广东省佛山市顺德区高中数学《基本初等函数》 新人教A版必修1
新人教A版必修1第二章基本初等函数

logc b loga b (a 0,且a 1; c 0,且c 1; b 0) logc a
三、重点内容
(三)基本性质:
y a x (a 0,且a 1)
0<a<1
y
a>1
y
1
图象
0
1
x
0
x
定义域 值域 性质
(0, )
当x>0时0<y<1; 当x<0时y>1; 当x=0时y=1; 在R上是减函数
R
(0, )
当x>0时y>1; 当x<0时0<y<1; 当x=0时y=1; 在R上是增函数
R
三、重点内容
(三)基本性质: y loga x(a 0,且a 1)
0 a 1
y
a 1
y
图象
定义 域 值域 性质
O
1
x
O
1
x
(0, )
R
(0, )
R
( 3 )) 0过定点 x 1时, y 0; (1)(过定点 3) x 1时, y 0; (1,0) ( 1 (1,0)
四、例题分析 若f ( x) x 2 x b, 且f (log 2 a ) b, log 2 [ f (a )] 2(a 1).
高中数学第二章基本初等函数(Ⅰ)章末复习提升课课件新人教A版必修1

定成立的是( )
A.3c>3b
B.3c>3a
C.3c+3a>2
D.3c+3a<2
【解析】 (1)由题意 y=logax(a>0,且 a≠1)的图象过(3,1)点,
可解得 a=3.选项 A 中,y=3-x=13x,显然图象错误;选项 B
中,y=x3,由幂函数图象可知正确;选项 C 中,y=(-x)3=
第二章 基本初等函数(Ⅰ)
章末复习提升课
指数与对数的运算
求下列各式的值: (1)287-23-3 e·e23+ (2-e)2+10lg 2; (2)lg25+lg2×lg 500-12lg215-log29×log32.
【解】 (1)287-23-3 e·e23+ (2-e)2+10lg 2 =233-23-e13·e23+(e-2)+2 =23-2-e+e-2+2=322=94. (2)lg25+lg 2×lg 500-12lg215-log29×log32 =lg25+lg 2×lg 5+2lg 2-lg15-log39 =lg 5(lg 5+lg 2)+2lg 2-lg 2+1-2 =lg 5+lg 2-1=1-1=0.
解析:当 x=-1 时,y=a0-2=-1,所以该定点的坐标是(-1, -1). 答案:(-1,-1)
2.已知 lg a+lg b=0,则函数 f(x)=ax 与函数 g(x)=-logbx 的 图象可能是________(填序号).
解析:因为 lg a+lg b=lg(ab)=0, 所以 ab=1,即 b=1a, 则 f(x)=ax,g(x)=logax. 当 a>1 时,在各自的定义域内,f(x)是增函数,g(x)是增函数, 所以②正确;0<a<1 时,在各自的定义域内,f(x)是减函数,g(x) 是减函数,所以①③④都不正确.
新课标人教A版高中数学必修一第二章基本初等函数全章教案

新人教A版高中数学必修一教案第二章基本初等函数(Ⅰ)一、课标要求:教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.1.了解指数函数模型的实际背景.2.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点).4.通过应用实例的教学,体会指数函数是一种重要的函数模型.5.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.6.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).7.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义.8.通过实例,了解幂函数的概念,结合五种具体函数1312,,,y x y x y x y x-====的图象,了解它们的变化情况.二、编写意图与教学建议:1.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.2.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容做了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想. 建议教学中重视知识间的迁移与互逆作用.3、教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.4.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担.5. 通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能 ..6. 教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.三、教学内容与课时安排的建议 本章教学时间约为14课时. 2.1 指数函数: 6课时 2.2 对数函数: 6课时 2.3 幂函数: 1课时 小结: 1课时§2.1.1 指数(第1—2课时)一.教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念; (2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力。
