2017-2018九年级数学期末试卷
太原市2017~2018学年第一学期九年级期末考试数学试题(含答案)

太原市2017~2018学年第一学期九年级期末考试数学试卷说明:本试卷为闭卷笔答,不允许携带计算器,答题时间90分钟满分100分一、选择题(本大题含10个小题,每小题3分,共30分)下列各题给出的四个选项中,只有一个符合要求,请将正确答案的字母代号填入相应的位置1.一元二次方程x 2+4x=0的一根为x=0,另一根为A.x=2B.x=-2C.x=4D.x=-4 【答案】D【解析】()21240400,4x x x x x x +=∴+=∴==-2.若反比例函数2y x=的图象经过点(-2,m),那么m 的值为 A.1 B.-1 C 12D .-12【答案】B【解析】∵反比例函数2y x =的图象经过点(-2,m)∴212m m =∴=-- 3.把一个正六棱柱如右图水平放置,一束水平方向的平行光线照射此正六棱柱时的正投影是【答案】B4.小明和小颖做“剪刀、石头、布”的游戏,假设他们每次出这三种手势的可能性相同,则在一次游戏中两人手势相同的概率是 A13B 16C 19D 23【答案】A 【解析】共有9种等可能的结果,在一次游戏中两人手势相同有3种情况 ∴在一次游戏中两人手势相同的概率是31935.如图,△ABC 中,点D,E 分别在AB,AC 边上,DE//BC,若AD=2DB,则△ADE 与△ABC 的面积比为 A23B 49C 25D 35【答案】B【解析】∵DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=(23)2=496.下列四个表格表示的变量关系中,变量y 是x 的反比例函数的是【答案】C【解析】根据反比例函数的自变量与相应函数值的乘积是常数,可得答案7.在平面直角坐标系中,将四边形OABC 四个顶点的横坐标、纵坐标分别乘-2,依次连接得到的四个点,可得到一个新四边形,关于所得四边形,下列说法正确的是A 与原四边形关于x 轴对称 B.与原四边形关于原点位似,相似比为1:2 C.与原四边形关于原点中心对称 D.与原四边形关于原点位似,相似比为2:1 【答案】D【解析】在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k 或-k.8,股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停:当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x,则x 满足的方程是A.(1+10%)(1-x)2=1B.(1-10%)(1+x)2=1C.(1-10%)(1+2x)=1D.(1+10%)(1-2x)=1 【答案】A【解析】(1+10%)(1-x)2=1;9.如图是一个几何体的三视图,则该几何体可能是下列的【答案】A【注意】左视图左内右外10.书画经装后更便于收藏,如图,画心ABCD 为长90cm 、宽30cm 的矩形,装裱后整幅画为矩形A B C D '''',两矩形的对应边互相平行,且AB 与A'B 的距离、CD 与C D ''的距离都等于4cm.当AD 与A D ''的距离、BC 与B'C'距离都等于acm,且矩形ABCD ∽矩形A B C D ''''时,整幅书画最美观,此时,a 的值为A.4B.6C.12D.24 【答案】C【解析】∵矩形ABCD ∽矩形A B C D ''''∴9030129023024AB BC a A B B C a =∴=∴=''''++⨯ 二、填空题(本大题含5个小题,每小题2分,共10分)把结果直接填在横线上 11.反比例函数3-y x=的图象位于坐标系的第_________________象限 【答案】二、四【解析】当k>0时,两支曲线分别位于第一、三象限内,在图象所在的每一象限内,Y 随X 的增大而减小; 当k<0时,两支曲线分别位于第二、四象限内,在图象所在的每一象限内,Y 随X 的增大而增大;两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.12.如图,两张宽均为3cm 的矩形纸条交又重叠在一起,重叠的部分为四边形 ABCD.若测得AB=5cm,则四边形ABCD 的周长为___________cm.【答案】20 (第12题图) 【解析】过点A 作AE ⊥BC 于E ,AF ⊥CD 于F ,∵两条纸条宽度相同,∴AE=AF .∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形.∵S ▱ABCD =BC•AE=CD•AF.AE=AF .∴BC=CD ,∴四边形ABCD 是菱形.∵菱形四边相等∴四边形ABCD 的周长为4AB=2013.如图,正五边形ABCDE 的各条对角线的交点为M,N,P ,Q,R,它们分 别是各条对角线的黄金分割点,若AB=2,则MN 的长为_________ 【答案】35【解析】∵M 为线段AD 的黄金分割点,AM >DM ∴51AM AD -=35DM DA -=同理可得35DN DB -=∠MDN =∠ADB ∴MND ADB ∆∆ ∴MN DM AB DA =即352MN -=35MN =14新年期间,某游乐场准备推出幸运玩家抽奖活动,其规则是:在一个不透明的袋子里装有若干个红球和白球(每个球除颜色外都完全相同),参加抽奖的人随机摸一个球,若摸到红球,则可获赠游乐场通票一张.游乐场预估有300人参加抽奖活动,计划发放游乐场通票60张,则袋中红、白两种颜色小球的数量比应为______________ 【答案】1:4【解析】设红球m 个,白球y 个,根据大量反复试验下频率稳定值即概率可得60300mm n=+化简得4m n =∴袋中红、白两种颜色小球的数量比应为m:n=1:4 15.如图,点A,C 分别在反比例函数4-y x= (x<0)与9y x = (x>0)的图象上,若四边形OABC 是矩形,且点B 恰好在y 轴上,则点B 的坐标为______________ 【答案】136) 【解析】如图,作AD ⊥x 轴,垂足为D ,CE ⊥x 轴,垂足为E. 约定49,,,A m C n m n ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭(m<0,n>0) 由k 字形结论可得AD OD OE CE =即49mm nn--=化简得mn=-6再根据平行四边形坐标特点相邻之和减相对可得00490B B x m n y m n =+-=⎧⎪⎨=-+-⎪⎩∴1366,6,666B m n y =-===- ∴136) 三、解答题(本大题含8个小题,共60分)解答时应写出必要的文字说明、演算步骤或推理过程 16.