加减法的速算与巧算
四年级加减法速算与巧算

加法交换律:
两个数相加,交换加数的位置, 它们的和不变。即 a+b=b+a
一般地,多个数相加,任意改变 相加的次序,其和不变。 a+b+c+d=d+b+a+c
加法结合律:
几个数相加,先把前两个数相加, 再加上第三个数;或者,先把后两 个数相加,再与第一个数相加,它 们的和不变。即 a+b+c = (a+b)+c = a+(b+c),
常见方法:
1.补数法:什么叫“补数” 2. 去括号添括号法则 3.带符号搬家“+” ,“-”
1.凑整法 (补数法)
两个数相加,若能恰好凑成整十、整百、 整千、整万…,就把其中的一个数叫做另 一个数的“补数”。
如:1+9=10,3+7=10, 11+89=100, 33+67=100
在上面算式中, 89叫11的“补数”,11也叫89的“补数”, 也就是说两个数互为“补数”。
(1).把几个互为“补数”的减数先加 起来,再从被减数中减去
300-73-27 1000-90-80-20-10
a–b–c=a–(b+c)
减法中的巧算
(2).先减去那些与被减数有相同尾数的
减数。
2356 – 159 - 256 4723 -(723+189)
a–b–c=a–(b+c)
减法中的巧算
3.
50+20-10
=
50+(20-10)
你能举例验证自己的观点吗?
3.去括号添括号法则
1.在加、减法混合运算中,去括号时: 如果括号前面是“+”号,那么去掉 括号后,括号内的数的运算符号不变;
加减法的速算与巧算

加减法的速算与巧算奥数知识在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。
加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看作所接近的数进行简算。
进行加减巧算时,凑整之后,对于原数与整十、整百、整千…相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
另外,可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。
【例题1】计算下面各题。
(1)396+55(2)427+1008(3)456-298(4)582-305【思路】(1)中396接近于400,396+55可以看成400+55,多加了4,所以还要减4;(2)中1008接近于1000,427+1008变成427+1000,少加了8,所以还要加8;(3)中298接近于300,456-298变成了456-300,多减了2,所以还要加2;(4)中305接近于300,582-305变成了582-300,少减了5,所以还要减5。
【练习1】1.速算。
(1)497+28 (2)750+1002 (3)598+231 (4)2004+271 2.巧算。
(1)574-397 (2)472―203(3)8732―2008 (4)487―298 3.计算:402+307―297―99【例题2】你有好办法迅速计算出结果吗?(1)502+799―298―97 (2)9999+999+99+9【思路】(1)是一道加减混合运算,每个数都接近于整百数,计算时可先把这些数拆成两部分,再把整百数与整百数相加减,“零头数”与“零头数”相加减,最后把两个部分数合起来;(2)这四个数都分别接近于整万、整千、整百、整十数,我们可以把9999看作10000,999看作1000,99看作100,9看作10,这样每个数都多了1,最后再从它们的和中减去4个1,即可得出结果。
【练习2】1.计算。
(1)307+201―398―99 (2)208+494―498―95【例题3】计算:(1)487+321+113+479 (2)723-251+177(3)872+284―272 (4)537―142―58【思路】(1)487和113,321和479,分别可以凑成整百数,我们可以通过交换位置的方法,487+113得到600,321+479得到800,然后600+800=1400。
巧算速算之加减法(一)

