实变函数(复习资料_带答案)资料

合集下载

实变函数(复习资料_带答案)资料

实变函数(复习资料_带答案)资料

2页,共19页) 3、若|()|fx是可测函数,则()fx必是可测函数 4.设()fx在可测集E上可积分,若,()0xEfx,则()0Efx 四、解答题(8分×2=16分). 1、(8分)设2,()1,xxfxx为无理数为有理数 ,则()fx在0,1上是否R可积,是否L可积,若可积,求出积分值。 2、(8分)求0ln()limcosxnxnexdxn 五、证明题(6分×4+10=34分). 1、(6分)证明0,1上的全体无理数作成的集其势为c
6页,共19页) 又()0,mEF所以()fx是EF上的可测函数,从而是E上的 可测函数……………………..10分 《实变函数》试卷二 一.单项选择题(3分×5=15分) 1.设,MN是两集合,则 ()MMN=( ) (A) M (B) N (C) MN (D) 2. 下列说法不正确的是( ) (A) 0P的任一领域内都有E中无穷多个点,则0P是E的聚点 (B) 0P的任一领域内至少有一个E中异于0P的点,则0P是E的聚点 (C) 存在E中点列nP,使0nPP,则0P是E的聚点 (D) 内点必是聚点 3. 下列断言( )是正确的。 (A)任意个开集的交是开集;(B) 任意个闭集的交是闭集; (C) 任意个闭集的并是闭集;(D) 以上都不对; 4. 下列断言中( )是错误的。 (A)零测集是可测集; (B)可数个零测集的并是零测集; (C)任意个零测集的并是零测集;(D)零测集的任意子集是可测集; 5. 若()fx是可测函数,则下列断言( )是正确的 (A) ()fx在,abL可积|()|fx在,abL可积; (B) (),|()|,fxabRfxabR在可积在可积 (C) (),|()|,fxabLfxabR在可积在可积; (D) (),()fxaRfxL在广义可积在a,+可积 二. 填空题(3分×5=15分) 1、设11[,2],1,2,nAnnn,则nnAlim_________。 2、设P为Cantor集,则 P ,mP_____,oP=________。 3、设iS是一列可测集,则11______iiiimSmS 4、鲁津定理:__________________________________________ 5、设()Fx为,ab上的有限函数,如果_________________则称()Fx为,ab上的绝对连续函数。 三.下列命题是否成立?若成立,则证明之;若不成立,则说明原因或举出反例.(5分×4=20分) 1、由于0,10,10,1,故不存在使0,101和,之间11对应的映射。

实变函数试题库及参考答案

实变函数试题库及参考答案

实变函数试题库及参考答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限 4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB 三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。