解下列方程:(每题4分,共8分) (1)x 2-8x+1=0; 解:移项得:x 2-8x=-1 配方得:x 2-8x+42=-1+42 即(x-4)2=15直接开平方得4x -=∴原方程的根为1244x x ==D(2)x(x-2)+x-2=0解:提取公因式(x-2)得(x-2)(x+1)=0 ∴原方程的根为122,1x x ==-17.(本题6分)已知矩形ABCD,AE 平分∠DAB 交DC 的延长线于点E,过点E 作EF ⊥AB,垂足F 在边AB 的延长线上,求证:四边形ADEF 是正方形.【解析】∵矩形ABCD ∴∠D=∠DAB=90°,∵EF ⊥AB ∴∠F=90° ∴四边形ADEF 是矩形 ∵∠D=90°∴ED ⊥DA∵AE 平分∠DAB ,EF ⊥AB ∴ED=EF ∴四边形ADEF 是正方形 18.(本题9分)花园的护栏由木杆组成,小明以其中三根等高的木杆为观测对象,研究它们影子的规律图1,图2中的点A,B,C 均为这三根木杆的俯视图(点A,B,C 在同一直线上) (1)图1中线段AD 是点A 处的木杆在阳光下的影子,请在图1中画出表示另外两根木杆同一时刻阳光下的影子的线段;(2)图2中线段AD,BE 分别是点A,B 处的木杆在路灯照射下的影子,其中DE ∥AB,点O 是路灯的俯视图,请在图2中画出表示点C 处木杆在同一灯光下影子的线段;(3)在(2)中,若O,A 的距离为2m,AD=2.4m,OB=1.5m,则点B 处木杆的影子线段BE 的长为___________m【解析】(1)如图1,线段BE,CF 即为所求(太阳光是平行光,考查平行投影)(2)如图2,线段CG 即为所求;(考查点投影) ⑶1.8 ∵DE//AB ∴OA OB OD OE =即2 1.51.822.4 1.5OA OB BE m OA OD OB BE BE=∴=∴=++++ 19.(本题6分)王叔叔计划购买一套商品房,首付30万元后,剩余部分用贷款并按“等额本金”的形式偿还,即贷款金额按月分期还款,每月所还贷款本金数相同,设王叔叔每月偿还贷款本金y 万元,x 个月还清,且y 是x 的反比例函数,其图象如图所示 (1)求y 与x 的函数关系式;(2)王叔叔购买的商品房的总价是__________万元;(3)若王叔叔计划每月偿还贷款本金不超过2000元,则至少需要多少个月还清?【解析】(1)设y 与x 之间的函数关系式为ky x= (k ≠0). 根据题意,得点(120,0.5)在k y x =的图象上,∴0.5120k=解得k=60∴y 与x 之间的函数关系式为60y x= (x>0)(2)90;∵王叔叔每月偿还贷款本金y 万元,x 个月还清∴贷款金额xy=60万元 ∴王叔叔购买的商品房的总价为首付与贷款金额的和即30+60=90(万元) (3)2000元=0.2万元 根据题意,得y=0.2,x=300由图,y ≤2000的图像位于Ⅱ区域即x ≥300Ⅱ0.2∴至少需要300个月还清.20.(本题6分)新年联欢会,班里组织同学们进行才艺展示,如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏.每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.【解析】转动转盘两次所有可能出现的结果列表如下:由列表可知共有12种结果,每种结果出现的可能性相同小明恰好展示“唱歌”和“演奏”才艺的结果有2种:(1, 4),(4,1)所以小明恰好展示“唱歌”和“演奏”才艺的概率是21.12621.(本题6分)为了弘扬山西地方文化,我省举办了“第三届山西文化博览会”,博览会上一种文化商品的进价为30元/件,售价为40元/件,平均每天能售出600件.调查发现,售价在40元至60元范围内,这种商品的售价每上涨1元,其每天的销售量就减少10件,为使这种商品平均每天的销售利润为10000元,这种商品的售价应定为多少元?解:设这种商品的涨价x元,根据题意,得(40-30+x )(600-10x )=10000即(10+x )(60-x )=1000 ()()106070(205070,20501000)x x ++-=+=⨯= 解得x 1=10,x 2=40∴售价为40+10=50或40+40=80∵售价在40元至60元范围内∴售价应定为50元 答:售价应定为50元. 22.(本题12分)综合与实践: 问题情境:如图1,矩形ABCD 中,BD 为对角线,ADk AB= ,且k>1.将△ABD 以B 为旋转中心,按顺时针方向旋转,得到△FBE(点D 的对应点为点E,点A 的对应点为点F),直线EF 交直线AD 于点G(1)在图1中连接AF,DE,可以发现在旋转过程中存在一个三角形始终与△ABF 相似,这个三角形是_______,它与△ABF 的相似比为______(用含k 的式子表示); 【答案】(1)△21:1k + 【解析】本题考查子母牵手模型 由旋转性质可得△ABD ≌△FBE ∴BA=BF,BD=BE ,∠ABD=∠FBE ∴,AB BFABF DBE BD BE=∠=∠∴△ABF ∽△DBE ∵ADk AB =∴△DBE 与△ABF 相似比为21BD k AB+=数学思考:(2)如图2,当点E 落在DC 边的延长线上时,点F 恰好落在矩形ABCD 的对角线BD 上,此时k 的值为______【解析】由旋转性质可得△ABD ≌△FBEGEFD CBA B∴BD=BE ,AD=FE ∵矩形ABCD ∴AD=BC ∴EF=BC∵BD FE DE BC = (等面积转换) ∴BD=DE ∴等边三角形BDE∴tan 60ADAB== 实践探究(3)如图3,当点E 恰好落在BC 边的延长线上时,求证:CE=FG; 【解析】(首推方法2) 方法1:常规法 设EF 与BD 交于点O由旋转性质可得△ABD ≌△FBE ∴∠ADB=∠FEB,BD=BE,AD=FE,∵四边形ABCD 是矩形,AD//BC,AD=BC ∴∠ADB=∠DBC,∠FEB=∠EGD ∠ADB=∠EGD,∠FEB=∠DBC OD= OG, OE=OBOD+OB=OG+OE,即BD=GE ∵BD=BE ∴BE= EG∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE 方法2面积法由旋转性质可得△ABD ≌△FBE ∴∠BAD=∠BFE,BA=BF,AD=FE, ∵四边形ABCD 是矩形,AD//BC,AB=DC ∴BDE BGE S S BE DC GE BF ∆∆=∴= ∵BA=BF, AB=DC ∴DC=BF ∴BE=GE∵CE= BE- BC, GF= GE- EF, E 且BC= AD=FF ∴CE= GE (4)当k=43时,在△ABD 绕点B 旋转的过程中,利用图4探究下面的问题OGDA BF GDA BF请从A,B 两题中任选一题作答,我选择 A:当AB 的对应边FB 与AB 垂直时,直接写出DGAB的值. 