巧算速算之加减法(一)引言概述:在日常生活和学习中,加减法是最基础的计算方法之一。
掌握巧算速算的加减法技巧不仅可以提高计算效率,还可以培养逻辑思维和数学推理能力。
本文将介绍巧算速算之加减法的一些技巧和方法。
正文内容:一、整数相加的巧算速算方法1. 小节数相加- 相同进位法:当两个小节数相加时,若个位数相加的结果大于等于10,则向十位数进一位,并将个位数的个位数部分写下来作为结果的个位数。
- 边加边算法:从左到右逐位相加,遇到进位要及时处理。
2. 大数相加- 列竖式法:将两个大数竖直排列,从个位数开始逐列相加并记录进位,依次进行下一列的计算,最后得到结果。
3. 带有小数的相加法- 对齐小数点法:将带有小数的数对齐小数点后再进行相加,得出结果后保留相同小数位数。
二、整数相减的巧算速算方法1. 小节数相减- 不退位法:当两个小节数相减时,若被减数的个位数大于减数的个位数,则直接相减得出结果。
- 借位法:当被减数的个位数小于减数的个位数时,需要向高位借位,对应位相加,然后再进行减法运算。
2. 大数相减- 列竖式法:将被减数和减数竖直排列,从个位数开始逐列相减,遇到不够减的情况,需要向高位借位,依次进行下一列的计算,最后得到结果。
3. 带有小数的相减法- 对齐小数点法:将带有小数的数对齐小数点后再进行相减,得出结果后保留相同小数位数。
三、加减法混合运算的巧算速算方法1. 先乘后加减法:当计算表达式中既有加减法又有乘法时,可先计算乘法,再进行加减法运算。
2. 同解法规则:对于多个计算式组合成的加减法,如果其中有相同的计算式,则可以合并计算,简化运算步骤。
四、连加连减的巧算速算方法1. 快速连加法:使用等差数列求和公式,可以快速计算连续多个整数的和。
2. 快速连减法:利用差等差公式,可以快速计算连续多个整数的差。
五、小数的加减法巧算速算方法1. 小数的加法:将小数转化为分数进行计算,然后再将结果转化为小数。
2. 小数的减法:将减法转化为加法,即被减数加上减数的相反数。
速算与巧算——精选推荐

速算与巧算速算与巧算(⼀)加减法中的巧算⽅法:1、运⽤运算律和运算性质;2、凑整;3、拆⼩补⼤;4、找准基数;5、数列求和等等。
练习:1、147+369+353+631 32+81+157+19+682、852-39-153-161 5613-(613+261)-2393、656-289+144-111 745+(672-525)-5724、537-(543-163)-57 756-576+376+2445、659+427-727-159 1256+125+875-2566、9998+3+99+998+3+9 9+99+999+9999+999997、75+86+83+72+78+80+81+79+878、1+2+3+…+9+10+9+…+3+2+1速算与巧算⼆乘除法的巧算主要靠乘法的运算律和除法的运算性质,并进⾏适当的扩展,使计算更灵活、合理;做到算得快、准。
练习:1、125×25×8×4 125×16×52、36×98 56×2013、4400÷25÷4÷11 236+1800÷(9×25)4、720-198×25÷99×4 12000÷125+325÷255、56×165÷7÷11 123×456÷789÷456×789÷1237、9999×2222+3333×3334 54+99×99+458、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)和差问题1、和差问题基本模式:已知两个数的和与差,求两个数。
2、和差问题的基本关系式:(和+差)÷2=较⼤数(和-差)÷2=较⼩数3、解题的关键要找准两个数的和与差。
小学三年级奥数万以内加减法的速算与巧算

加、减法的速算与巧算知识要点:“凑整”先计算,认真审题,灵活分组。
两个数相加,若能恰好凑成整十、整百、整千、整万...则先计算。
如: 1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的“补数”;79叫21的“补数”,44也叫56的“补数”,也就是说两个数互为“补数”。
对于不能直接凑整的数,可以把其中一个数拆分后再凑整。
找基准数几个相接近的数相加,可以用找基准数法,进行移多补少计算。
找基准数的方法:整十、整百、整千等等。
本节课需要掌握:移数凑整法,拆数凑整法,借数凑整法,分组凑整法。
例1:换位凑整,快速计算。
(提示:看个位凑整,巧用小括号)(1)34+53+66 (2)679+27+321 (3)63+294+37+54+9 =34+66+53 =679+321+27 =63+37+(294+6)+3+54 =100+53 =1000+27 =100+300+3+54=153 =1027 =457练习1:(1)491+273+209+27 (2)882+356+18+55+44 (3)49+38+51+62+162+38 =1000 =1355 =400拓展题:(提示:巧用小括号,移数凑整法)(1350+249+468)+(251+332+1650)=1350+1650+(249+251)+(468+332)=3000+500+800=4300(2549+385+739)+(61+15+451)=4200例2: 先观察,再速算。
199999+19999+1999+199+19法1:拆数凑整法=(200000-1)+(20000-1)+(2000-1)+(200-1)+(20-1)= 200000+20000+2000+200+20-(1+1+1+1+1)=222220-5=222215法2:借数凑整法=199999+19999+1999+199+15+1+1+1+1=200000+20000+2000+200+15=222215练习2:28+208+2008+20008+200008=28+200+8+2000+8+20000+8+200000+8=200000+20000+2000+200+20+(8+8+8+8+8)=222220+40=222260例3:先观察,再速算。
加减法中的速算与巧算