高中数学 第二章 基本初等函数(Ⅰ)2.2.1 对数与对数运算教材梳理素材 新人教A版必修1

2.2.1 对数与对数运算疱丁巧解牛知识·巧学·升华 一、对数 1.对数一般地,如果a x=N (a >0,a ≠1),那么x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做对数的底数,N 叫做真数.对数式的对数就是原指数式的指数,只是表示形式不同而已,即已知指数式a b=N ,用a 、N 表示b 的运算叫对数运算,记作b=log a N.对数式是指数式的另一种表达形式,对数运算是指数运算的逆运算.常用符号“log ”表示对数,但它仅是一个符号而已.同“+、-、×、”等符号一样,表示一种运算.要从以下几个方面来理解对数的概念.(1)会依据定义把指数式写成对数式.例如:∵32=9,∴2是以3为底9的对数.记作log 39=2; ∵41=4,∴1是以4为底4的对数.记作log 44=1; ∵20=1,∴0是以2为底1的对数.记作log 21=0; ∵318=21,∴-31是以8为底21的对数.记作log 821=-31.(2)log a N=b 中规定底数a >0且a ≠1.这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21;若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.总之,就规定了a >0且a ≠1.(3)只有正数才有对数,零和负数没有对数.在解决有关对数问题时,容易忽视对数的真数大于零的问题.因为底数a >0且a ≠1,由指数函数的性质可知,对任意的b ∈R ,a b>0恒成立,并且由于在实数范围内,正数的任何次幂都是正数,所以N >0.(4)指数式、对数式、根式的关系及相应各字母的名称.记忆要诀 指数式进行的是乘方运算,由a 、b 求N ;根式进行的是开方运算,由N 、b 求a ;对数式进行的是对数运算,由a 、N 求b. (5)对数恒等式:①Na alog =N ;②log a a b=b.证明:①∵a b=N ,∴b=log a N.∴a b=Nalog =N ,即Na alog =N.②∵a b =N ,∴b=log a N.∴b=log a N=log a a b,即log a a b=b. 如5log 33=5,6log 44=6,log 335=5,3222log =32等.要熟记对数恒等式的形式,会使用这一公式化简对数式.要点提示 证明对数恒等式,一要注意指数与对数式的互化,二要紧扣对数的定义. (6)两个特殊的对数式:log a a=1;log a 1=0.证明:∵a 1=a ,∴log a a=1.∵a 0=1,∴log a 1=0,即底的对数等于1,1的对数等于0. 2.常用对数当底数a=10时,对数log a N 叫做常用对数,记作lgN.(1)常用对数是指底数为10的对数,它的形式可由log 10N 缩写为lgN ,其中lgN 默认它的底数为10. (2)会求常用对数的值.若真数易转化成以10为底的幂的形式,可直接求值.如lg10,lg100,lg0.001等,∵102=100,∴lg100=2.又∵10-3=0.001,∴lg0.001 =-3.一般情况下,可通过.如lg200 1,lg0.032,lg187.5等.使用计算器时,应先按上真数,然后再按lg2 001≈3.301 2,lg0.032≈-1.494 9,lg187.5≈2.273 0.因为对数表只能查得1≤a <10的对数,所以对于不在该范围内的数,使用对数表求值时,应先用科学记数法把真数表示成a ×10n(1≤a <10,n ∈Z )的形式,运用后面的对数性质化简后,再求值.联想发散 要会使用科学记数法记数.当N >10时,可把N 写成a ×10n的形式,其中n比N 的整数位数少1,如10 001=1.000 1×104;当0<N <1时,可把N 写成a ×10-n,其中n 是从左边第一个不是0的数字算起前面所有0的个数,如0.001 02=1.02×10-3. 3.自然对数在科学技术中,常常使用以无理数e=2.718 28…为底的对数.以e 为底的对数叫做自然对数.log e N 通常记作lnN.