【答案】1733或 【解析】如图B:当AB 的对应边FB 在直线BD 上时,直接写出DG AB的值 【答案】51063或【解析】如图 情况1:425cos 5255236AD FD m ADB GD m BD GD GD mDG AB m ∠==∴=∴=∴==情况2:48cos 105101033AD FD mADB GD m BD GD GD DG m AB m ∠==∴=∴=∴==23.(本题12分)如图1,平面直角坐标系中,△OAB 的顶点A,B 的坐标分别为(-2,4)、(-5,0).将△OAB 沿OA 翻折,点B 的对应点C 恰好落在反比例函数ky x=(k ≠0)的图象上4m3m3mG2m3m3mEFDC 4m3m5m3mEDACBG(1)判断四边形OBAC 的形状,并证明. 【解析】(1)四边形OBAC 是菱形 证明:过点A 作AE ⊥x 轴于点E∵A(-2,4)∴ OE=2, AE=4 ∵B(-5,0)∴BE= OB- OE= 3 在Rt △ABE 中,由勾股定理得22AE BE +=5∴ AB= BO∵△AOB 沿AO 折叠,点B 的对应点是点C ∴AB= AC, OB= OC ∴AB= OB= AC = OC. ∴四边形OBAC 是菱形 (2)直接写出反比例函数ky x=(k ≠0)的表达式. 【答案】12y x=【解析】20(5)3,4004C A O B C A O B x x x x y y y y =+-=-+--==+-=+-= ∴C (3,4)∵C 恰好落在反比例函数k y x =的图象上∴4123kk =∴=∴12y x = (3)如图2,将△OAB 沿y 轴向下平移得到△OA'B',设平移的距离为m(0<m<4),平移过程中△O'A'B'与△OAB 重叠部分的面积为S.探究下列问题请从A,B 两题中任选一题作答,我选择___________ A:若点B 的对应点B’恰好落在反比例函数ky x=(k ≠0)的图象上,求m 的值,并直接写出此时S 的值【解析】连接BB’△OAB 沿y 轴向下平移得到△OA’B', BB’∥y 轴,BB’=m∵B(-5,0)∴点B'的横坐标为-5将x=-5代入12y x=.得y=-2.4 B'(-5,-2,4),BB’=2.4,即m=2.4 B:若S=12OAB S ∆,求m 的值; 【解析】连接AA ′并延长AA’交x 轴于点H,设A'B',A’O′交OB 于点M,N 则AA ′=m,由平移可知∠MAN=∠BAO,AH ⊥OB,A’M∥AB, ∴△A’MN ∽△ABO2122A MN ABO S A H A H S AH AH '''⎛⎫==∴= ⎪⎝⎭ AH=4,∴22A H '=∴AA’=AH -A’H=4-22即m=4-22(4)如图3,连接BC,交AO 于点D,点P 是反比例函数ky x= (k ≠0)的图象上的一点, 请从A,B 两题中任选一题作答,我选择____________A:在x 轴上是否存在点Q,使得以点O,D,P ,Q 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的平行四边形的顶点P ,Q 的坐标;若不存在,说明理由; 【答案】存在,点P 与Q 的坐标如下:P 1(6,2)与Q 1(7,0); P 2(6,-2)与Q 2(-7,0); P 3(-6,-2)与Q 3(-7,0);【解析】由题意D 为AO 中点∵A(-2,4) ∴D (-1,2)设Q (t ,0),P (12,m m) OP 为对角线:()016127002Q O P D Q O P D x x x x t m m t y y y y m ⎧=+-∴=+--=⎧⎪⇒⎨⎨==+-∴=+-⎩⎪⎩∴P 1(6,2)与Q 1(7,0) OD 为对角线:0(1)161270202P O D Q P O D Q x x x x m t tm t y y y y m =+-∴=+--=--⎧=⎧⎪⇒⎨⎨=-=+-∴=+-=⎩⎪⎩∴P 2(6,-2)与Q 2(-7,0);PD 为对角线:(1)06127020Q P D O Q P D O x x x x t m m t y y y y m =+-∴=+--⎧=-⎧⎪⇒⎨⎨=-=+-∴=+-⎩⎪⎩∴P 3(-6,-2)与Q 3(-7,0) B:在坐标平面内是否存在点Q,使得以点A,O,P ,Q 为顶点的四边形是矩形?若存在,直接写出所有满足条件的点Q 的坐标;若不存在,说明理由【答案】存在,点Q 的坐标如下()()()12344,22664,10,5,(262,64)Q Q Q Q ----【解析】先求P 点坐标,分别过O 、A 作直线交12y x=于 P 1,P 2,P 3,P 4设P 2P 4所在直线为y=kx ,P 2(m ,n )∴n=mk 由A(-2,4)易得tan ∠1=tan ∠2=12则12n k m == 直线12y x =与12y x =联立解得262666x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩∴((2426,6,26,6P P -- 222260262Q A P O x x x x =+-=-+=,2246064Q A P O y y y y =+-=+=∴()22664Q 同理4(262,64)Q -- 设P 1P 3所在直线为12y x =+b 将A(-2,4)代入可得b=5 152y x =+与12y x =联立解得122,16x x y y =-=⎧⎧⎨⎨=-=⎩⎩∴()()132,6,12,1P P --()112024Q P O A x x x x =+-=+--=116042Q P O A y y y y =+-=+-=∴()14,2Q同理()310,5Q --。
2017-2018学年九年级数学期末试卷及答案

2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
2017-2018学年第一学期期末检测九年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试九年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。
