(完整版)历年平面向量高考试题汇集.doc

合集下载

平面向量题目及详细答案.doc

平面向量题目及详细答案.doc

A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。

,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。

=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。

=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。

= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。

一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。

(完整版)历年平面向量高考试题汇集.doc

(完整版)历年平面向量高考试题汇集.doc

高考数学选择题分类汇编1.【2011 课标文数广东卷】已知向量 a =(1,2),b =(1,0), c = (3,4).若 λ为实数,(a + λ b)∥ c ,则 λ=( ) 1 1A. 4 B .2 C .1 D . 22.【2011·课标理数广东卷】 若向量 a ,b ,c 满足 a ∥ b 且 a ⊥c ,则 c ·(a + 2b)= ( ) A . 4 B .3 C .2 D . 03【. 2011 大纲理数四川卷】如图 1-1,正六边形 → → →)ABCDEF 中,BA + CD +EF = ( A . 0 →→ → B. BEC. ADD. CF4.【2011 大纲文数全国卷】设向量 a ,b 满足 |a|= |b|=1,a ·b =- 1,则 |a + 2b|= ()2 A. 2 B.3 C. 5 D. 7 .5.【2011 课标文数湖北卷】若向量 a =(1,2), b = (1,- 1),则 2a +b 与 a - b 的夹 角等于 ( ) 3ππ π π A .- 4B. 6C.4D. 46.【2011 课标理数辽宁卷】 若 a ,b ,c 均为单位向量, 且 a ·b = 0,(a - c) ·(b - c)≤0,则|a +b - c|的最大值为 ( ) A. 2- 1 B .1 C. 2 D . 2【解析】 |a +b -c|= a + b - c 2= a 2+ b 2+c 2+2a ·b -2a ·c - 2b ·c ,由于 a ·b =0,所以上式=3-2c ·a +b ,又由于 (a -c) ·(b -c)≤0,得 (a + b) ·c ≥c 2= 1,所以|a + b - c|= 3-2c ·a +b ≤1,故选 B.7.【2011 课标文数辽宁卷】已知向量 a =(2,1),b =(-1,k),a ·(2a -b)=0,则 k =()A .- 12B .- 6C .6D .121 8.【2011 大纲理数 1 全国卷】设向量 a ,b ,c 满足 |a|=|b|= 1, a ·b =- 2,〈 a - c ,b -c 〉= 60°,则 |c|的 最大 值 等 于 ( ) A . 2 B. 3 C. 2 D .19.【2011 课标理数北京卷】已知向量 a =( 3, 1),b =(0,- 1),c =(k , 3).若a - 2b 与 c 共线,则 k =________.10 .【 2011·课标文数湖南卷】设向量 a ,b 满足 |a|=2 5,b = (2,1),且 a 与 b 的方向相反,则 a 的坐标为 ________.【解析】 因为 a +λb =(1,2) +λ(1,0) = (1 +λ,2) ,又因为 (a + λb) ∥c ,(11+λ) ×4-2×3=0,解得 λ=2.【解析】 因为 a ∥b 且 a ⊥ c ,所以 b ⊥ c ,所以 c ·(a + 2b) =c ·a +2b ·c =0.→ → → → → → → → →【解析】 BA +CD + EF =BA + AF -BC =BF - BC =CF ,所以选 D.【解析】 | a +2b | 2 =(a + 2b) 2=| a | 2+4a ·b +4| b | 2 =3,则 | a +2b | = 3,故选 B【解析】 因为 2a +b =( 2, 4) +( 1,- 1) =( 3,3) ,a -b =( 0, 3) ,所以| 2a +b | = 3 2 , | a -b | = 3. 设2a + b 与 a - b 的夹角为 θ, 则 cos θ=( ) () (3,3 ) () 2 0,π π 2a +b · a -b =· 0,3= 2 ,又 θ∈ [] ,所以 θ=4.|| ||32×32a + ba -b【解析】 a ·(2a -b)= 2a 2- a ·b = 0,即 10-(k -2)= 0,所以 k = 12,故选 D.【解析】设向量 a ,b ,c 的起点为 O ,终点分别为 A ,B ,C ,由已知条件 得,∠ AOB = 120°,∠ACB = 60°,则点 C 在△ AOB 的外接圆上,当 OC 经过圆心 时, |c|最大,在△ AOB 中,求得 AB = 3,由正弦定理得△ AOB 外接圆的直径是3=2,|c |的最大值是 2,故选 A. sin120 °【解析】 因为 a -2b = (3,3),由 a -2b 与 c 共线,有 k = 3,可得 k =1.3 3【解析】 因为 a 与 b 的方向相反,根据共线向量定义有: a =λb( λ<0),所以 a =(2 λ,λ).a 2 2或 λ=2(舍去 ),故 a =(- 4,- 2). 由 | |=25,得 2λ +λ=2 5? λ=- 2 11.【2011·课标理数天津卷】已知直角梯形 ABCD 中, AD ∥ BC ,∠ ADC =90°,= , = , 是腰 上的动点,则 → → .AD BC DC+3PB 的最小值为2 1 P |PA | ________12.【2011·课标理数浙江卷】 若平面向量 α,β满足 | α|=1,| β|≤ 1,且以向量 α,1β为邻边的平行四边形的面积为 2,则 α与 β的夹角 θ的取值范围是 ________.13 .【2011·新课标理数安徽卷】 已知向量 a ,b 满足 (a +2b) ·(a - b)=- 6,且|a|=1,|b|=2,则 a 与 b 的夹角为 ________.14.【2011·课标文数福建卷】若向量 a = (1,1), b = (-1,2),则 a ·b 等于 ________.→ → →15.