①自然对数与常用对数的关系: lnN ≈2.302 6lgN. ②可直接使用计算器求自然对数值.它的使用规则同常用对数一样,也是先按真数值,再按ln 键,即可直接求出常用对数值.如ln34≈3.526 4,也可查表,求自然对数的值. 要点提示 自然对数与常用对数是对数的两个特例,只有它们才既能查表,又能使用计算器求值. 二、对数运算1.积、商、幂的对数运算性质 (1)log a MN=log a M+log a N ,两个正因数积的对数等于同一底数的各因数对数的和.该法则可以推广到若干个正因数积的对数,即log a (N 1·N 2·…·N k )=log a N 1+log a N 2+…+log a N k . (2)log aNM=log a M-log a N. 两个正数商的对数等于同一底数的被除数的对数减去除数的对数.(3)log a M n=nlog a M (n ∈R ).正数幂的对数等于幂指数乘以同一底数幂的底数的对数对数的运算法则既可正用,也可逆用,由积、商的运算法则可知,若逆用该公式,可把对数式转化成同底数的对数的和、差的形式.误区警示 使用对数的运算法则时,要注意各个字母的取值范围,只有各个对数式都存在时,等式才成立.例如:lg (-2)(-3)存在,但lg (-2),lg (-3)不存在,lg (-10)2存在,但lg (-10)不存在等.因此不能得出lg (-2)(-3)=lg (-2)+lg (-3),lg (-10)2=2lg (-10). 2.换底公式(1)换底公式:log a b=abc c log log (a >0,a ≠1,c >0,c ≠1,b >0).证明:设log a b=c ,则a c=b.两边取以c 为底的对数,得clog c a=log c b , 所以c=a b c c log log ,即log a b=abc c log log .换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简,凡是所求对数式的底数与题设中的对数底数不同的,都可考虑用换底公式求解,使用换底公式推论的前提是底数或真数能化成幂的形式.①换底公式的证明要紧扣对数的定义,证明的依据是 若M >0,N >0,M=N ,则log a M=log a N.②自然对数与常用对数的关系可以通过换底公式建立关系: lnN=e N lg lg ≈4343.0lg N≈2.302 6lgN. ③可把一般对数式转化成常用对数或自然对数,通过计算器或查表求值. ④换底公式可用于对数式的化简、求值或证明. (2)换底公式的三个推论:n a b n log =log a b ,m a b n log =nmlog a b ,log a b ·log b a=1. 推广:log a b ·log b c ·log c d ·…·log e a=1. 问题·思路·探究问题1 对数运算性质的实质是什么?思路:对数运算性质是指数运算性质的拓展引申,它们之间可以互相转化.探究:由于指数运算中遇到次数高的指数进行乘、除、乘方和开方时运算量太大,操作很繁,而对数运算恰恰将指数运算这些弱点克服,可以将乘、除、乘方和开方时运算转化为对数的加、减、乘的运算,从而降低了运算难度,加快了运算速度,简化了计算方法,有力地促进了涉及与高次数运算有关领域如天文、航海、工程、贸易及军事的发展.问题2 式子log a M n=nlog a M 表明真数的指数可以直接拿到对数式前作系数,那请问:底数的指数也可以直接拿到对数式前作系数吗?若不能,有没有类似性质呢?怎么证明呢? 思路:log a M n与nlog a M 与log a nM=n1log a M 的结合使进行对数运算时更加简便快捷,同时也提醒我们在进行对数运算过程中,如果运算性质不能直接运用时,可以通过先化成指数式,变形后再化成对数式的方法达到计算的目的探究:一般不能,比如2=log 416=log 2216而,2log 216=8≠log 2216=2,但有类似的性质,这个性质是 log a nM=n 1log a M. 证明如下:令log a M=x,则M=a x,所以n 1=log a M=n 1x ,而M n a log =x a a n log =a x n a log =x ·n 1,所以M n a log =n1log a M.典题·热题·新题例1 (2006浙江高考,理)已知0<a <1,log a m <log a n <0,则( )A.1<n <mB.1<m <nC.m <n <1D.n <m <1 思路解析:∵0<a<1,∴y=log a x 为减函数,由log a m<log a n<0,可得1<n<m. 答案:A例2 设log 189=a ,18b=5,求log 3645.思路解析:本题是条件求值问题,解题的关键是把结论化成已知的形式,换底是显然的.