题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8 答案题号9 10 11 12 13 14 15 16 答案1.自行车车轮要做成圆形,实际上是根据圆的特征A.圆是轴对称图形B.直径是圆中最长的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形2.下列说法中正确的是A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“概率为0.0001的事件”是不可能事件C.“任意画出一个平行四边形,它是中心对称图形”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.两个相似多边形的面积比是9:16,其中小多边形的周长为36cm,则较大多边形的周长为A.48cm B.54cm C.56cm D.64cm4.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是A.条件不足,无法求B.π C.4πD.π5.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了A.5πcm B.3πcm C.2πcm D.πcm6.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cm B.cm C.2cm D.2cm7.如图,在直角坐标系中,正方形EFOH是正方形ABCD经过位似变换得到的,对角线OE=4,则位似中心的坐标是A.(,)B.(0,0)C.(,)D.(-2,2)8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是A.2秒钟B.3秒钟C.4秒钟D.5秒钟9.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是A.B.C.D.11.已知关于x的方程kx2+(2k+1)x+(k-1)=0有实数根,则k的取值范围为A.k≥-B.k>-C.k≥-且k≠0D.k<-12.如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O)20米的点A处,沿AO所在直线行走12米到达点B时,小明身影长度A.变长2.5米B.变短2米C.变短2.5米D.变短3米13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是A.B.C. D.14.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是①当c=0时,函数的图象经过原点;②当b=0时,函数的图象关于y轴对称;③函数的图象最高点的纵坐标是;④当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根.A.0个B.1个C.2个D.3个15.如图,在平面直角坐标系中,A(-5,0),B(0,10),C(8,0),⊙A的半径为5.若F是⊙A上的一个动点,线段CF与y轴交于E点,则△CBE面积的最大值是A.B.40 C.20 D.16.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.18.如图,AB是⊙O的直径,AC是弦,D是AC的中点,若∠BAC=30°,则∠DCA=.19.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△AOB连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是;第17个三角形的直角顶点的坐标是.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)小明同学解一元二次方程x2-4x-1=0的过程如下所示问题:(1)小明解方程的方法是,他的求解过程从第步开始出现错误,这一步的运算依据应该是;(2)利用上面的方法正确解这个方程.21.(本题满分9分)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?22.(本题满分9分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.23.(本题满分9分)如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ADB∽△OBC;(2)连结CD,试说明CD是⊙O的切线;(3)若AB=2,,求AD的长.(结果保留根号)24.(本题满分10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移个单位长度得到点B ,判断四边形OABC的形状并证明你的结论.25.(本题满分11分)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y (m )关于飞行时间x (s )的函数图象(不考虑空气的阻力),已知足球飞出1s 时,足球的飞行高度是2.44m ,足球从飞出到落地共用3s . (1)求y 关于x 的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m (如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m 处的守门员至少要以多大的平均速度到球门的左边框?26.(本题满分12分)如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA=1,OC=3. (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,且△QBC 为直角三角形,求点Q 的坐标. (备注:两点()11M x y ,,()22N x y ,之间的距离为()()222121MN x x y y =-+-)参考答案一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)题号 1 2 3 4 5 6 7 8答案 C C A D B D D B题号9 10 11 12 13 14 15 16 答案 B A A D C B A B 二、(本大题有3个小题,共10分.17~18小题每个3分;19小题有2个空,每空2分)17.3;18.30°;19.(24,0),(67,).三、(本大题有7小题,共68分)20. (1)配方法,②,等式的基本性质;解:(2)x2-4x=1,x2-4x+4=1+4,(x-2)2=5,x-2=,x=2±,∴x1=2+,x2=2-.21.(1)不放回(2)(3,2)解:(3)小明获胜的可能性大.理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.22. (1)A、90.(2)等腰直角.解:(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,又∵∠D=90°,DE=2,∴.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,。
2017-2018学年度初三第一学期期末数学试卷