【2011·课标理数湖南卷】 在边长为 1 的正三角形 ABC 中,设BC =2BD ,CA = → → →3CE ,则 AD ·BE =________.16.【2011 课标理数江西卷】已知 |a|=|b|=2,(a +2b) ·(a - b)=- 2,则 a 与 b 的夹角为 ________.17.【2011·课标文数江西卷】已知两个单位向量e 1 , 2π的夹角为 ,若向量 b 1= 1e3 e-2e 2, 2=1+2,则b 3e 4e b ·b =________.18.【2011 课标文数全国卷】 已知 a 与 b 为两个不共线的单位向量, k 为实数,若向量 a +b 与向量 ka -b 垂直,则 k = ________. 19.【10 安徽文数】设向量 a (1,0) , b ( 1 , 1 ) , 则下列结论中正确的是2 2(A) a b(B) a ?b2 (C) a / / b(D) a b 与 b 垂直220. 【10 重庆文数】若向量 a (3, m) , b (2, 1) , agb 0 ,则实数 m 的值为 (A )3( B )3(C )2(D )622【解析】 建立如图 1-6 所示的坐标系,设 DC = h ,则 A(2,0) ,B(1,h).设 P(0,y), (0≤y ≤h) → →则 PA =(2 ,- y), PB = (1,h -y),∴ |→+ →|= 25+ 3h - 4y 2 ≥ 25=5. PA 3PB【解析】 由题意得: |α||β| θ=1,∵ |α|= ,|β|≤ ,∴ sinθ= 1≥ 1sin 2 1 1 2|β| 2.π 5π又∵ θ∈(0, π),∴θ∈ 6, 6 .【解析】 设 a 与 b 的夹角为 θ,依题意有 (a + 2b) ·(a -b)=a 2+a ·b - 2b 2=- 7+2cos θ=- 6,所以 1cos θ=2.因为 π0≤θ≤π,故 θ=3.【解析】 由已知a =(1,1),b = (-1,2),得a ·b =1×(-1)+1×2=1.【解析】 由题知, D 为 BC 中点, E 为 CE 三等分点,以 BC 所在的直线为 x 轴, 以 AD 所在的直线为 y 轴,建立平面直角坐标系,可得 A 0, 3 ,D(0,0),B -1,0 ,2 21 , 3 → ,- 3 → 5 3→ → 3 3 1 E,故 AD =,BE = , ,所以 AD ·BE =-× =- .3 6 2 6 6 2 64【解析】 设 a 与 b 的夹角为 θ,由 (a + 2b)(a - b)=- 2 得1π|a|2+a ·b -2|b|2= 4+ 2× 2× cos θ-2×4=- 2,解得 cos θ=2,∴θ=3.【解析】 |e 1 = 2 =且11- 2 · 1+ 2 = 21·2-1·2= ,所以 b 1·2=1-||e | 1e e2b(e 2e ) (3e 4e ) 3e 2e e122- 8=- 6.8e = 3- 2× 2【解析】 由题意,得 (a + b) ·(ka -b)=k |a |2- ·+ ·- |b |2=k + (k -·-1 a b ka b1)a b = (k -1)(1+ a ·b)=0,a 与 b 不共线,所以 a ·b ≠-1,所以 k - 1= 0,解得 k= 1.【解析】 a b = ( 1,1) , ( a b)gb 0 ,所以 a b 与 b 垂直 . 【解析】 D2221.【 10 重庆理数】已知向量 a ,b 满足 a ?b 0, a 1, b 2, ,则 2a bA. 0B. 2 2C. 4D. 8 解析: 2a b(2a b )2 424a b b 282 2a22.【10 湖南文数】若非零向量 a ,b 满足 |a | | b |,(2 a b) b 0 ,则 a 与 b 的夹角为 CA. 30B. 60C. 120D. 150uur uur23.【 10 全国卷理数】 V ABC 中,点 D 在 AB 上,CD 平方 b ,ACB .若 CB a ,CA,uuur2 2 1 ( )34( )43,则 CD (A )1a 1b 2ab (B ) abCabDab3 333 5555【解析】因为 CD 平分 ACB ,由角平分线定理得AD= CA 2,所以 D 为 AB的DBCB 1三 等 分点 , 且uuur2 uuur 2uuur uuur,所 以ADAB 3 (CB CA)uuur uuur uuur2 uuur 1 uuur 2 r 1 r3CD CA+ADCB CA a b ,选 B.3 3 3 3uuur r uuur r24. 【 10辽宁文数】平面上 O, A, B 三点不共线,设 OA a, OB b , 则 OAB 的面积等于( A ) r 2 r 2 r r(B ) r 2 r2r r a b (a b)2 a b (a b) 2( C )1 r2 r 2r r 2(D )1 r2 r 2r r 22a b(a b)a b(a b)2S1 r r r r 1 r r 2r r 1 r r OAB2 | a || b | sin a,b2 | a || b | 1 cosa,b 2 | a ||b | 1r r 2 ( a b) r 2 r 2| a | | b |1 r2 r 2r r 2 2 a b(a b)uuur uuur25.【 10 全国卷】△ ABC 中,点 D 在边 AB 上, CD 平分∠ ACB ,若 CB = a , CA =b ,a = 1 ,uuur2 b ( B ) 2 a + 1b(C ) 3 a + 4b ( D )b = 2, 则 CD =(A ) 1a +4a + 3b 33335 555BDBC1uuur uuur uuur r r∵ CD 为 角 平 分 线 , ∴ADAC 2 , ∵AB CB CA a b , ∴uuur 2 uuur 2r2ruuur uuur uuur r2r2r2r1rADABab CDCAADbabab3 33,∴333326. 【10 山东理数】定义平面向量之间的一种运算“re ”如下,对任意的 a=(m,n) ,r r rb ( p,q) ,令 a e b=mq-np ,下面说法错误的是()r r r r r r r r A. 若 a 与 b 共线,则 ae b=0B. a e b=b e aC.对任意的 r r r rr r 2 r r 2 r 2 r2 R ,有( a) e b= ( a e b) D. (a e b) +(ab) =|a| |b|r r r rr r pn-qm ,而 【解析】若 a 与 b 共线,则有 a e b=mq-np=0 ,故 A 正确;因为 b e a r r r r r r a e b=mq-np ,所以有 a e bbe a ,故选项 B 错误,故选 B 。