加减法中的速算与巧算知识储备1、加法的运算律加法交换律:a+b=b+a加法结合律:a+b+c=(a+b)+c=a+(b+c)2、加、减法运算的性质:a-b-c=a-c-b=a-(b+c)a+b-c=a-c+b=a+(b-c)3、在加法、减法和加减混合运算中,常常利用改变运算顺序或添加括号的方法进行巧算。
4、加减法的速算与巧算常用到的方法还有以下两种:①借数凑数法巧算;②利用平均数进行巧算。
思维引导例1、巧算:76+35+48+14+45+52跟踪练习:巧算:89+123+109+11+77+181例2、巧算:500-99-1-98-2-97-3跟踪练习:巧算6728-116-202-551-67-1098-133例3、巧算:548-136+17-64+35跟踪练习:巧算1000-2+3-4+6-6+9-8+12-10+15例4、计算:①567-76+74 ②567-74+76跟踪练习:简便计算:①476-47+37 ②359+58-60例5、简便计算:432-(154-68)跟踪练习:①783-(583+16)②489-(342-11)例6、计算:999+99+9跟踪练习:计算:19+199+1999+19999例7、计算:(1)728+598 (2)436—103跟踪练习:计算:(1)288—199;(2)576+189例8、用简便方法计算下面各题跟踪练习:计算例9、巧算:599996+59997+3998+407+89跟踪练习:巧算:700012+6009+41008+59001例10、1966+1976+1986+1996+2006这五个数的总和是多少?跟踪练习:巧算:2010+2005+2004+2003+1998例11、计算:100+99-98+97-96+…+3-2+1跟踪练习:计算:98+97-96-95+94+93-92-91+90+89-…-4-3+2+1能力对接1、在正确的算式前的圈圈里打“√”,错的打“×”。
第1课时 速算与巧算(加减法)

用简便方法计算 364+97+636+1803
=(364+636)+(97+1803) =1000+1900 =2900
542-297+58
=(542+58)-297 =600-297 =303
743+264-143
=(743-143)+264 =600+264 =864
901+902+905+198+195+199
841-306
1241-509
1034-809
1.去括号法则:在加、减法混合运算中,去括号时: 去括号法则:在加、减法混合运算中,去括号时: 去括号法则 如果括号前面是“ 那么去掉括号后,括号内 如果括号前面是“+”号,那么去掉括号后,括号内 的数的运算符号不变 如果括号前面是“ 号 符号不变; 的数的运算符号不变;如果括号前面是“-”号,那么 去掉括号后,括号内的数的运算符号 符号“ 变为“ , 去掉括号后,括号内的数的运算符号“+”变为“-”, 变为“ “-”变为“+” 。即: 变为 (b-c)=a+b(b+c)=a(b-c)=aa+(b-c)=a+b-c,a-(b+c)=a-b-c,a-(b-c)=a-b+c
常见运算定律及其方法: 常见运算定律及其方法:
1、加法交换律: 加法交换律:
两个数相加,交换加数的位置, 两个数相加,交换加数的位置,它们的和不 变。即: a+b=b+a 一般地,多个数相加,任意改变相加的次序, 一般地,多个数相加,任意改变相加的次序, 其和不变。 其和不变。即: a+b+c+d=d+b+a+c
运算定律:加减法速算与巧算