2017~2018学年第一学期期末考试九年级数学试题注意:1.本次考试时间为120分钟,满分150分;2.所有答题一律在答题卡相应题号的区域内完成,超出无效....! 一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号...........涂.黑.) 1、甲乙两人在相同的条件下各射靶10次,他们的环数的方差分别为,S 2甲=3.4,S 2乙=2.1,则射击稳定程度是A 、甲高B 、乙高C 、两人一样D 、不能确定 2.二次函数23(2)1y x =--+的图象的顶点坐标是A.(-2,1)B.(2,1)C.(-2,1-)D.(2,1-)3.在一个不透明的盒子中装有8个白球,若干个黄球,除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为45,则黄球的个数为 A. 2 B. 4 C. 12 D. 164.两个相似多边形的面积比是16:9,其中较大多边形周长为48cm ,则较小多边形周长为 A .54cm B .36cm C .56cm D .64cm5.在Rt△ABC 中,∠C=90°,AC =2,BC =3,那么下列各式中,正确的是A .sinB =23 B .cosB =23C .tanB =23D .tanB =326.如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,8),BC 的中点D 在y 轴上,且在A 的下方,点E 是边长为2,中心在原点 的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过 程中DE 的最小值为A.4B.34-C.6D.6二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,只需把答案直接填写在答题卡上相应的位置.........) 7.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是 ▲ _的.(填“公平”或“不公平”)8.已知线段a=4,b=16,则a 、b 的比例中项为 ▲ .9.如图,D 、E 两点分别在△ABC 的边AB 、AC 上,DE 与BC 不平行,当满足条件 ▲ (写出一个即可)时,△ADE 与△ACB 相似.10.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是5,,那么另一组数据x 1-2,x 2-2,x 3-2,x 4-2,x 5-2的平均数是 ▲ .11.如图,半径为5的⊙O 中,弦AB 的长为8,则这条弦的弦心距为 ▲ .12.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x 2)2+1的图象上,若x 1<x 2<2,则y 1 ▲ y 2(填“>”“=”或“<”).13. 若一个圆锥的底面半径为3cm ,母线长为4cm ,则这个圆锥的侧面积为 ▲ .14.抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ▲ 。
2017-2018上学期九年级数学期末试卷

2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。
初中数学2017-2018第一学期期末九数试卷

2017—2018学年度第一学期期末教学质量检测九年级数学试卷注意事项:1.答卷前,先将密封线左侧的项目填写清楚.2.答卷时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.一、选择题:(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2cos 45°的值等于……………………………………………【】(A )2 (B )22 (C )42 (D )22 2.一元二次方程x 2 –2x=的解是……………………………………………………【 】(A )0 (B )0或2 (C )2 (D )此方程无实数解3.数学课上,老师让学生尺规作图画Rt△ABC ,使其斜边AB =c ,一条直角边BC =a ,小明的作法如图1,你认为这种作法中判断∠ACB 是直角的依据是………………【 】(A ) 勾股定理 (B ) 勾股定理是逆定理 (C ) 直径所对的圆周角是直角 (D ) 90°的圆周角所对的弦是直径4.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图2的统计图.在每天所走的步数这组数据中,众数和中位数分别是…………………………………………………【 】(A )1.2,1.3 (B )1.4,1.3 (C )1.4,1.35 (D )1.3,1.35.如图3,在平面直角坐标系中,已知点O (0,0),A (6,0),B (0,8),以某点为位似中心,作出与△AOB 的位似比为k 的位似△CDE ,则位似中心的坐标和k的值分别图 2图1为………………………………………………………………………………【 】(A )(0,0),2 (B )(2,2),2 (C )(2,2),21(D )(1,1),21 6.已知二次函数y=ax 2+bx +c 的x 、y 的部分对应值如下表:为…………………………………………………【 】(A )y 轴 (B)直线x =25 (C )直线x =1 (D)直线x =23 7.在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好既是中心对称图形又是轴对称图形的概率是……………………………【 】 (A ) 1 (B ) (C )(D ) 8.如图4,函数y=xk的图象经过点A (1,﹣3),AB 垂直x 轴 于点B ,则下列说法正确的是………………………【 】 (A )k =3 (B )x <0时,y 随x 增大而增大 (C )S △AOB =3 (D )函数图象关于y 轴对称9.如图5,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =35°,则∠OAC 的度图4A N D CE M图7数是…【 】(A )35° (B )70° (C )65° (D )55° 10.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电………………………………………………………………【 】 (A )41度 (B )42度 (C )45.5度 (D )46度11.如图6,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是………………【 】(A )32 cm (B )3 cm (C )332 cm (D )1cm 12.如图7,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则NM ∶MC 等于……………………………………………………………………【 】 (A )1∶2 (B )1∶3 (C )1∶4 (D )1∶5图6 图513.