专题11 平面向量-三年(2017-2019)高考真题数学(理)分项汇编 Word版含解析

专题11 平面向量-三年(2017-2019)高考真题数学(理)分项汇编 Word版含解析

姓名,年级:时间:专题11 平面向量1.【2019年高考全国I 卷理数】已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6 B .π3C .2π3D .5π6【答案】B【解析】因为()-a b ⊥b ,所以2()-⋅=⋅-a b b a b b =0,所以2⋅=a b b ,所以cos θ=22||12||2⋅==⋅a b b a b b ,所以a 与b 的夹角为π3,故选B . 【名师点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为[0,]π.2.【2019年高考全国II 卷理数】已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .−3 B .−2 C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【名师点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大. 3.【2019年高考北京卷理数】设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C【解析】AB 与AC 的夹角为锐角,所以2222||||2||||2AB AC AB AC AB AC AB AC ++⋅>+-⋅,即22||||AB AC AC AB +>-,因为AC AB BC -=,所以|AB +AC |〉|BC |;当|AB +AC |〉|BC |成立时,|AB +AC |2>|AB —AC |2AB ⇒•AC 〉0,又因为点A ,B ,C 不共线,所以AB 与AC 的夹角为锐角。

(完整word版)平面向量高考试题精选(含详细标准答案)

(完整word版)平面向量高考试题精选(含详细标准答案)

平面向量高考试卷精选(一)一.选择题(共14小题)1.(2015•河北)设D为△ABC所在平面内一点,,则()A. B.C.D.2.(2015•福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.213.(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.64.(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥5.(2015•陕西)对任意向量、,下列关系式中不恒成立的是( )A.||≤||||B.||≤|||﹣|||C.()2=||2D.()•()=2﹣26.(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为( ) A.B.C. D.π7.(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为() A.B.C. D.8.(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是( )A.[4,6] B.[﹣1,+1] C.[2,2] D.[﹣1,+1]9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.110.(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(2014•安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A. B.C.D.012.(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=( )A.﹣2 B.﹣1 C.1 D.213.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.14.(2014•福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于( )A.B.2 C.3 D.4二.选择题(共8小题)15.(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.16.(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.17.(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.18.(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.19.(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.20.(2010•浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是.21.(2010•天津)如图,在△ABC中,AD⊥AB,,,则=.22.(2009•天津)若等边△ABC的边长为,平面内一点M满足=+,则=.三.选择题(共2小题)23.(2012•上海)定义向量=(a,b)的“相伴函数"为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量"为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数"构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.24.(2007•四川)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.平面向量高考试卷精选(一)参考答案与试卷解读一.选择题(共14小题)1.(2015•河北)设D为△ABC所在平面内一点,,则()A. B.C.D.解:由已知得到如图由===;故选:A.2.(2015•福建)已知,若P点是△ABC所在平面内一点,且,则的最大值等于( )A.13 B.15 C.19 D.21解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.3.(2015•四川)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C4.(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.5.(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B6.(2015•重庆)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为() A.B.C. D.π解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A7.(2015•重庆)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C. D.解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.8.(2014•湖南)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值范围是()A.[4,6] B.[﹣1,+1] C.[2,2]D.[﹣1,+1]】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值范围是.故选:D.9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.1解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选A10.(2014•天津)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.11.(2014•安徽)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为( )A. B.C.D.0解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.12.(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.2解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A14.(2014•福建)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2 C.3 D.4解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.二.选择题(共8小题)15.(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于 2 .解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.16.(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为 3 .解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:317.(2012•湖南)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则= 18 .【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1818.(2012•北京)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为 1 .【解答】解:因为====1.故答案为:119.(2011•天津)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为 5 .解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.20.(2010•浙江)已知平面向量满足,且与的夹角为120°,则||的取值范围是(0,].解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值范围是(0,]故答案:(0,]21.(2010•天津)如图,在△ABC中,AD⊥AB,,,则=.【解答】解:,∵,∴,∵,∴cos∠DAC=sin∠BAC,,在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,,=|BC|sinB==,故答案为.22.(2009•天津)若等边△ABC的边长为,平面内一点M满足=+,则= ﹣2 .解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)•(,)=﹣2.故答案为:﹣2.三.选择题(共2小题)23.(2012•上海)定义向量=(a,b)的“相伴函数"为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,其‘相伴向量’=(4,3),g(x)∈S.(2)h(x)=cos(x+α)+2cosx=(cosxcosα﹣sinxsinα)+2cosx=﹣sinαsinx+(cosα+2)cosx∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).则||==.(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan(2kπ+﹣φ)=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].令m=,则tan2x0=,m∈[﹣,0)∪(0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0)∪(0,].24.(2007•四川)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.】解:(Ⅰ)易知a=2,b=1,.∴,.设P(x,y)(x>0,y>0).则,又,联立,解得,.(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立∴,由△=(16k)2﹣4•(1+4k2)•12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①又∠AOB为锐角,∴又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4(完整word版)平面向量高考试题精选(含详细标准答案) ===∴.②综①②可知,∴k的取值范围是.。

专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。

(完整版)全国卷高考题汇编—平面向量

(完整版)全国卷高考题汇编—平面向量

2011年——2016年高考题专题汇编专题3 平面向量1、(16年全国1 文)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .2、(16年全国1 理)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .3、(16年全国2 文)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.4、(16年全国2 理)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =(A )-8 (B )-6 (C )6 (D )85、(16年全国3 文)已知向量BA →=(12,2),BC →=(2,12),则∠ABC = (A )30° (B )45° (C )60° (D )120°6、(16年全国3 理)已知向量1(,)22BA = ,31(),22BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)12007、(15年新课标2 文)向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b aA .-1B .0C .1D .38、(15年新课标2理)设向量,不平行,向量与平行,则实数_________.9、(15年新课标1文)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 10、(15年新课标1理)设D 为ABC 所在平面内一点3BC CD =,则(A )1433AD AB AC =-+ (B) 1433AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =-11、(14年新课标3 文)已知a b 、为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .212、(14年新课标3 理)若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2BC .1 D13、(14年新课标2 文)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 514、(14年新课标2 理)设向量a,b 满足|a+b |=|a -b ,则a ⋅b = ( )A. 1B. 2C. 3D. 515、(14年新课标1文)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.AD 21 C. BC 21 D. BC16、(14年新课标1理)已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 .17、(13全国2 文 理)已知正方形ABCD 的边长为2, E 为CD 的中点,,则 =_______.18、(12全国2 文)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=19、(11全国2 文)若向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A B CD 20、(11全国2 理)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于A .2BCD .1。

