出其余的3个元素.〞三、运用新知,深化理解1.在电线杆离地面8米高的地方向地面拉一条长10米的缆绳,问这条缆绳应固定在距离电线杆底部多远的地方?2.海船以32.6海里/时的速度向正北方向航行,在A处看灯塔Q在海船的北偏东30°处,半小时后航行到B处,发现此时灯塔Q与海船的距离最短,求灯塔Q到B处的距离.〔画出图形后计算,准确到0.1海里〕四、师生互动,课堂小结1.“解直角三角形〞是求出直角三角形的所有元素.2.解直角三角形的条件是除直角外的两个元素,且至少需要一边,即两边或一边和一锐角.3.解直角三角形的方法.【教学说明】让学生自己小结这节课的收获,教师补充、纠正.五、教学反思通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形〞的含义和两种解题情况.通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为直角三角形的问题.给出一定的情景内容,引导学生自主探究,通过例题的实践应用,提高学生分析问题、解决问题的能力,以及提高综合运用知识的能力.2. 解直角三角形——仰角、俯角问题【知识与技能】1.理解仰角、俯角的含义,准确运用这些概念来解决一些实际问题.2.培养学生将实际问题抽象成数学模型并进展解释与应用的能力.【过程与方法】通过本章的学习培养同学们的分析、研究问题和解决问题的能力.【情感态度】在探究学习过程中,注重培养学生的合作交流意识,体验从实践中来到实践中去的辩证唯物主义思想,激发学生学习数学的兴趣.【教学重点】理解仰角和俯角的概念.【教学难点】能解与直角三角形有关的实际问题.一、情境导入,初步认识α=52°,然后他很快就算出旗杆BC的高度了.〔准确到0.1米〕你知道小明是怎样算出的吗?二、思考探究,获取新知想要解决刚刚的问题,我们先来了解仰角、俯角的概念.【教学说明】学生观察、分析、归纳仰角、俯角的概念.现在我们可以来看一看小明是怎样算出来的.【分析】在Rt△CDE中,一角和一边,利用解直角三角形的知识即可求出CE的长,从而求出CB的长.解:在Rt△CDE中,∵CE=DE·tanα=AB·tanα=10×tan52°≈12.80,∴BC=BE+CE=DA+CE≈12.80+1.50=14.3〔米〕.答:旗杆的高度约为14.3米.例如图,两建筑物的水平距离为32.6m,从点A测得点D的俯角α为35°12′,测得点C的俯角β为43°24′,求这两个建筑物的高.〔准确到0.1m〕解:过点D作DE⊥AB于点E,那么∠ACB=β=43°24′,∠ADE=35°12′,DE=BC=32.6m.在Rt△ABC中,∵tan∠ACB=AB BC,∴AB=BC·tan∠×tan43°24′≈30.83〔m〕.在Rt△ADE中,∵tan∠ADE=AE DE,∴AE=DE·tan∠×tan35°12′≈23.00〔m〕.∴≈7.8〔m〕答:两个建筑物的高分别约为30.8m,7.8m.【教学说明】关键是构造直角三角形,分清楚角所在的直角三角形,然后将实际问题转化为几何问题解决.三、运用新知,深化理解1.如图,一只运载火箭从地面L处发射,当卫星到达A点时,从位于地面R处的雷达站测得AR的距离是6km,仰角为43°°,这个火箭从A到B的平均速度是多少?〔准确到0.01km/s〕2.如下图,当小华站在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B处,这时他看到自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.〔结果准确到0.1米,参考数据:3≈1.73〕四、师生互动,课堂小结1.这节课你学到了什么?你有何体会?2.这节课你还存在什么问题?五、教学反思本节课从学生承受知识的最近开展区出发,创设了学生最熟悉的旗杆问题情境,引导学生发现问题、分析问题.在探索活动中,学生自主探索知识,逐步把生活实际问题抽象成数学模型并进展解释与应用的学习方法,养成交流与合作的良好习惯.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学数学的信心.3. 解直角三角形——坡角、坡度问题【知识与技能】1.使学生掌握测量中坡角、坡度的概念;2.掌握坡度与坡角的关系,能利用解直角三角形的知识,解与坡度有关的实际问题.【过程与方法】经历利用解直角三角形的知识解与坡度有关的实际问题的过程,进一步培养分析问题、解决问题的能力.【情感态度】渗透数形结合的思想方法,进一步培养学生应用数学的意识.【教学重点】解决有关坡度的实际问题.【教学难点】解决有关坡度的实际问题.一、情境导入,初步认识读一读在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.如图,坡面的铅垂高度〔h〕和水平长度〔l〕的比叫做坡面坡度〔或坡比〕,记作i,即i=hl.坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tanα.显然,坡度越大,坡角α就越大,坡面就越陡.二、思考探究,获取新知例1如图,一段路基的横断面是梯形,高为4.2米,上底宽为12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽.〔准确到0.1米〕例2学校校园内有一小山坡AB,经测量,坡角∠ABC=30°,斜坡AB长为12米,为方便学生行走,决定开挖小山坡,使斜坡BD的坡比是1∶3〔即CD与BC的长度之比〕.A、D两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.解:在Rt△ABC中,∠ABC=30°,那么易求AC=6米,BC=63米.在Rt△BDC中,i=13 DCBC=.易得DC=1233BC=米.∴AD=AC-DC=〔6-23〕米.三、运用新知,深化理解1.一坡面的坡度i=1∶3,那么坡角α为〔〕A.15°B.20°C.30°D.45°∶3的坡面向上走50米,那么他离地面的高度为〔〕33米3.某水库大坝某段的横断面是等腰梯形,坝顶宽6米,坝底宽126米,斜坡的坡比是1∶3,那么此处大坝的坡角和高分别是______米.4.如图,一束光线照在坡度为1∶3的斜坡上,被斜坡上的平面镜反射成与地面平行的光线,那么这束光线与坡面的夹角α是______.5.如图,在山脚的C处测得山顶A的仰角为45°,沿着坡角为30°的斜坡前进400m 到点D处,测得点A的仰角为60°,求AB的高度.°3 5.〔3〕m四、师生互动,课堂小结1.本节学习的数学知识:利用解直角三角形的知识解决实际问题.2.本节学习的数学方法:数形结合的思想和数学建模的思想.五、教学反思本节课以实际情境,引导学生将实际问题抽象为数学问题,构造几何模型,应用三角函数的知识解决问题.在整体设计上,由易到难,难度层层推进,尽量满足不同层次学生的学习需要.在教学过程中,让学生经历知识的形成过程,体会数形结合的数学思想,进一步培养学生应用数学的意识.。