某厂前年缴税30万元,今年缴税36.3万元,若该厂缴税的年平均增长率为x,则可列方程…………………………………………………………………………………【 】(A ) 30x 2=36.3 (B ) 30(1-x )2=36.3 (C ) 30+30(1+x )+30(1+x )2=36.3 (D ) 30(1+x )2=36.314. 如图8,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α, AB = 4,则AD 的长为…………………………………………………………………………【 】 (A )316 (B )320 (C )3 (D )516图10ABCDE图8图915.如图9为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是…………【 】(A )△ACD 的外心(B )△ABC 的内心 (C )△ACD 的内心 (D )△ABC 的外心16.如图10,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx+c =0的两个根是x 1=﹣1,x 2=3;③3a +c >0; ④当y >0时,x 的取值范围是﹣1≤x <3;⑤当x <0时,y 随x 增大而增大;其中结论正确的个数是……………………………………………………【 】(A )4个 (B )3个 (C )2个 (D )1个 二、填空题:(本大题共3个小题,17-18每小题3分,19每空2分,共10分.把答案写在题中横线上) 17.二次函数y =2(x ﹣3)2﹣4的最小值为.18.如图11,在△ABC 中,∠ACB =90°,AC =1,AB =2,以A 为圆心,以AC 为半径画弧,交AB 于D ,则扇形CAD的周长是 .(结果保留 )三、解答题(本大题共6个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20. (本题满分9分) 已知关于x 的一元二次方程x 2+3x +1﹣m =0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为负整数,求此时方程的根.21. (本题满分9分) 为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成图13-1的条形统计图和图13-2扇形统计图,但均不完整.请你根据统计图解答下列问题:(1)求参加比赛的学生共有多少名?并补全图13-1的条形统计图. (2)在图13-2扇形统计图中,m 的值为_____,表示“D 等级”的扇形的圆心角为_____度;(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A 等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.图13-1 图13-222. (本题满分9分)如图14,某学校的围墙CD到教学楼AB的距离CE=22.5米,CD=3米.该学校为了纪念校庆准备彩旗连接线AC,∠ACE=22°.(1)求彩旗的连接线AC的长(精确到0.1m);(2)求教学楼高度AB .23. (本题满分9分) 如图15ABCD 的边AB =2,顶点A 坐标为(1,b ),点D 坐标为(2,b +1).(1)点B 的坐标是_____,点C 的坐标是_____(用b 表示);(2)若双曲线ky x=ABCD 的顶点B 和D ,求该双曲线的表达式; (3)若ABCD 与双曲线4(0)y x x=>总有公共点,求b 的取值范围.24. (本题满分10分)如图16,△ABC∽△DEC,CA=CB,且点E在AB的延长线上.(1)求证:AE=BD;(2)求证:△BOE∽△COD.(3)已知:CD=10,BE=5,求OE的长.图1625. (本题满分10分)经研究表明,某市跨河大桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,函数图像如图17所示.(1)求当28≤x ≤188时,V 关于x 的函数表达式;(2)求车流量P (单位:辆/时)与车流密度x 之间的函数关系式.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)(3)若车流速度V 不低于50千米/时,求当车流密度x 为多少时,车流量P 达到最大,并求出这一最大值.图1726. (本题满分12分)如图18-1,以边长为8的正方形纸片ABCD 的边AB 为直径作⊙O ,交对角线AC 于点E .(1)线段AE =____________;(2)如图18-2,以点A 为端点作∠DAM =30°,交CD 于点M ,沿AM 将四边形ABCM 剪掉,使Rt△ADM 绕点A 逆时针旋转(如图18-3),设旋转角为α(0°<图18-1 图18-2 图18-3α<150°),旋转过程中AD与⊙O交于点F.①当α=30°时,请求出线段AF的长;②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;③当α=___________°时,DM与⊙O相切.备用图备用图。
2017-2018九年级数学

2017-2018学年九年级数学期末考试试卷满分:120分 考试时间:100分钟 一、选择题(本大题有7小题,每小题3分,共21分.) 1.下列计算正确的是( )A .2-2=0B .3+2= 5C .(-2)2=-2D .4÷2=2 2.方程(x -3)2=0的根是( )A .x =-3B .x =3C .x =±3D .x = 33.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AE=4, EC=2,则AD ︰DB 的值为 ( )A .21B .23C .32D .24.若矩形ABCD 和四边形A 1B 1C 1D 1相似,则四边形A 1B 1C 1D 1一定是( ) A .正方形 B .矩形 C .菱形 D .梯形 5.若二次根式2x -4有意义,则x 的取值范围是 ( )A .x <2B .x ≤2C . x >2D .x ≥2 6.下列说法正确的是 ( )A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨B .“抛一枚硬币正面朝上的概率为21”表示每抛2次就有一次正面朝上 C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖 D .“抛一枚正方体骰子,朝上的点数为2的概率为61”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在61附近. 7.在平面直角坐标系中,已知点O (0,0),A (2,4).将线段OA 沿x 轴向左平移2个单 位,记点O 、A 的对应点分别为点O 1、A 1,则点O 1,A 1的坐标分别是 ( )A .(0,0),(2,4)B .(0,0),(0,4)C .