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。

高考平面向量及其应用专题及答案doc

高考平面向量及其应用专题及答案doc

一、多选题1.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤B .若a b c b ⋅=⋅且0b ≠,则a c =C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭2.已知ABC 的三个角A ,B ,C 的对边分别为a ,b ,c ,若cos cos A bB a=,则该三角形的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( ) A .cos cos 0A B +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=4.已知在平面直角坐标系中,点()10,1P ,()24,4P .当P 是线段12PP 的一个三等分点时,点P 的坐标为( ) A .4,23⎛⎫⎪⎝⎭B .4,33⎛⎫⎪⎝⎭C .()2,3D .8,33⎛⎫ ⎪⎝⎭5.设向量a ,b 满足1a b ==,且25b a -=,则以下结论正确的是( ) A .a b ⊥B .2a b +=C .2a b -=D .,60a b =︒6.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-7.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ= 8.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形9.已知平行四边形的三个顶点的坐标分别是(3,7),(4,6),(1,2)A B C -.则第四个顶点的坐标为( ) A .(0,1)-B .(6,15)C .(2,3)-D .(2,3)10.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±11.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=12.已知正三角形ABC 的边长为2,设2AB a =,BC b =,则下列结论正确的是( ) A .1a b +=B .a b ⊥C .()4a b b +⊥D .1a b ⋅=-13.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形 14.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-C .若||||||a b a b +=+,则a 在b 方向上的投影为||bD .若存在实数λ使得a b λ=,则||||||a b a b +=- 15.下列命题中正确的是( )A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-B .对于实数,m n 和向量a ,恒有()m n a ma na -=-C .若()ma mb m =∈R ,则有a b =D .若(,,0)ma na m n a =∈≠R ,则m n =二、平面向量及其应用选择题16.在ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若1c =,45B =︒,3cos 5A =,则b 等于( )A .35 B .107C .57D .1417.在ABC ∆中,角A ,B ,C 所对的边分别是a ,b ,c ,设S 为ABC ∆的面积,满足cos cos b A a B =,且角B 是角A 和角C 的等差中项,则ABC ∆的形状为( ) A .不确定 B .直角三角形 C .钝角三角形D .等边三角形18.ABC 中,内角A ,B ,C 所对的边分别为a b c ,,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则ABC 一定为直角三角形;④若3B π=,2a =,且该三角形有两解,则b 的范围是)+∞.以上结论中正确的有( )A .1个B .2个C .3个D .4个19.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定20.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,c =45B =︒,则sin C 的值等于( )A .441B .45C .425D 21.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形22.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( )A .B .C .12D .23.在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形24.下列命题中正确的是( )A .若a b ,则a 在b 上的投影为aB .若(0)a c b c c ⋅=⋅≠,则a b =C .若,,,A B CD 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ⋅>,则a 与b 的夹角为锐角;若0a b ⋅<,则a 与b 的夹角为钝角25.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为102米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A .33B .53C .73D .8326.题目文件丢失!27.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A .7B .3C .11D .1928.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2329.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )A .1-B .12-C .2-D .32-30.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .531.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-432.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B .332C .33D 333.ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,如果a ,b ,c 成等差数列,30B ∠=︒,ABC 的面积为32,那么b 等于( )A 13+ B .13C 23+ D .2334.在ABC ∆中,内角,,A B C 的对边分别是,.a b c ,若cos 2aB c=,则ABC ∆一定是( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形35.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4B .72C .258D .259【参考答案】***试卷处理标记,请不要删除一、多选题 1.AC根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知 解析:AC 【分析】根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即22||||a b a b -⋅=,cos 1θ=-,则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得53λ>-, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时53λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.2.D 【分析】在中,根据,利用正弦定理得,然后变形为求解. 