解:∵18b=5,∴b=log 185. ∴log 3645=aba b a b a -+=-+=++=++=29log 2918log 12log 19log 5log 36log 45log 18181818181818.深化升华 换底公式可完成不同底数的对数式之间的转化,该公式既可正用,又可逆用,使用时的关键是选择底数,换底的目的是实现对数式的化简. 例3 计算:lg25+32lg8+lg5·lg20+lg 22. 思路解析:本题主要考查对数的运算性质. 解:原式=lg25+328lg +lg210·lg (10×2)+lg 22 =lg25+lg4+(lg10-lg2)(lg10+lg2)+lg 22=lg100+lg 210-lg 22+lg 22=2+1=3.深化升华 对于对数的运算性质要熟练掌握,并能够灵活运用,在求值的过程中,要注意公式的正用和逆用. 例4 设3x=4y=36,求yx 12+的值. 思路解析:本题主要考查对数的定义及运算性质.从所求的值来看,解题的关键是设法把x 、y 表示出来,再结合对数的运算性质就可以求出数值. 解:∵3x=4y=36,∴x=log 336,y=log 436.则x1=log 363,y 1=log 364.∴x 2+y1=2log 363+log 364=log 36(32×4)=1. 深化升华 指数式化为对数式后,两对数式的底不同,但真数相等,式子两端取倒数之后,利用对数的换底公式可消除差异.例5 已知a 、b 、c 均为正数,3a =4b =6c,求证:cb a 212=+. 思路解析:本题主要考查对数的定义及其运算性质.从求证的结论看,解题的关键是设法把a 、b 、c 从连等号式中分离出来,为便于找出a ,b ,c 的关系,不妨设3a =4b =6c=k (k >0),则a 、b 、c 就可用这一变量k 表示出来,再结合对数的运算性质就可证得结论.证明:设3a =4b =6c=k ,则k >0.由对数的定义得a=log 3k ,b=log 4k ,c=log 6k , 则左边=kk b a 43log 1log 212+=+=2log k 3+log k 4=log k 9+log k 4=log k 36, 右边=k c 6log 22==2log k 6=log k 36,∴cb a 212=+. 深化升华 证明恒等式常用的方法(1)作差比较法;(2)化简较为复杂的一边等于较简单的一边; (3)化简左、右两边,使它们等于同一式子;(4)先证明另一恒等式,再推出所要求证的恒等式.例6 设a 、b 同号,且a 2+2ab-3b 2=0,求log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)的值.思路解析:本题考查对数性质的应用.已知只告诉我们关于a 、b 的一个齐次方程,因此不可能求出a 、b 的值,只能求出a 、b 的关系式,从求证的结论看,由对数的运算性质可得真数也是一个齐次式,这样就把条件同结论联系到一起了.解:∵a 、b 同号,∴b ≠0.把方程a 2+2ab-3b 2=0两边同除以b 2,得(b a )2+2(ba)-3=0. ∴(b a +3)(b a -1)=0,得b a =1或ba=-3(舍去).∴a=b. ∴log 3(a 2+ab+b 2)-log 3(a 2-ab+b 2)=log 3(3a 2)-log 3a 2=log 33=1.深化升华 :条件代数式的求值同条件代数式的化简、证明一样,解题的关键是找到题设与结论的联系,可化简结论,用上条件,可化简条件得出结论,也可同时化简条件与结论等.。
高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质课件新人教A版必修1

理论
2.对数函数的图象
由于对数函数 y log a x与指数函数y a x 互为反函数,所以 y log a x 的图象与 y a x
的图象关于直线 y x 对称. 看一般图象:
5
4
3
y=ax (a>1) 2
1
44
33
y=ax 22
∴函数 y loga x2的定义域是 x | x 0
(2)由 4 x 0 得 x 4
∴函数 y loga (4 x) 的定义域是 x | x 4
(3) 由 9 x2 0 得 3 x 3
∴函数 y loga(9 x2) 的定义域是 x | 3 x 3
举例
例2 求下列函数的反函数
在R上是减函数
引例
引例: y 2 x 有无反函数?若有,则求出.
分析:视察图象知,有反函数
由 y 2x 得 x log 2 y 所以,反函数为:
4
fx3 = 2x
2
1
-4
-2
2
y log 2 x x (0,)
理论
1.对数函数的定义:
函数 y log a x (a 0且a 1) 叫做对数函数(logarithmic function), 其中x是自变量,函数的定义域为 (0,) , 值域为 (,) .
1 y 1 x 1;
2
2 y (1) x2 3 (x 0).