(2,0),(4,4)D .(-2,0),(0,4) 二、填空题(本大题有10小题,每小题3分,共30分) 8. 计算:2×3= .9. 在一幅洗好的52张扑克牌中(没有大小王),随机地抽取一张牌,则这张牌是红桃K 的概率是 .10.计算:2cos60°-tan45°= .11.若关于x 的方程x 2=c 有解,则c 的取值范围是 .E D CBA(第3题图)12.已知线段a 、b 、c 满足b 是a,c 的比例中项,且b =3,则ac = .13.如图所示,某河堤的横断面是梯形ABCD ,BC AD ∥,迎水坡AB 长26米,且斜坡AB 的坡度为125,则河堤的高BE 为 米.14.x 2-8x +( )=(x - )2.15.如图,飞机A 在目标B 的正上方3000米处,飞行员测得地面目标 C 的俯角∠DAC =30°,则地面目标BC 的长是 米. 16.已知梯形ABCD 的面积是20平方厘米,高是5厘米, 则此梯形中位线的长是 厘米. 17. 若a =23+1,则a 2+2a +2的值是 . 三、解答题(本大题有7小题,共69分) 18.(本题满分18分每小题6分)(1)计算:62-52-5+35 . (2)计算:)1(932x xx x +-.(3)解方程:x 2+4x -2=0.19.(满分7分)小李拿到四张大小、质地均相同的卡片,上面分别标有数字1,2,3,4,他将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张. (1)用画树状图的方法,列出小李这两次抽得的卡片上所标数字的所有可能情况; (2)计算小李抽得的两张卡片上的数字之积为奇数的概率是多少?图2DCBAB C DEA(第13题图)20.(8分)高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定 价为50元,可售出400个;定价每增加1元,销售量将减少10个。
2017-2018学年上期期末考试九年级数学试题含答案

2017-2018学年上期期末考试九年级数学试题一.选择题(每小题3分,共24分)1.在1-,0,2这四个数中,最大的数是( ) A.-1 B.0 C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为( )A .1.42×105B .1.42×104C .142×103D .0.142×1064.如图,能判定ECAB 的条件是()A .B ACE ∠=∠ B .A ECD ∠=∠C .B ACB ∠=∠D .A ACE ∠=∠5.下列计算正确的是( ) A.32a a a ÷= B.()32628xx -= C.22423a a a += D.()222a b a b -=-6.在下列调查中,适宜采用调查的是( )A .了解全国中学生的视力情况B .了解九(1)班学生鞋子的尺码情况C .检测一批电灯泡的使用寿命D .调查郑州电视台《郑州大民生》栏目的收视率7.抛物线()212y x =-+的顶点坐标是( ) A.()1,2- B.()1,2-- C.()1,2- D.()1,28.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点F 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为( )秒时.ABF △和DCE △全等.A .1B .1或3C .1或7D .3或7二.填空题(每小题3分,共21分) 9.计算:2=-__________.10.已知四条线段a ,b ,c ,d 是成比例线段,即ac b d=,其中3cm,2cm,6cm a b c ===,则11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋子中搅匀,如果不放回的从中随机连续抽取两个,则这个两个球上的数字之和为偶数的概率是__________.12.如图,点A 是反比例函数k y x=图象上的一个动点,过点A 作AB x⊥轴,AC y ⊥轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k =_____________.13如图,已知函数2y x b =+与函数3y kx =-的图象交于点P ,则不等式32kx x b ->+的解集是_____________.14.如图,如果圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且40E ∠=,60F ∠=,那么A ∠=____________.15.如图,Rt ABC △中,90ACB ∠=,3AC =,4BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点'B 处,两条折痕与斜边AB 分别交于点E 、F ,则线段'B F 的长为___________.三.解答题(本大题共8个小题,共75分)16.(本题8分) 先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中x 是方程220x x +=的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第二次阶段测试试卷
(满分:150分 考试时间:120分钟)
•选择题(本大题共有10小题,每小题3分,共30分) 1、sin60。
的值是
( )
A . 1
B.二
C.二
D.
3
2 2 2
2、抛物线y=(2x-1) 2-3的顶点坐标是
( )
1
A . (-1 , -3 )
B . (1, -3)
C . (-1 , 3)
D .( — , -3)
3、若点A(3 , -4)、B(-2 , m)在同一个反比例函数的图象上,贝U m 的值为( )
A. 6
B. -6
C. -12
D. 12
7、如图过x 轴正半轴任意一点P 作x 轴的垂线,与反比例函数和 的图象分别交于点A 和
点B ,若点C
是y 轴上任意一点,连接AC 面积为A. 1 &如图,点 果 AE=EC
4、 在平面直角坐标系中,已知点 A(-4 , 2) , B(-6 , -4),以原点0为位似中心,
相似比为1 ,把线段AB 缩小,则点A 的对应点A'的坐标是
2
A . (-2 , 1)
B . (-8 , 4)
C . (-8 , 4)或(8 ,
5、 如图,将△ ABC 放在每个小正方形的边长为 逅
5
则tan A 的值是A .
L i -- v -T
1 H i 1
0 1 1 1 一十7 [C J 1
1
1 1 ~A~~~ '—1
1
[ ■ <1 1 1 严
1 1
:B
””壬
T … LT 1 1 A 1 1 1 1 i 1 i
L.1
(第5题)
6、如图,圆锥的底面半径为 -4) D . (-2,1)或(2,-1)
1的网格中,点A, B ,C 均在格点上,
1 .