华东师大版九年级数学上册《24章 解直角三角形 24.4 解直角三角形 解直角三角形》教学案例_12

华东师大版九年级数学上册《24章 解直角三角形  24.4 解直角三角形  解直角三角形》教学案例_12

24.4 解直角三角形(一)教学设计
内容:24.4.解直角三角形(一)
教学目标:
由于本课为第一课时,主要使学生理解直角三角形的边角关系,并能运用这些关系解直角三角形,同时解决与之相关的实际问题。

所以三维目标的知识与技能目标主要体现在:
1.知识与技能
(1)使学生理解解直角三角形中五个元素的关系,什么是解直角三角形。

(2)会运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形。

2.过程与方法
通过综合运用勾股定理,直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题,解决问题的能力。

3.情感态度与价值观
渗透数形结合的数学思考,培养学生综合运用知识的能力和良好的学习习惯
重点与难点
重点:直角三角形的解法。

难点:三角函数在直角三角形中的灵活运用。

华东师大初中数学九上《24 解直角三角形复习教案

华东师大初中数学九上《24 解直角三角形复习教案

解直角三角形【知识与技能】1.通过复习,使学生系统地掌握本章知识,熟练应用三角函数进行计算.2.了解仰角、俯角、坡度等相关概念,掌握直角三角形的边与边、角与角、边与角的关系,能应用这些关系解决相关问题.【过程与方法】应用锐角三角函数的有关知识解决实际问题,进一步培养学生应用知识解决问题的能力.【情感态度】通过解直角三角形的复习,体会数学在解决实际问题中的作用,激发学生学习数学的热情.【教学重点】解直角三角形及其应用.【教学难点】解直角三角形及其应用.一、知识结构框图,整体把握二、释疑解惑,加深理解1.直角三角形的边角关系:在Rt△ABC中,∠A+∠B=90°,a2+b2=c2,sinA=cosB=ac,cosA=sinB=bc,tanA=ab,tanB=ba.2.互余两角三角函数间的关系:如∠A+∠B=90°,sinA=cosB,cosA=sinB,tanA·tanB=1,3.同角三角函数间的关系:sin2A+cos2A=1.4.特殊角的三角函数5.解直角三角形的基本类型及其解法如下表:解直角三角形注意:(1)一些较复杂的解直角三角形的问题可以通过列方程或方程组的方法求解.(2)解直角三角形的方法可概括为“有弦(斜边)用弦(正弦、余弦),无弦有切(正切),宁乘毋除,取原避中”.其意指:当已知或求解中有斜边时,可用正弦或余弦;无斜边时,就用正切;当所求元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据来求解时,则取原始数据,忌用中间数据.6.应用题解题步骤度量工具、工程建筑、测量距离等方面应用题的解题步骤可概括为如下几步:第一步,审清题意,要弄清仰角、俯角、坡度、坡角、水平距离、垂直距离、水平等概念的意义.第二步,构造出要求解的直角三角形,对于非直角三角形的图形可作适当的辅助线把它们分割成一些直角三角形和矩形(包括正方形).第三步,选择合适的边角关系式,使运算尽可能简便,不易出错.第四步,按照题目中已知数的精确度进行近似计算,并按照题目要求的精确度确定答案及注明单位. 三、典例精析,复习新知 例1(内蒙古呼和浩特中考)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地经过C 地沿折线A →C →B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC=10千米,∠A=30°,∠B=45°,则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)例2(湖南娄底中考)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场救援,救援队利用生命探测仪在地面A 、B 两处探测到C 处有生命迹象.