2
解 (: 1)
y
1
x
1
1 x
y
1
2
2
(2)
x log1 ( y 1)
2
f 1( x) log1 ( x 1)
高中数学第二章基本初等函数(Ⅰ)2.2.1.3对数的运算(2)练习(含解析)新人教A版必修1

课时23 对数的运算(2)换底公式的应用a b c abc A .1 B .2 C .3 D .5答案 A解析 ∵log a x =1log x a =2,∴log x a =12. 同理log x c =16,log x b =13. ∴log abc x =1log x abc =1log x a +log x b +log x c=1. 2.若log 34·log 48·log 8m =log 416,则m =________.答案 9解析 由换底公式,得lg 4lg 3×lg 8lg 4×lg m lg 8=lg m lg 3=log 416=2,∴lg m =2lg 3=lg 9,∴m =9.3.设3x =4y =36,求2x +1y的值. 解 由已知分别求出x 和y ,∵3x =36,4y=36,∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364=log 36(32×4)=log 3636=1. 4.计算:(1)log 89×log 2732;(2)log 927;(3)log 21125×log 3132×log 513; (4)(log 43+log 83)(log 32+log 92).解 (1)log 89×log 2732=lg 9lg 8×lg 32lg 27=lg 32lg 23×lg 25lg 33=2lg 33lg 2×5lg 23lg 3=109; (2)log 927=log 327log 39=log 333log 332=3log 332log 33=32; (3)log 21125×log 3132×log 513=log 25-3×log 32-5×log 53-1=-3log 25×(-5log 32)×(-log 53)=-15×lg 5lg 2×lg 2lg 3×lg 3lg 5=-15; (4)原式=⎝⎛⎭⎪⎫lg 3lg 4+lg 3lg 8⎝ ⎛⎭⎪⎫lg 2lg 3+lg 2lg 9 =⎝ ⎛⎭⎪⎫lg 32lg 2+lg 33lg 2⎝ ⎛⎭⎪⎫lg 2lg 3+lg 22lg 3 =12+14+13+16=54.运用换底公式不熟练致误23A.14 B.12C .2D .4 易错分析 本题易在使用对数的运算公式时,尤其换底公式的使用过程中发生错误. 答案 D正解 log 29×log 34=lg 9lg 2×lg 4lg 3=2lg 3lg 2×2lg 2lg 3=2×2=4.一、选择题1.log 29log 23=( )A.12 B .2 C.32 D.92答案 B解析 由换底公式log 39=log 29log 23.∵log 39=2,∴log 29log 23=2.2.已知log 23=a ,log 37=b ,则log 27=() A .a +b B .a -b C .ab D.ab答案 C解析 log 27=log 23×log 37=ab .3.设2a =5b =m ,且1a +1b =2,则m =( ) A.10 B .10 C .20 D .100答案 A解析 ∵2a =5b =m ,∴a =log 2m ,b =log 5m .1a +1b =log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10,选A.4.1log 1419+1log 1513等于( )A .lg 3B .-lg 3C.1lg 3 D .-1lg 3答案 C解析 原式=log 1914+log 1315=log 1312+log 1315=log 13110=log 310=1lg 3.选C. 5.已知2a =3b =k (k ≠1),且2a +b =ab ,则实数k 的值为( )A .6B .9C .12D .18答案 D解析 a =log 2k ,b =log 3k ,由2a +b =ab 得2log 2k +log 3k =log 2k ·log 3k ,即2lg k lg 2+lg k lg 3=k2lg 2lg 3,得2lg 3+lg 2=lg k ,即k =18.二、填空题6.方程log 3(x -1)=log 9(x +5)的解是________.答案 4解析 由换底公式得log 9(x +5)=12log 3(x +5).∴原方程可化为2log 3(x -1)=log 3(x +5),即log 3(x -1)2=log 3(x +5),∴(x -1)2=x +5.∴x 2-3x -4=0,解得x =4或x =-1.又∵⎩⎪⎨⎪⎧ x -1>0,x +5>0,∴x >1,故x =4.7.若log a b ·log 3a =4,则b 的值为________.答案 81解析 log a b ·log 3a =4,即log 3a ·log a b =4,即log 3b =4,∴34=b ,∴b =81.8.已知2x =72y =A ,且1x +1y =1,则A 的值是________.答案 98解析 ∵2x =72y =A ,∴x =log 2A,2y =log 7A .∴1x +1y =1log 2A +2log 7A=log A 2+2log A 7=log A 2+log A 49=log A 98=1.∴A =98.三、解答题9.计算下列各式的值:(1)lg 2+lg 5-lg 8lg 5-lg 4;(2)lg 5(lg 8+lg 1000)+(lg 23)2+lg 16+lg 0.06. 解 (1)原式=1-3lg 2lg 5-2lg 2=1-3lg 21-3lg 2=1; (2)原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6-2=3lg 5×lg 2+3lg 5+3lg 22-2=3lg 2(lg 5+lg 2)+3lg 5-2=3(lg 2+lg 5)-2=3-2=1.10.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p ;(2)求证:1z -1x =12y. 解 (1)设3x =4y =6z =k (显然k >0,且k ≠1),则x =log 3k ,y =log 4k ,z =log 6k .由2x =py ,得2log 3k =p log 4k =p ·log 3k log 34. ∵log 3k ≠0,∴p =2log 34.(2)证明:1z -1x =1log 6k -1log 3k =log k 6-log k 3=log k 2=12log k 4=12y ,∴1z -1x =12y.►2.2.2 对数函数及其性质。
高中数学 2.1.1.1 基本初等函数(Ⅰ)课件 新人教A版必修1

4 (1)
-24;
5 (2)
2-π5;
4 (3)
x+14;
3 (4)
x-63.