实变函数题库集答案

实变函数题库集答案

实变函数题库集答案实变函数试题库及参考答案本科一、题1.设,A B 为集合,则()\A B B =A B (用描述集合间关系的符号填写)2.设A 是B 的子集,则A ≤B (用描述集合间关系的符号填写)3.如果E 中聚点都属于E ,则称E 是闭集 4.有限个开集的交是开集5.设1E 、2E 是可测集,则()12m E E ≤12mE mE +(用描述集合间关系的符号填写)6.设nE ?是可数集,则*m E =07.设()f x 是定义在可测集E 上的实函数,如果1a ?∈,()E x f x a ??≥??是可测集,则称()f x 在E 上可测8.可测函数列的上极限也是可测函数9.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x +?()()f x g x + 10.设()f x 在E 上L 可积,则()f x 在E 上可积 11.设,A B 为集合,则()\B A A ?A (用描述集合间关系的符号填写)12.设{}211,2,A k k =-=,则A =a (其中a 表示自然数集N 的基数)13.设nE ?,如果E 中没有不属于E ,则称E 是闭集14.任意个开集的并是开集15.设1E 、2E 是可测集,且12E E ?,则1mE ≤2mE 16.设E 中只有孤立点,则*m E =017.设()f x 是定义在可测集E 上的实函数,如果1a ?∈,()E x f x a ??18.可测函数列的下极限也是可测函数19.设()()n f x f x ?,()()n g x g x ?,则()()n n f x g x ?()()f x g x 20.设()n x ?是E 上的单调增收敛于()f x 的非负简单函数列,则()Ef x dx =?()lim nEn x dx ?→∞?21.设,A B 为集合,则()\A B B ?B22.设A 为有理数集,则A =a (其中a 表示自然数集N 的基数)23.设nE ?,如果E 中的每个点都是内点,则称E 是开集24.有限个闭集的交是闭集 25.设nE ?,则*m E ≥026.设E 是n中的区间,则*m E =E 的体积27.设()f x 是定义在可测集E 上的实函数,如果1a ?∈,()E x f x a ??≤??是可测集,则称()f x 在E 上可测28.可测函数列的极限也是可测函数29.设()()n f x f x ?,()()n g x g x ?..a e ,则()n f x ?()g x30.设()n f x 是E 上的非负可测函数列,且单调增收敛于()f x ,由勒维定理,有()Ef x dx =?()lim n En f x dx →∞?31.设,A B 为集合,则()\B A B A =A B32.设A 为无理数集,则A =c (其中c 表示自然数集[]0,1的基数) 33.设nE ?,如果E 中没有不是内点的点,则称E 是开集34.任意个闭集的交是闭集 35.设nE ?,称E 是可测集,如果nT ??,()**m T m TE =+()*c m T E36.设E 是外测度为零的集合,且F E ?,则*m F =0 37.设()f x 是定义在可测集E 上的实函数,如果1a ?∈,()E x a f xb ??≤<??是可测,(a b ≤)则称()f x 在E 上可测38.可测函数列的上确界也是可测函数39.设()()n f x f x ?,()()n g x g x ?..a e ,则()()n n f x g x ?()()f x g x40.设()()n f x f x ?,那么由黎斯定理,(){}n f x 有子列()k n f x ,使()()k n f x f x →..a e 于E 41.设,A B 为两个集合,则__c A B AB -.(等于)42.设nE R ?,如果E 满足E E '?(其中E '表示E 的导集),则E 是闭.43.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i)(a,b)G ? (ii),a G b G ?? 44.设A 为无限集.则A 的基数__A a (其中a表示自然数集N 的基数) 答案:≥ 45.设12,E E 为可测集, 2mE <+∞,则1212(\)__m E E mE mE -. 答案:≥ 46.设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a >是可测集E 上的可测函数.47.设0x 是E (R ?)的内点,则*__0m E . 答案>48.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ?∈,则由____黎斯__定理可知得,存在{}()n f x 的子列{}()kn fx ,使得.()()()k a en f x f x x E →∈.49.设()f x 为可测集E (nR ?)上的可测函数,则()f x 在E 上的L 积分值不一定存在且|()|f x 在E 上不一定L 可积. 50.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有界变差函数. 51.设,A B 为集合,则___(\)AB B A A 答案=52.设n E R ?,如果E 满足0E E =(其中0E 表示E 的内部),则E 是开集53.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b 必为G 的构成区间 54.设{|2,}A x x n n ==为自然数,则A 的基数=a (其中a 表示自然数集N 的基数) 55.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B - 答案 = 56.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是可测集 57.若()E R ?是可数集,则__0mE 答案=58.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()()()a en f x f x x E →∈,则()()n f x f x ? x E ∈不一定成立59.设()f x 为可测集()nE R ?上的非负可测函数,则()f x 在E 上的L 积分值一定存在60.若()f x 是[,]a b 上的有界变差函数,则()f x 必可表示成两个递增函数的差(或递减函数的差)多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ACD )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ?是无限集,则( AB )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠?D *0mE >3.