【详解】 在中,因为, 由正弦定理得, 所以,即, 所以或, 解得或.故是直角三角形或等腰三角形.【点睛】 本题主要考查解析:D 【分析】 在ABC 中,根据cos cos A b B a =,利用正弦定理得cos sin cos sin A BB A=,然后变形为sin 2sin 2A B =求解.【详解】在ABC 中,因为cos cos A bB a =, 由正弦定理得cos sin cos sin A BB A=, 所以sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以22A B =或22A B π=-,解得A B =或2A B π+=.故ABC 是直角三角形或等腰三角形. 故选: D. 【点睛】本题主要考查利用正弦定理判断三角形的形状,还考查了运算求解的能力,属于基础题.3.ABD 【分析】对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【解析:ABD 【分析】对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 12s S ab C =和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.4.AD 【分析】设,则,然后分点P 靠近点,靠近点两种情况,利用平面向量的线性运算求解. 【详解】 设,则,当点P 靠近点时,, 则, 解得, 所以,当点P 靠近点时,, 则, 解得, 所以, 故选:解析:AD 【分析】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y ,然后分点P 靠近点1P ,靠近点2P 两种情况,利用平面向量的线性运算求解. 【详解】设(),P x y ,则()()12,1,4,4=-=--PP x y PP x y , 当点P 靠近点1P 时,1212PPPP =, 则()()1421142x x y y ⎧=-⎪⎪⎨⎪-=-⎪⎩,解得432x y ⎧=⎪⎨⎪=⎩,所以4,23P ⎛⎫⎪⎝⎭, 当点P 靠近点2P 时,122PP PP =, 则()()24124x x y y ⎧=-⎪⎨-=-⎪⎩, 解得833x y ⎧=⎪⎨⎪=⎩,所以8,33P ⎛⎫ ⎪⎝⎭, 故选:AD 【点睛】本题主要考查平面向量的线性运算,还考查了运算求解的能力,属于基础题.5.AC 【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】,且,平方得,即,可得,故A 正确; ,可得,故B 错误; ,可得,故C 正确; 由可得,故D 错误; 故选:AC 【点睛】解析:AC 【分析】由已知条件结合向量数量积的性质对各个选项进行检验即可. 【详解】1a b ==,且25b a -=,平方得22445b a a b +-⋅=,即0a b ⋅=,可得a b ⊥,故A正确;()22222a ba b a b +=++⋅=,可得2a b +=,故B 错误; ()22222a b a b a b -=+-⋅=,可得2a b -=,故C 正确;由0a b ⋅=可得,90a b =︒,故D 错误; 故选:AC 【点睛】本题考查向量数量积的性质以及向量的模的求法,属于基础题.6.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.7.AD 【分析】分别对所给选项进行逐一判断即可. 【详解】对于选项A ,当时,与不一定共线,故A 错误; 对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确; 对于选项C ,两个非零向量解析:AD 【分析】分别对所给选项进行逐一判断即可.【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确; 对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.8.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.9.ABC【分析】设平行四边形的四个顶点分别是,分类讨论点在平行四边形的位置有:,,,将向量用坐标表示,即可求解.【详解】第四个顶点为,当时,,解得,此时第四个顶点的坐标为;当时,,解得解析:ABC【分析】设平行四边形的四个顶点分别是(3,7),(4,6),(1,2),(,)A B C D x y -,分类讨论D 点在平行四边形的位置有:AD BC =,AD CB =,AB CD =,将向量用坐标表示,即可求解.【详解】第四个顶点为(,)D x y ,当AD BC =时,(3,7)(3,8)x y --=--,解得0,1x y ==-,此时第四个顶点的坐标为(0,1)-;当AD CB =时,(3,7)(3,8)x y --=,解得6,15x y ==,此时第四个顶点的坐标为(6,15);当AB CD =时,(1,1)(1,2)x y -=-+,解得2,3x y ==-,此时第四个项点的坐标为(2,3)-.∴第四个顶点的坐标为(0,1)-或(6,15)或(2,3)-.故选:ABC .【点睛】本题考查利用向量关系求平行四边形顶点坐标,考查分类讨论思想,属于中档题.10.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当时,,故选项B 错误;因为,故选项C 正确;当共线同向时,,当共线反解析:ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.11.AB【解析】【分析】根据向量加法化简即可判断真假.【详解】因为,正确;,由向量加法知正确;,不满足加法运算法则,错误;,所以错误.故选:A B.【点睛】本题主要考查了向量加法的解析:AB【解析】【分析】根据向量加法化简即可判断真假.【详解】因为0AB BA AB AB ,正确;AB BC AC ,由向量加法知正确;AB AC BC +=,不满足加法运算法则,错误;0,AB AB +=,所以00AB +=错误.故选:A B .【点睛】本题主要考查了向量加法的运算,属于容易题.12.CD【分析】分析知,,与的夹角是,进而对四个选项逐个分析,可选出答案.【详解】分析知,,与的夹角是.由,故B 错误,D 正确;由,所以,故A 错误;由,所以,故C 正确.故选:CD【点睛】解析:CD【分析】 分析知1a =,2=b ,a 与b 的夹角是120︒,进而对四个选项逐个分析,可选出答案.【详解】 分析知1a =,2=b ,a 与b 的夹角是120︒.由12cos12010a b ︒⋅=⨯⨯=-≠,故B 错误,D 正确;由()22221243a b a a b b +=+⋅+=-+=,所以3a b +=,故A 错误;由()()2144440a b b a b b +⋅=⋅+=⨯-+=,所以()4a b b +⊥,故C 正确. 故选:CD【点睛】本题考查正三角形的性质,考查平面向量的数量积公式的应用,考查学生的计算求解能力,属于中档题.13.BCD【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角的终边的位置,然后利用等分象限法可判断出角的终边的位置,进而判断B 选项的正误;利用图象法求出函数的最小正周期,可判断C 选项的正误解析:BCD【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos C A B=->,cos cos cos 0A B C ∴<, 对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确.故选:BCD.【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 14.AB【分析】若,则反向,从而;若,则,从而可得;若,则同向,在方向上的投影为若存在实数使得,则共线,但是不一定成立.【详解】对于选项A ,若,则反向,由共线定理可得存在实数使得;对于选解析:AB【分析】若||||||a b a b +=-,则,a b 反向,从而a b λ=;若a b ⊥,则0a b ⋅=,从而可得||||a b a b +=-;若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立.