由题目可获取以下主要信息:
①所给形式均为n an的形式;
②n an形式中 n 分为奇数和偶数两种. 解答本题可依据根式的性质
n an=|aa|
n为大于1的偶数 n为大于1的奇数
,完成化简.
[解题过程]
4 (1)
-24=2;
5 (2)
2-π5=2-π;
4 (3)
x+14=|x+1|=x-+x1-1
x≥-1 x<-1 ;
3 (4)
x-63=x-6.
[题后感悟] 解决根式的化简问题,首先要分 清根式为奇次根式还是偶次根式,然后运用根 式的性质进行解答.
1.下列各式总能成立的是( )
A.(4 a-4 b)4=a-b
B.(4 a+b)4=a+b
【错因】 4 1- 24≠1- 2,而是4 1- 24
=|1- 2|= 2-出错原因是n an=a(a∈ R)成立的条件是 n 为正奇数,如果 n 为正偶数,
那么n an=|a|. 【正解】 3 1+ 23+4 1- 24=(1+ 2) +|1- 2| =1+ 2+ 2-1=2 2.
(3)当 n 为大于 1 的偶数时,n a只有当 a≥0 时 有意义,当 a<0 时无意义.n a(a≥0)表示 a 在实 数范围内的一个 n 次方根,另一个是-n a, ±n an=a. (4)式子n an对任意 a∈R 都成立.
◎计算:3 1+ 23+4 1- 24.
【错解】 3 1+ 23+4 1- 24=(1+ 2) +(1- 2)=2.
a叫 a 的算术平方根. 2.开立方与立方根,若 x3=a,则求 x 的运算
高中数学 2.3.12基本初等函数(Ⅰ)习题课教案 新人教A版必修1

课题:基本初等函数(Ⅰ)习题课课时:012课 型:习题课教学要求:掌握指数函数、对数函数的概念,会作指数函数、对数函数的图象,并能根据图象说出指数函数、对数函数的性质,了解五个幂函数的图象及性质.教学重点:指数函数的图象和性质.教学难点:指数函数、对数函数、幂函数性质的简单应用.教学过程:一、复习准备:1. 提问:指数函数、对数函数、幂函数的图象和性质.2. 求下列函数的定义域:1218-=x y ;x y ⎪⎭⎫ ⎝⎛-=211;2log (1)(0,1)a y x a a =->≠且 3. 比较下列各组中两个值的大小:6log 7log 76与;8.0log log 23与π;5.37.201.101.1与二、典型例题:例1:已知54log 27=a ,54b=3,用108,log 81a b 表示的值 解法1:由54b =3得54log 3=b∴108log 81=5454log 81log 108=54545454log 27log 3log 212log 272a b a b a+++==+-- 解法2:由54log 275427a ==得设108log 81,10881x x ==则所以21(5427)327x -⨯=⨯即:2(5454)5454a x b a -⨯=⨯所以25454,2x ax a b x ax a b -+=-=+即 因此得:2a b x a+=-例2、函数12log 2y x =-的定义域为 .例3、函数2321()2xx y -+=的单调区间为 .例4、已知函数)10(11log )(≠>-+=a a xx x f a且.判断)(x f 的奇偶性并予以证明.例5、按复利计算利息的一种储蓄,本金为a 元,每期利率为r ,设本利和为y 元,存期为x ,写出本利和y 随存期x 变化的函数解析式. 如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少(精确到1元)?(复利是一种计算利息的方法,即把前一期的利息和本金加在一起算做本金,再计算下一期的利息. )(小结:掌握指数函数、对数函数、幂函数的图象与性质,会用函数性质解决一些简单的应用问题. )三、 巩固练习:1.