已知A 、B 两点相距4米,探测线与地面的夹角分别是30°和45°(如图),试确定生命所在点C 的深度.(精确到0.1米,参考数据:2≈1.414,3≈1.732)解:过点C 作CD ⊥AB 于点D.设CD=xm.在Rt △CBD 中,∵∠CBD=45°,∠D=90°,∴BD=CD=xm.在Rt △ACD 中,∵tan ∠CAD 4CD x AD x ==+, ∵∠CAD=30°,∴334x x =+. 解得x=23+2≈5.5.答:生命所在点C 的深度约是5.5m.四、复习训练,巩固提高1.(江苏连云港中考)在Rt△ABC中,∠C=90°,若sinA=513,则cosA的值是()A.5/12B.8/13C.2/3D.12/132.(广东深圳中考)如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()第2题图第3题图3.(湖北荆门中考)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB 的垂线交AC于点E,BC=6,sinA=3/5,则DE=_______.4.如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD,小明在山坡的坡角A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶点C的仰角为45°,已知山坡AB的坡度i=1∶3,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据: 2≈1.414, 3≈1.732)【答案】1.D 2.D 3.15/4 4.2.7米五、师生互动,课堂小结本节课你学到了哪些知识?还有哪些知识没有掌握?1.布置作业:从教材本章“复习题”中选取.2.完成练习册中本课时练习.本节课通过学习归纳本章内容,让学生系统掌握锐角三角函数的有关知识,熟练应用三角函数的有关知识解决实际问题,进一步培养学生应用知识的能力,在解决问题时,注意方程思想、构造直角三角形思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第24章解直角三角形24、1 测量教学目标使学生了解测量是现实生活中必不可少的,能利用图形的相似测量物体的高度,培养学生动手知识解决问题的能力和学习数学的兴趣。

教学过程一、引入新课测量在现实生活中随处可见,筑路、修桥等建设活动都需要测量。

当我们走进校园,仰头望着操场旗杆上高高飘扬的五星红旗时,我们也许会想,高高的旗杆到底有多高,能否运用我们所学的知识把旗杆的高度测量出来呢?二、新课1.根据同学们课前预习的,书上阐述的测量旗杆高度的方法有几种?你是如何理解的呢?(待同学们回答完毕后再阐述,这里重要的是让同学们画出示意图)课上阐述测量旗杆的方法。

第一种方法:选一个阳光明媚的日子,请你的同学量出你在太阳下的影子的长度和旗杆影子的长度,再根据你的身高,便可以计算出旗杆的高度。

(如图所示)由于太阳光可以把它看成是平行的,所以有∠BAC=∠B1A1C1,又因为旗杆和人都是垂直与地面的,所以∠ACB=∠A1C1B1=90°,所以,△ACB∽△A1C1 B1,因此,BCAC=B1C1A1C1,则BC=AC×B1C1A1C1,即可求得旗杆BC的高度。

如果遇到阴天,就你一个人,是否可以用其他方法测出旗杆的高度呢?第二种方法:如图所示,站在离旗杆的底部10米处的D点,用所制作的测角仪测出视线与水平线的夹角∠BAC=34°,并且已知目高AD为1米,现在请你按1:500(根据具体情况而定,选合适的即可)比例将△ABC画在纸上,并记作△A1B1C l,用刻度尺量出纸上B l C l 的长度,便可以计算旗杆的实际高度。