【详解】对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得a b λ=;对于选项B ,若a b ⊥,则0a b ⋅=,222222||2,||2a b a a b b a b a a b b +=+⋅+-=-⋅+,可得||||a b a b +=-;对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立.故选:AB.【点睛】本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.15.ABD【详解】解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确.对解析:ABD【详解】解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:()m a b ma mb -=-,故A 正确.对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确.故选:ABD .【点睛】本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.二、平面向量及其应用选择题16.C【分析】利用同角三角函数基本关系式可得sin A ,进而可得cos (cos cos sin sin )C A B A B =--,再利用正弦定理即可得出.【详解】 解:3cos 5A =,(0,180)A ∈︒︒.∴4sin 5A =,34cos cos()(cos cos sin sin )(55C A B A B A B =-+=--=--=.sin C∴=由正弦定理可得:sin sinb cB C=,∴1sin5sin7c BbC===.故选:C.【点睛】本题考查了同角三角函数基本关系式、正弦定理、两角和差的余弦公式,考查了推理能力与计算能力,属于中档题.17.D【分析】先根据cos cosb A a B=得到,A B之间的关系,再根据B是,A C的等差中项计算出B的大小,由此再判断ABC的形状.【详解】因为cos cosb A a B=,所以sin cos sin cos=B A A B,所以()sin0B A-=,所以A B=,又因为2B A C Bπ=+=-,所以3Bπ=,所以3A Bπ==,所以ABC是等边三角形.故选:D.【点睛】本题考查等差中项以及利用正弦定理判断三角形形状,难度一般.(1)已知b是,a c的等差中项,则有2b a c=+;(2)利用正弦定理进行边角互化时,注意对于“齐次”的要求. 18.B【分析】由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误.【详解】①由正弦定理及大边对大角可知①正确;②可得A B=或2A Bπ+=,ABC是等腰三角形或直角三角形,所以②错误;③由正弦定理可得sin cos sin cos sinA B B A C-=,结合()sin sin sin cos sin cosC A B A B B A=+=+可知cos sin0=A B,因为sin0B≠,所以cos0A=,因为0A π<<,所以2A π=,因此③正确; ④由正弦定理sin sin a b A B =得sin sin sin a B b A A==, 因为三角形有两解,所以2,332A B A πππ>>=≠所以sin 2A ⎛⎫∈ ⎪ ⎪⎝⎭,即)b ∈,故④错误. 故选:B【点睛】 本题考查的是正余弦定理的简单应用,要求我们要熟悉三角函数的和差公式及常见的变形技巧,属于中档题.19.B【分析】2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a a θ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈, 所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1, 所以2||b ta -的最小值也为1,即222min 244()()14a b a b f t a-⋅==,222||cos 1b b θ-=, 所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题.20.B【分析】在三角形ABC 中,根据1a =,c =45B =︒,利用余弦定理求得边b ,再利用正弦定理sin sin b c B C=求解.【详解】在三角形ABC 中, 1a =,c =45B =︒,由余弦定理得:2222cos b a c ac B =+-,13221252=+-⨯⨯=, 所以5b =, 由正弦定理得:sin sin b c B C=,所以2sin 42sin 55c B C b ===,故选:B【点睛】本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 21.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】 由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 22.A 【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 4812322ABC S ab C ∆=≤⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值23.D【分析】首先利用正弦定理求得sin 2sin 2A B =,进一步利用三角函数的诱导公式求出结果.【详解】 解:已知:cos cos a A b B =,利用正弦定理:2sin sin sin a b c R A B C===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =, 所以:22A B =或21802A B =︒-,解得:A B =或90A B +=︒所以:ABC 的形状一定是等腰或直角三角形故选:D .【点评】本题考查的知识要点:正弦定理的应用,三角函数的诱导公式的应用,属于中档题. 24.C【分析】根据平面向量的定义与性质,逐项判断,即可得到本题答案.【详解】因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ⋅=⋅≠,但a b ≠,故B 不正确;,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且||||AB DC =,所以AB DC =,故C 正确;0a b ⋅>时,,a b 的夹角可能为0,故D 不正确.故选:C【点睛】本题主要考查平面向量的定义、相关性质以及数量积.25.B【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45HB =︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,103534623v ==/秒). 故选B .【点睛】 本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件. 26.无27.A【分析】 根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解.【详解】因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.故选:A.【点睛】本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.28.A【分析】设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+,因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-. 因为E 是BC 的中点, 所以1122AE AB BC AB AD =+=+. 因为AP AE λ=, 所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭, 则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩, 解得34λ=. 