函数3log (45)y x =--的定义域为 .,值域为 .2. 函数2322+--=x xy 的单调区间为 .3. 若点)41,2(既在函数b ax y +=2的图象上,又在它的反函数的图象上,则a =______,b =_______4. 函数12+=-x a y (0>a ,且1≠a )的图象必经过点 .5. 计算()[]=++-+⎪⎭⎫ ⎝⎛-----2175.034303101.016254064.0 .6. 求下列函数的值域:x y -=215 ; x y -⎪⎭⎫ ⎝⎛=131; 121-⎪⎭⎫ ⎝⎛=xy ; x y 21-=四、小结本节主要是通过讲炼结合复习本章的知识提高解题能力五、课后作业:教材P82 复习参考题A 组1——8题课后记:精美句子1、善思则能“从无字句处读书”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本初等函数的习题课
编制人:陈纪刚审核人:张志勇使用时间:
三、知识点回顾
四、预习自测 1.设
]1,(,2)
,1(,log 81{
)(-∞∈+∞∈-=x x x x x f ,则满足4
1
)(=x f 的x 的值为 2.下列函数中,既是奇函数,又在定义域内为减函数的是 ( )
x y A )21
(.= 2x y .B -= 3x y .C -= x log y .D 3
2=
3.不论为何正实数,函数
的图象一定通过一定点,则该定点的坐标是
_________
4.如果,10<<a 那么下列不等式中正确的是( )
2
131)1()1.(a a A ->- 0)1(log .1>+-a B a 23)1()1.(a a C +>-
1)1.(1>-+a a D
5.已知函数
(其中)的图象如下面右图所示,则函数
的图象是( )
五、典型例题:
例1.已知函数)
1a ,0a (,1])2
1[(log )x (f x 3≠>-= (1)求函数的定义域;
(2)求使0)x (f >的x 的取值范围。
例2.已知函数).1(log )1(log )x (f x x a a +--= (1)求)x (f 的定义域;
(2)求使0)(>x f 的x 的取值范围。
(3) 并判断其奇偶性; 例3.已知m x f x
+-=
1
32
)(是奇函数,
(1)求函数的定义域 (2)求常数m 的值;
例4.已知定义在R 上的奇函数f(x),且当x ∈),0(+∞时,1)(2log )x (f x 2-=. (1)求f (x)在R 上的解析式;
(2)判断f(x)在),0(+∞的单调性并用定义证明.
六、当堂检测: 1.幂函数5
3m x
)x (f -=( N m ∈)在)(0,+∞是减函数,且x)(f )x (f =-,则m =
2.函数⎪⎩⎪⎨⎧>≤-=-0
,0
,12)(21
x x x x f x ,满足1)(>x f 的x 的取值范围 ( )
A .)1,1(-
B . ),1(+∞-
C .}20|{-<>x x x 或
D .}11|{-<>x x x 或
3.已知2
)(x x e e x f --=,则下列正确的是
( )
A .奇函数,在R 上为增函数
B .偶函数,在R 上为增函数
C .奇函数,在R 上为减函数
D .偶函数,在R 上为减函数
七、课后作业
1.函数2
10
)2()5(--+-=x x y 的定义域
( )
A .}2,5|{≠≠x x x
B .}2|{>x x
C .}5|{>x x
D .}552|{><<x x x 或
2.设指数函数)1,0()(≠>=a a a x f x
,则下列等式中不正确的是 ( )
A .f (x +y )=f(x )·f (y )
B .)