2 D .-
A. 4 n C . 12n D. 16n
B. 2
C. 3
D. 4 BC,则厶ABC 的 ( )
E 在厶ABC 边BC 上,点A 在厶DE
F 边DE 上, EF 和AC 相交于点G.如
/ AEG M B ,那么添加下列一条件后,△
ABC 不一定相似的是
B EA
EG C EG EA D DF EF ( )
EF ED
EF ED
EF AC
BC
2,母线长为6,则侧面积为
2
A AB
BC
9、已知抛物线y=ax2+bx+c的顶点为D (-1 , 2),其部分图象如图所示,给出下列结
2 2
论:①a v0;②b -4ac >0;③2a-b=0;④若点P(x o,y o)在抛物线上则ax o +bx o+w a-b .
其中结论正确的是 A.1个 B.2个C.3个D.4个( )
x
(第8题)
10、A ABD内接于o
O,
EC= 1,则AE等于
(第9题)
点C在线段AD上, AC= 2CD
A . 2
B . 3 C.
2
3 D . 2
8小题.每小题3分,共计24 分)
二.填空题(本大题共
11、在某时刻的阳光照耀下,身高160cm的阿美的影长为80cm,她身旁的旗杆影长
2L_l10m则旗杆高为
12、关于x的反比例函数
则m的取值范围为______
13、从1, 2, 3这三个数中,任意抽取两个不同的数字组成一个两位数,则这个两
位数能被3整除的概率是__________ .
14、已知二次函数y=ax2+bx+c中,函数值y与
自变量x的部分对应值如下表:则关于x的一元二次方程ax2+bx+c= 的
根是 _______ .
(m为常数),当x > 0时,y随x的增大而减小,
15
、
-3 1 lll-l
-4----
3
-5-6]s|
3C = 3f AD = 2, EF
2
3
□
16
、
17
、
如图,矩形EFGF内接于叵画,且边FG落在BC上[]若
那么矩形EFGH勺面积等于_____________
在Rt△ ABC中,/ C=90°, AC=6 BC=8点D在AB上,若以点D为圆心,AD为
半径的圆与BC相切,则。
D的半径为____________ .
如图,在平行四边形ABCD中,点N是AB上一点,且BN = 2AN, AC DN相交于
交y轴于点D,且AB=2BC点E是线段0A上一点,且OE=3EA若厶AEB的面积为2,则k的值等于_______________
三•解答题(本大题共10小题,共计96分)
19.计算题(本小题满分8分)
(1)sin45 ° ?cos60°—cos45° ?sin30 ° ; (2) ( tan30 ° ) 2017? (2 :sin45 ° ) 2018;
2
21. (8分)在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出
示“通过”(用V表示)或“淘汰”(用x表示)的评定结果•节目组规定:每位选手至少获得两位评委的“通过”才能晋级. (1)请用树形图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.
3
22、(8)如图,在Rt△ ABC中,/ C=90,点D是BC边的中点,CD=2 tanB=—.
4
(1)求AD和AB 的长;(2) 求sin / BAD的值.
x
23 (8)如图,平行四边形ABCD中,过B点作直线交AC AD于O E,交CD的延长线于F点,®
求证:0B= OE- OF |②]若AB=4 BC=6 DF=2求AE的长.
24. (10分)如图,AD是O O的直径,AB为O O的弦,OP!AQ OP与AB的延长线交于点P•
点C在0P上,且BC= PC.
(1)求证:直线BC是O0的切线;
(2)若0心3, A吐2,求BP的长.
25. (10分)如图,在平面直角坐标系中,直线I与坐标轴交于点A(-1,0)和
点B,与抛物线y 4交于点P、Q
x
(1)若tan / BAO=2求一次函数值大于反比例函数值时,自变量x的取值范围;
(2)若交点P的横坐标为m(m 0),用含m的代数式表示线段0B的长.
题
26. (10分)某商场试销一种商品,成本为每件200元,规定试销期间销售单价不低于成
本单价,且获利不得高于50% —段时间后发现销量y (件)与销售单价x (元)之间满足如下一次函数关系:
(T)求出y关于x的函数解析式,并写出销售单价x的取值范围;
(2)设商场所获利润为w元,当商品的销售单价定为多少时,才能使所获利润最大?最大利润是多少?
27. (12分)在平面直角坐标系中,四边形OAB(为矩形,点A、B的坐标分别为
(4,0 )、(4,3 ),点P为OA边上一个动点。
(1)如图帀函丄0A|于P,交OB于点Q,过Q点作弊丄A司于R.设pP*
, 四边形PQRA勺面积为S•求S与x之间的函数关系式•并求出S最大值.
(2)如图_|,若点P从O点出发向A点运动,每秒1个单位长度,M为OB上一点同时从B点出发向O点运动,每秒2个单位度,当其中一个点到达终点,另一个点也同时停止运动,连结PM则当运动时间t取何值时,|叵画为等腰三角形.
图2
28、(本小题满分14分)
如图,抛物线y ax2bx c与x轴相交于A(m, 0)、B(5+m 0) ( 2 m 0)两点,与y 轴相交于点C(0, -2),且与矩形OCDB勺边CD交于点E
(1)用含m的代数式表示抛物线的对称轴和E点的坐标;
(2)连接BC BE若/ EBD M OBC求抛物线的解析式;
(3)在(2)的条件下,求tan / CBE的值.
题
y y
第28题图备用图。