由画图可知:∵∠BAC=∠B l A l C l=34°,∠ABC=∠A1B1C l=90°∴△ABC∽△A l B1C l∴B l C1=1500∴BC=500B l C l,CE=BC+BE,即可求得旗杆的高度。

2.带领同学们到操场上分别用两种方法测得相应的数据,并做好记录。

(指导学生使用测角仪测出角度)三、小结本节课是用相似三角形的性质来测量旗杆的高度,同学们在学习中应掌握其原理,并学会应用知识解决问题的方法。

四、作业1.课本第99页习题24.1。

2.写出今天测量旗杆高度的步骤,画出图形,并根据测量数据计算旗杆的高度。

24、2 勾股定理第一课时勾股定理(一)教学目标用试验的方法使学生知道直角三角形的边与边的关系(勾股定理)增强学生对勾股定理的感性认识,并能用勾股定理解决一些简单的问题,渗透探索问题的思想与方法。

教学过程一、复习直角三角形是特殊的三角形,其中一个角是直角,两个锐角具有互余的关系。

那么,直角三角形的三边具有什么关系呢?本节课就是要研究直角三角形三边的关系。

二、新课1.等腰直角三角形边与边的关系。

如图,是正方形瓷砖拼成的地面,观察图中的三个阴影的小正方形P、Q、R,它们的面积具有什么关系呢?显然可以看出:S阴R=S阴P+S阴Q即AB2=BC2+AC2,这说明,等腰直角三角形ABC中,两直角边的平方和等于斜边的平方。

那么,在一般的直角三角形中,是否也有两直角边的平方和等于斜边的平方呢?2.任意直角三角形三边的关系。

探索l,发给每位同学印有右图的纸片,让学生观察图形,而后回答以下问题。

如果每一小方格表示1平方厘米,那么可以得到:正方形P的面积=____平方厘米;正方形Q的面积=____平方厘米;正方形R的面积=____平方厘米;(这里正方形只的面积相当难算,教师要给予点拨,要多花时间让学生思考才能得出。

)通过以上练习,同学们可以发现,正方形P、Q、R的面积之间的关系是___。

探索2.在方格中,用三角尺画出两条直角边分别为5cm和12cm的直角三角形,然后用刻度尺量出斜边的长,并验证上述关系对这个直角三角形是否成立。

由上述的练习我们可以得出直角三角形ABC的三边的长度之间的关系:AB2=BC2+AC2。

勾股定理:直角三角形两直角边的平方和等于斜边的平方。

勾股定理揭示了直角三角形三边之间的关系。

3.勾股定理的简单应用。

例1.如图,将长为5.41米的梯子AC斜靠在墙上,BC长为 2.16米,求梯子上端A到墙的底端B的距离AB。

(精确到0.01米)例2.已知:直角三角形ABC中,∠C=90°,BC=8,AC=17。

求AB4.练习:课本第102页的练习题。

三、小结这节课我们通过具体的实例验证了直角三角形三边之间的关系,实际上,勾股定理在我国古代早已被发现和运用,今天我们只不过做了粗略的探讨。

通过本节课的学习,同学们一方面要掌握勾股定理的内容,另一方面要能运用它来计算直角三角形边的长度。

四、作业1.课本第104页习题24.2的第1、2小题。

2.课本第124页复习题的第1题。

第二课时勾股定理教学目标上节课学生感性认识了勾股定理,本节课通过给出一些证明勾股定理的方法,学生理性认识勾股定理,同时渗透方程思想,寓德于教,进一步运用勾股定理解决问题。

教学过程一、对勾股定理的回顾如图,△ABC是Rt△,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,那么a、b、c具有什么关系呢?(a2+b2=c2),勾股定理揭示了直角三角形的边与边的关系,那么,同学们是否能够想出证明这个定理的方法呢?1勾股定理的证明思路与方法。

发给每位同学与右图完全相同的四个直角三角形,然后将它们拼成如图所示的图形。

问:大正方形的面积可以表示为____,又可以表示为____。

对比两种表示方法,看看能不能得到勾股定理的结论。

提问后再给出提示。

一方面,大正方形的面积可表示为;(a+b)2;另一方面又可表示为:12ab×4+c2=2ab+c2,所以(a+b)2=2ab+c2即a2+b2=c2用四个完全相同的直角三角形,还可以拼成右图所示的图形。