()
(y f x f y x f =
-)( C .)()]
([)(Q n x f nx f n
∈= D .)()]([·)]([)(+∈=N n y f x f xy f n
n
n
3.10.下列关系式中,成立的是
( )
A .10log 514log 3
10
3>⎪⎭⎫
⎝⎛>
B . 4log 5110log 30
31>⎪⎭⎫
⎝⎛>
C . 0
3
135110log 4log ⎪⎭⎫
⎝⎛>>
D .0
33
1514log 10log ⎪⎭⎫
⎝⎛>>
4.当a ≠0时,函数y ax b =+和y b ax
=的图象只可能是
( )
5.函数2lg 11y x ⎛⎫
=-
⎪+⎝⎭
的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称
6.已知函数1
1
)(+-=x x a a x f (a >1).
(1)判断函数f (x )的奇偶性; (2)证明f (x )在(-∞,+∞)上是增函数.
答案
预习自测 3 C (-1,-- 1) A A 例1解:(1)由题意得(12)x
-1>0
(12)x >1=(12
)0 解得x<0,即f(x)的定义域为(-∞,0) (2)由题意得log 3((12
)x
-1)> log 3 1
所以1()1021()112x x ⎧->⎪⎪⎨⎪->⎪⎩,即0111()()2211()()22
x
x -⎧>⎪⎪⎨
⎪>⎪⎩ 解得x<-1,所以x 的取值范围是(-∞,-1)
例2 解:(1)由题意得10
10x x ->⎧⎨
+>⎩
解得-1<x<1,所以f(x)的定义域为(-1,1)
(2) f(x)>0即log a (1-x)>log a (1+x)
当a>1时,101011x x x x ->⎧⎪
+>⎨⎪->+⎩,解得x ∈(-1,0)
当0<a<1时,101011x x x x ->⎧⎪
+>⎨⎪-<+⎩
,解得x ∈(0,1)
综上所述,当a>1时,x 的取值范围是(-1,0);当0<a<1时,x 的取值范围是(0,1) (3)∵f(x)的定义域 (-1,1)关于原点对称,以及
f(-x)= log a (1+x)-log a (1-x)= -(log a (1-x) -log a (1+x)) = -f(x) 所以f(x)是奇函数。
例3解:(1)由题意得3x
-1≠0,即x ≠0 所以f(x)的定义域为(-∞,0)∪(0,+∞) (2)∵f(x)是奇函数
∴f(-1)=-f(1) 即23-1-1+m=-(2
31-1
+m )
解得m=1
例4 解:(1)由于奇函数f(x)的定义域为R ,所以x=0时,f(x)=0
当x<0时,f(x)=―f(―x)= ―log 2(2-x
-1)
所以22log (21),0()0,0log (21),0
x x x f x x x -⎧->⎪
==⎨⎪--<⎩
(2)判断: f(x)是(0,+∞)的增函数。
证明:当x ∈(0,+∞)时,f(x)=log 2(2x
-1)
设x 1,x 2∈(0,+∞),当x 1<x 2时,2x1<2x2,(指数函数y=2x
为增函数)
所以2x1-1<2x2
-1
因x 1>0,所以2x1-1>20-1=0,即0<2x1-1<2x2
-1
所以log 2(2x1-1)< log 2(2x2
-1) (用对数函数y=log 2x 为增函数) 即f(x 1)<f(x 2)
所以f(x)是(0,+∞)的增函数。
当堂检测:
1.解:由题意得35035m m N m -<⎧⎪
⎨⎪-⎩
∈为奇数,解得m= 1
2 解:由题意得2110x x ⎧->⎨≤⎩-或1
2
10
x x ⎧⎪>⎨⎪>⎩
解得x<-1或x>1 。
选 D
1. A
课后作业:DDAAC
6.解:(1) 由a x
+1≠0,求得定义域为R ,定义域关于原点对称。
又11()111()
1
x x
x x x x a a f x a a a f x a -----==++-=-=-+
所以f(x)是奇函数。
(2)12()1211
x x x
a f x a a +-=
+=-+ 设x 1,x 2∈(-∞,+∞),当x 1<x 2时
1
21221
1222122
21222
()()(1)(1)11
2222
11112(1)2(1)(1)(1)2()(1)(1)
x x x x x x x x x x x x x x f x f x a a a a a a a a a a a a a a -=-
--++=-+=-+++++-+=
++-=++ 由于x 1<x 2,a>1,所以a x1<a x2,所以a x1-a x2
<0
又a x1+1>0, a x2
+1>0,所以f(x 1)-f(x 2)>0即f(x 1)>f(x 2) 所以f(x)在(-∞,+∞)上是增函数。