故选:A【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 29.B【分析】由题意结合中点的性质和平面向量基本定理首先表示出向量BD ,BM ,然后结合平面向量的运算法则即可求得最终结果.【详解】如图所示,因为点D 在线段BC 上,所以存在t R ∈,使得()BD tBC t AC AB ==-, 因为M 是线段AD 的中点,所以:()()()111112222BM BA BD AB t AC t AB t AB t AC =+=-+-=-++, 又BM AB AC λμ=+,所以()112t λ=-+,12t μ=, 所以12λμ+=-. 故选:B.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.30.A【解析】分析:根据向量加法、减法法则将BD AC ⋅转化为()()AD AB AB BC -+即可求解. 详解:由题可得:BD AC ⋅=()()AD AB AB BC -+=2211()()24222BC AB AB BC BC AB -+=-=-=-,故选A. 点睛:考查向量的线性运算,将问题转化为已知的信息()()AD AB AB BC -+是解题关键. 31.D 【分析】 将已知向量关系变为:12333m OA OB OC +=,可得到3m OC OD =且,,A B D 共线;由AOB ABC O S S D CD∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】由2OA OB mOC +=得:12333m OA OB OC += 设3m OC OD =,则1233OA OB OD += ,,A B D ∴三点共线 如下图所示:OC 与OD 反向共线 3OD m m CD ∴=- 734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系.32.B【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果.【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,② 所以由①②可知,62ab ab -=-,即6ab =,则ABC 的面积为11333sin 622S ab C ==⨯=. 故选:B【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型.33.B【分析】由题意可得2b a c =+,平方后整理得22242a c b ac +=-,利用三角形面积可求得ac 的值,代入余弦定理可求得b 的值.【详解】解:∵a ,b ,c 成等差数列,∴2b a c =+,平方得22242a c b ac +=-,① 又ABC 的面积为32,且30B ∠=︒, 由11sin sin 3022ABC S ac B ac ==⋅︒△1342ac ==,解得6ac =,代入①式可得222412a c b +=-, 由余弦定理得222cos 2a c b B ac+-=,2224123122612b b b ---===⨯,解得24b =+,∴1b =+故选:B .【点睛】本题考查等差数列的性质和三角形的面积公式,涉及余弦定理的应用,属于中档题. 34.A【分析】利用余弦定理化角为边,得出c b ABC =, 是等腰三角形.【详解】ABC ∆中,c cos 2a B c =,由余弦定理得,2222a c b cosB ac+-= , ∴22222a a c b c ac+-= 220c b ∴-= ,∴c b ABC =,是等腰三角形.【点睛】本题考查余弦定理的应用问题,是基础题.35.C【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BC R A=求解. 【详解】在ABC 中,5AB AC ==,6BC =, 由余弦定理得:2222225567cos 225525AB AC BC A AB AC +-+-===⋅⨯⨯,所以24sin 25A ==, 由正弦定理得:625224sin 425BC R A ===,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选择题分类汇编1.【2011 课标文数广东卷】已知向量 a =(1,2),b =(1,0), c = (3,4).若 λ为实数,(a + λ b)∥ c ,则 λ=( ) 1 1A. 4 B .2 C .1 D . 22.【2011·课标理数广东卷】 若向量 a ,b ,c 满足 a ∥ b 且 a ⊥c ,则 c ·(a + 2b)= ( ) A . 4 B .3 C .2 D . 03【. 2011 大纲理数四川卷】如图 1-1,正六边形 → → →)ABCDEF 中,BA + CD +EF = ( A . 0 →→ → B. BEC. ADD. CF4.【2011 大纲文数全国卷】设向量 a ,b 满足 |a|= |b|=1,a ·b =- 1,则 |a + 2b|= ()2 A. 2 B.3 C. 5 D. 7 .5.【2011 课标文数湖北卷】若向量 a =(1,2), b = (1,- 1),则 2a +b 与 a - b 的夹 角等于 ( ) 3ππ π π A .- 4B. 6C.4D. 46.【2011 课标理数辽宁卷】 若 a ,b ,c 均为单位向量, 且 a ·b = 0,(a - c) ·(b - c)≤0,则|a +b - c|的最大值为 ( ) A. 2- 1 B .1 C. 2 D . 2【解析】 |a +b -c|= a + b - c 2= a 2+ b 2+c 2+2a ·b -2a ·c - 2b ·c ,由于 a ·b =0,所以上式=3-2c ·a +b ,又由于 (a -c) ·(b -c)≤0,得 (a + b) ·c ≥c 2= 1,所以|a + b - c|= 3-2c ·a +b ≤1,故选 B.7.【2011 课标文数辽宁卷】已知向量 a =(2,1),b =(-1,k),a ·(2a -b)=0,则 k =()A .- 12B .- 6C .6D .121 8.【2011 大纲理数 1 全国卷】设向量 a ,b ,c 满足 |a|=|b|= 1, a ·b =- 2,〈 a - c ,b -c 〉= 60°,则 |c|的 最大 值 等 于 ( ) A . 2 B. 3 C. 2 D .19.【2011 课标理数北京卷】已知向量 a =( 3, 1),b =(0,- 1),c =(k , 3).若a - 2b 与 c 共线,则 k =________.10 .【 2011·课标文数湖南卷】设向量 a ,b 满足 |a|=2 5,b = (2,1),且 a 与 b 的方向相反,则 a 的坐标为 ________.【解析】 因为 a +λb =(1,2) +λ(1,0) = (1 +λ,2) ,又因为 (a + λb) ∥c ,(11+λ) ×4-2×3=0,解得 λ=2.【解析】 因为 a ∥b 且 a ⊥ c ,所以 b ⊥ c ,所以 c ·(a + 2b) =c ·a +2b ·c =0.→ → → → → → → → →【解析】 BA +CD + EF =BA + AF -BC =BF - BC =CF ,所以选 D.【解析】 | a +2b | 2 =(a + 2b) 2=| a | 2+4a ·b +4| b | 2 =3,则 | a +2b | = 3,故选 B【解析】 因为 2a +b =( 2, 4) +( 1,- 1) =( 3,3) ,a -b =( 0, 3) ,所以| 2a +b | = 3 2 , | a -b | = 3. 设2a + b 与 a - b 的夹角为 θ, 则 cos θ=( ) () (3,3 ) () 2 0,π π 2a +b · a -b =· 0,3= 2 ,又 θ∈ [] ,所以 θ=4.|| ||32×32a + ba -b【解析】 a ·(2a -b)= 2a 2- a ·b = 0,即 10-(k -2)= 0,所以 k = 12,故选 D.