运算定律:加减法速算与巧算加、减法的速算与巧算( 基础)1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第⼀个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运⽤加法结合律时,要注意把结合的两个数⽤括号括起来。
)连加的简便计算⽅法:①使⽤加法交换律、结合律凑整(把和是整⼗、整百、整千的数先交换再结合在⼀起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③⼗位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60165+93+3565+28+35+722、连减的性质:☆⼀个数连续减去⼏个数等于这个数减去这⼏个数的和。
即:a –b –c = a –(b + c)注:连减的性质逆⽤:a –(b + c) = a –b –c = a –c –b ☆⼀个数连续减去两个数,可以⽤这个数先减去后⼀个数再减去前⼀个数。
即:a-b-c=a—c-b连减的简便计算⽅法:①连续减去⼏个数就等于减去这⼏个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后⼀个数再减去前⼀个数。
如:226-58-26=226-26-58③减去⼏个数的和就等于连续减去这⼏个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)3、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
即:a + b –c = a –c + b加、减混合的简便计算⽅法:在没有括号的加、减混合运算时,第⼀个数的位置不变,其余的例如:整⼗、整百数时,可以利⽤如下原则:多加了要减去;多减了要加上;少加了要加上;少减了要减去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加减法的速算与巧算
奥数知识
在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。
加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看作所接近的数进行简算。
进行加减巧算时,凑整之后,对于原数与整十、整百、整千…相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
另外,可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。
【例题1】计算下面各题。
(1)396+55
(2)427+1008
(3)456-298
(4)582-305
【思路】
(1)中396接近于400,396+55可以看成400+55,多加了4,所以还要减4;
(2)中1008接近于1000,427+1008变成427+1000,少加了8,所以还要加8;
(3)中298接近于300,456-298变成了456-300,多减了2,所以还要加2;
(4)中305接近于300,582-305变成了582-300,少减了5,所以还要减5。
【练习1】
1.速算。
(1)497+28 (2)750+1002 (3)598+231 (4)2004+271 2.巧算。
(1)574-397 (2)472―203 (3)8732―2008 (4)487―298 3.计算:402+307―297―99
【例题2】你有好办法迅速计算出结果吗?
(1)502+799―298―97 (2)9999+999+99+9
【思路】
(1)是一道加减混合运算,每个数都接近于整百数,计算时可先把这些数拆成两部分,再把整百数与整百数相加减,“零头数”与“零头数”相加减,最后把两个部分数合起来;(2)这四个数都分别接近于整万、整千、整百、整十数,我们可以把9999看作10000,999看作1000,99看作100,9看作10,这样每个数都多了1,最后再从它们的和中减去4个1,即可得出结果。
【练习2】
1.计算。
(1)307+201―398―99 (2)208+494―498―95
【例题3】计算:
(1)487+321+113+479 (2)723-251+177
(3)872+284―272 (4)537―142―58
【思路】
(1)487和113,321和479,分别可以凑成整百数,我们可以通过交换位置的方法,487+113得到600,321+479得到800,然后600+800=1400。
(2)723与177可凑成整百数,因而用723+177得到900,900再减251,得数是649。
(3)可以先用872减272得到整百数是600,再用600加上284得数是884。
(4)537连续减142和58,而142和58正好可以凑成整百数200,再用537减去200,得到337。
【练习3】
1.直接写出得数。
(1)321+127+79+73 (2)89+123+11+177
【例题4】计算下面各题:
(1)321+(279―155)(2)372―(54+72)
【思路】
(1)321加上279与155的差,可去括号转化为321+279-155,这里321和279可凑成整百数600,再用600-155得到445。
(2)372减54与72的和,利用减法的性质可以转化为372连续减54和72,即372-54-72,而372减72可得到整百数,因而先用372-72得到300,再减54得到246。
【练习4】
1.计算。
(1)421+(179-125)(2)375+(125-47)
【例题5】计算
1000―81―19―82―18―83―17―84―16―85―15―86―14―87―13―88―12―89―11
【思路】这道题看似复杂,但仔细观察便可发现,用凑整的方法进行计算就比较方便,这里18个减数可两两凑成100,合起来为9个100,然后再用1000减去900得100。
【练习5】
速算下面各题:
1.500―99―1―98―2―97―3―96―4
2.1000―90―80―70―60―50―40―30―20―10。