与上面的方法类似,也可以证明勾股定理是正确的。

(请同学们模仿上面的证明方法,就右图给出勾股定理的证明)一方+4×1 2面,大正方形的面积为c2,另一方面,大正方形的面积为(a-b)2ab,所以,a2+b2=c2。

2.进一步应用勾股定理解决问题。

例1.如图,为了求出湖两岸A、B的两点之间的距离,一个观测者在点设桩,使三角形恰好为直角三角形,通过测量,得到AC长160米,BC长128米。

问从A点穿过湖到点B多远?练习:课本第104页第1、2题。

3.勾股定理史话,增强学生的民族自豪感。

我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。

上面的图四称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作注时给出的。

在北京召开的2002国际数学家大会(TCM-2002)的会标,其图案正是“弦图”,它标致着中国古代的数学成就。

勾股定理从被发现到现在已有五千年的历史。

远在公元前三千年的巴比伦人就知道和应用它了,我国古代也发现了这个定理。

据《周髀算经》记载,商高(公元前1120年)关于勾股定理已有明确的认识。

人们对勾股定理的认识,经历过一个从特殊到一般的过程,其特殊情况,在世界很多地区的现存文献中都有记载,很难区分这个定理是谁先发现的。

国外一般认为这个定理是毕达哥拉斯学派(公元前580一前500)首先发现的,因而称为毕达哥拉斯定理。

三、小结本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,同学们;在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果;不是直角三角形应该构造直角三角形来解决。

四、作业课本第104页第1、2、3、4、5题。

24、3 锐角三角函数1.锐角三角函数第一课时锐角三角函数(一)教学目标使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。

并能应用这些概念解决一些实际问题。

教学过程一、复习由上节课例题若加改变得,若AC=160cm,∠C=31°,那么,AB的长度为多少呢?同学们现在或许不能解决上述问题,但是通过这节课的学习,以上问题自然很容易得到解决。

二、新课1.明确直角三角形边角关系的名称。

直角三角形ABC可以简记为Rt△ABC,我们已经知道∠C所对的边AB称为斜边,用c表示,另两条直角边分别为∠A的对边与邻边,用a、b表示。

如右图,在Rt△EFG中,请同学们分别写出∠E、∠F的对边和邻边。

2.在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。

问题1如右图,△ABC和△A1B1C1中,若∠C=∠C1=∠90°,∠A=∠A1,那么△ABC和△A1B1C1相似吗?与相等吗? BCAB和B1C1A1B1相等吗?显然△ABC∽△A1B l C l,BCAB=B1C1A1B1,这说明在Rt△ABC中,只要一个锐角的大小不变,那么不管这个直角三角形大小如何,该锐角的对边与斜边的比值是一个固定值。

这说明,在直角三角形中,一个锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的。

3.锐角三角函数的概念。

Rt△ABC中(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边同学们想一想,在Rt△ABC中,∠B的正弦、余弦、正切、余切是哪一边与那一边的比值。

问题2.锐角三角函数都是正实数吗?为什么?若∠A是锐角,0<sinA<l,0<cosA<l,tanAcotA=1,为什么?4.例题讲解。

例1.求出右图所示的Rt△ABC中∠A的四个三角函数值。

例2.已知Rt△ABC中,∠C=90°,a:b=3:2,c=13,求∠A、∠B的四个三角函数值。

三、练习课本第109页练习的第1、2两题。

四、小结在直角三角形中,当锐角一定时,它的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的,这几个比值称为锐角的三角函数,它反映的是两条线段的比值,对于三角函数的概念,同学们必须深刻理解后再记忆,不要混淆。

五、作业课本第11l页习题24.3的第1、2题,课本第120页复习题的第8题。

第二课时 锐角三角函数(二)教学目标使学生进一步掌握三角函数的概念,并能熟练运用此概念探索30°、45°、60°等角度的三角函数值,培养学生运用知识解决问题的能力。

教学过程 一、引入新课如图,这是一块三角形草皮,∠A =60°,AB =2米,AC = 1.8米,那么这块三角形的草皮面积为多少呢?让同学们思考并加以引导,过C 点作AB 的垂线CD ,垂足为D ,我们知道,CDAC=sinA ,CD=ACsin60°,AC 是已知的,假如sin60°能够知道,那么CD 就可求,那么这个问题就得到解决。

相关文档
最新文档