【解析】设向量 a ,b ,c 的起点为 O ,终点分别为 A ,B ,C ,由已知条件 得,∠ AOB = 120°,∠ACB = 60°,则点 C 在△ AOB 的外接圆上,当 OC 经过圆心 时, |c|最大,在△ AOB 中,求得 AB = 3,由正弦定理得△ AOB 外接圆的直径是3=2,|c |的最大值是 2,故选 A. sin120 °【解析】 因为 a -2b = (3,3),由 a -2b 与 c 共线,有 k = 3,可得 k =1.3 3【解析】 因为 a 与 b 的方向相反,根据共线向量定义有: a =λb( λ<0),所以 a =(2 λ,λ).a 2 2或 λ=2(舍去 ),故 a =(- 4,- 2). 由 | |=25,得 2λ +λ=2 5? λ=- 2 11.【2011·课标理数天津卷】已知直角梯形 ABCD 中, AD ∥ BC ,∠ ADC =90°,= , = , 是腰 上的动点,则 → → .AD BC DC+3PB 的最小值为2 1 P |PA | ________12.【2011·课标理数浙江卷】 若平面向量 α,β满足 | α|=1,| β|≤ 1,且以向量 α,1β为邻边的平行四边形的面积为 2,则 α与 β的夹角 θ的取值范围是 ________.13 .【2011·新课标理数安徽卷】 已知向量 a ,b 满足 (a +2b) ·(a - b)=- 6,且|a|=1,|b|=2,则 a 与 b 的夹角为 ________.14.【2011·课标文数福建卷】若向量 a = (1,1), b = (-1,2),则 a ·b 等于 ________.→ → →15.【2011·课标理数湖南卷】 在边长为 1 的正三角形 ABC 中,设BC =2BD ,CA = → → →3CE ,则 AD ·BE =________.16.【2011 课标理数江西卷】已知 |a|=|b|=2,(a +2b) ·(a - b)=- 2,则 a 与 b 的夹角为 ________.17.【2011·课标文数江西卷】已知两个单位向量e 1 , 2π的夹角为 ,若向量 b 1= 1e3 e-2e 2, 2=1+2,则b 3e 4e b ·b =________.18.【2011 课标文数全国卷】 已知 a 与 b 为两个不共线的单位向量, k 为实数,若向量 a +b 与向量 ka -b 垂直,则 k = ________. 19.【10 安徽文数】设向量 a (1,0) , b ( 1 , 1 ) , 则下列结论中正确的是2 2(A) a b(B) a ?b2 (C) a / / b(D) a b 与 b 垂直220. 【10 重庆文数】若向量 a (3, m) , b (2, 1) , agb 0 ,则实数 m 的值为 (A )3( B )3(C )2(D )622【解析】 建立如图 1-6 所示的坐标系,设 DC = h ,则 A(2,0) ,B(1,h).设 P(0,y), (0≤y ≤h) → →则 PA =(2 ,- y), PB = (1,h -y),∴ |→+ →|= 25+ 3h - 4y 2 ≥ 25=5. PA 3PB【解析】 由题意得: |α||β| θ=1,∵ |α|= ,|β|≤ ,∴ sinθ= 1≥ 1sin 2 1 1 2|β| 2.π 5π又∵ θ∈(0, π),∴θ∈ 6, 6 .【解析】 设 a 与 b 的夹角为 θ,依题意有 (a + 2b) ·(a -b)=a 2+a ·b - 2b 2=- 7+2cos θ=- 6,所以 1cos θ=2.因为 π0≤θ≤π,故 θ=3.【解析】 由已知a =(1,1),b = (-1,2),得a ·b =1×(-1)+1×2=1.【解析】 由题知, D 为 BC 中点, E 为 CE 三等分点,以 BC 所在的直线为 x 轴, 以 AD 所在的直线为 y 轴,建立平面直角坐标系,可得 A 0, 3 ,D(0,0),B -1,0 ,2 21 , 3 → ,- 3 → 5 3→ → 3 3 1 E,故 AD =,BE = , ,所以 AD ·BE =-× =- .3 6 2 6 6 2 64【解析】 设 a 与 b 的夹角为 θ,由 (a + 2b)(a - b)=- 2 得1π|a|2+a ·b -2|b|2= 4+ 2× 2× cos θ-2×4=- 2,解得 cos θ=2,∴θ=3.【解析】 |e 1 = 2 =且11- 2 · 1+ 2 = 21·2-1·2= ,所以 b 1·2=1-||e | 1e e2b(e 2e ) (3e 4e ) 3e 2e e122- 8=- 6.8e = 3- 2× 2【解析】 由题意,得 (a + b) ·(ka -b)=k |a |2- ·+ ·- |b |2=k + (k -·-1 a b ka b1)a b = (k -1)(1+ a ·b)=0,a 与 b 不共线,所以 a ·b ≠-1,所以 k - 1= 0,解得 k= 1.【解析】 a b = ( 1,1) , ( a b)gb 0 ,所以 a b 与 b 垂直 . 【解析】 D2221.【 10 重庆理数】已知向量 a ,b 满足 a ?b 0, a 1, b 2, ,则 2a bA. 0B. 2 2C. 4D. 8 解析: 2a b(2a b )2 424a b b 282 2a22.【10 湖南文数】若非零向量 a ,b 满足 |a | | b |,(2 a b) b 0 ,则 a 与 b 的夹角为 CA. 30B. 60C. 120D. 150uur uur23.【 10 全国卷理数】 V ABC 中,点 D 在 AB 上,CD 平方 b ,ACB .若 CB a ,CA,uuur2 2 1 ( )34( )43,则 CD (A )1a 1b 2ab (B ) abCabDab3 333 5555【解析】因为 CD 平分 ACB ,由角平分线定理得AD= CA 2,所以 D 为 AB的DBCB 1三 等 分点 , 且uuur2 uuur 2uuur uuur,所 以ADAB 3 (CB CA)uuur uuur uuur2 uuur 1 uuur 2 r 1 r3CD CA+ADCB CA a b ,选 B.3 3 3 3uuur r uuur r24. 【 10辽宁文数】平面上 O, A, B 三点不共线,设 OA a, OB b , 则 OAB 的面积等于( A ) r 2 r 2 r r(B ) r 2 r2r r a b (a b)2 a b (a b) 2( C )1 r2 r 2r r 2(D )1 r2 r 2r r 22a b(a b)a b(a b)2S1 r r r r 1 r r 2r r 1 r r OAB2 | a || b | sin a,b2 | a || b | 1 cosa,b 2 | a ||b | 1r r 2 ( a b) r 2 r 2| a | | b |1 r2 r 2r r 2 2 a b(a b)uuur uuur25.【 10 全国卷】△ ABC 中,点 D 在边 AB 上, CD 平分∠ ACB ,若 CB = a , CA =b ,a = 1 ,uuur2 b ( B ) 2 a + 1b(C ) 3 a + 4b ( D )b = 2, 则 CD =(A ) 1a +4a + 3b 33335 555BDBC1uuur uuur uuur r r∵ CD 为 角 平 分 线 , ∴ADAC 2 , ∵AB CB CA a b , ∴uuur 2 uuur 2r2ruuur uuur uuur r2r2r2r1rADABab CDCAADbabab3 33,∴333326. 【10 山东理数】定义平面向量之间的一种运算“re ”如下,对任意的 a=(m,n) ,r r rb ( p,q) ,令 a e b=mq-np ,下面说法错误的是()r r r r r r r r A. 若 a 与 b 共线,则 ae b=0B. a e b=b e aC.对任意的 r r r rr r 2 r r 2 r 2 r2 R ,有( a) e b= ( a e b) D. (a e b) +(ab) =|a| |b|r r r rr r pn-qm ,而 【解析】若 a 与 b 共线,则有 a e b=mq-np=0 ,故 A 正确;因为 b e a r r r r r r a e b=mq-np ,所以有 a e bbe a ,故选项 B 错误,故选 B 。

相关文档
最新文档