设()f x 是E 上的可测函数,则(ABD )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则(ABC )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数5.设nE ?,如果E 至少有一个内点,则( BD )A *m E 可以等于0B *0m E >C E 可能是可数集DE 不可能是可数集6.设nE ?是无限集,则( AB )A E 含有可数子集B E 不一定有聚点C E 含有内点DE 是无界的7.设()f x 是E 上的可测函数,则( BD )A 函数()f x 在E 上可测B ()f x 是非负简单函数列的极限C ()f x 是有界的D ()f x 在E 的可测子集上可测8.设()f x 是[],a b 上的连续函数,则( ABD )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积,且()()()()[],ba ab R f x dx L f x dx =??C ()f x 在[],a b 上L 可积,但()()()()[],b a a b R f x dx L f x dx ≠??9.设()D x 是狄利克莱函数,即()[][]10,100,1x D x x ??=为中有理数为中无理数,则( BCD )A ()D x 几乎处处等于1B ()D x 几乎处处等于0C ()D x 是非负可测函数 D ()D x 是L 可积函数10.设nE ?,*0m E =,则( ABD )A E 是可测集B E 的任何子集是可测集C E 是可数集DE 不一定是可数集11.设nE ?,()10E cx Ex x Eχ∈?=?∈?,则( AB ) A 当E 是可测集时,()E x χ是可测函数 B 当()E x χ是可测函数时,E 是可测集 C 当E 是不可测集时,()E x χ可以是可测函数D 当()E x χ是不是可测函数时,E 不一定是可测集12.设()f x 是(),a b 上的连续函数,则(BD )A ()f x 在(),a b 上有界C ()f x 在(),a b 上L 可积D ()f x 在(),a b 上不一定L 可积13.设()f x 在可测集E 上L 可积,则(AC )A ()f x +,()f x -都是E 上的非负可积函数B ()f x +和()f x -有一个在E 上的非负可积C ()f x 在E 上L 可积D ()f x 在E 上不一定L 可积14.设nE ?是可测集,则( AD )A c E 是可测集B mE <+∞C E 的子集是可测集DE 的可数子集是可测集15.设()()n f x f x ?,则( CD )A ()n f x 几乎处处收敛于()f xB ()n f x 一致收敛于()f xC ()n f x 有子列()n f x ,使()()n f x f x →..a e 于ED ()n f x 可能几乎处处收敛于()f x16.设()f x 是[],a b 上有界函数,且L 可积,则(BD )A ()f x 在[],a b 上黎曼可积B ()f x 在[],a b 上可测C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上不一定连续17. 设{[0,1]}E =中的无理点,则(CD)(A )E 是可数集(B )E 是闭集(C )E 中的每个点均是聚点(D )0mE > 18. 若E (R ?)至少有一个内点,则(BD )(A )*m E 可以等于0(B )*0m E = (C )E 可能是可数集(D )E 不可能是可数集 19.设[,]E a b ?是可测集,则E 的特征函数()E x χ是(ABC )(A )[,]a b 上的符号函数(C )E 上的连续函数(B )[,]a b 上的可测函数(D )[,]a b 上的连续函数 20.设()f x 是[,]a b 上的单调函数,则(ACD )(A )()f x 是[,]a b 上的有界变差函数(B )()f x 是[,]a b 上的绝对连续函数(C )()f x 在[,]a b 上几乎处处收敛(D )()f x 在[,]a b 上几乎处处可导 21.设{[0,1]}E =中的有理点,则( AC )(A )E 是可数集(B )E 是闭集(C )0mE = (D )E 中的每一点均为E 的内点 22.若()E R ?的外测度为0,则( AB )(A )E 是可测集(B )0mE =(C )E 一定是可数集(D )E 一定不是可数集23.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ?∈,则下列哪些结果不一定成立( ABCD )(A )()Ef x dx ?存在(B )()f x 在E 上L -可积(C ).()()()a en f x f x x E →∈ (D )lim ()()n EEn f x dx f x dx →∞=??24.若可测集E 上的可测函数()f x 在E 上有L 积分值,则( AD )(A )()()f x L E +∈与()()f x L E -∈至少有一个成立(B )()()f x L E +∈且()()f x L E -∈ (C )|()|f x 在E 上也有L -积分值(D )|()|()f x L E ∈三、单项选择1.下列集合关系成立的是( A )A ()\B A A =? B ()\A B A =? C ()\A B B A = D ()\B A A B =2.若n R E ?是开集,则( B )A E E '?B 0E E =C E E =DE E '=4.设(){}n f x 是E 上一列非负可测函数,则( B )A ()()lim lim nn E En n fx dx f x dx →∞→∞≤?? B ()()lim lim nn E E n n f x dx f x dx →∞→∞≤??C()()lim lim nn E E n n fx dx f x dx →∞→∞≤?D ()()lim lim n nE E n n f x dx f x →∞→∞≤??5.下列集合关系成立的是( A )A c c A A αααα∈Λ∈Λ??=B ccA A αααα∈Λ∈Λ??= C ccA A αααα∈Λ∈Λ??=D ccA A αααα∈Λ∈Λ= ? ? 6.若n R E ?是闭集,则( C )A E E '=B E E '?C E E '?D 0E E =7.设E 为无理数集,则( C )A E 为闭集B E 是不可测集C mE =+∞D 0mE = 9.下列集合关系成立的是(B )A c c A A αααα∈Λ∈Λ??=B ccA A αααα∈Λ∈Λ??= C ccA A αααα∈Λ∈Λ= ? ? D cc cA A αααα∈Λ∈Λ=10.设n R E ?,则( A )A E E ?B E E '?C E E '?DE E =11.设P 为康托集,则( B )A P 是可数集B 0mP =C P 是不可数集D P 是开集 13.下列集合关系成立的是( A )A 若AB ?则c c B A ? B 若A B ?则c c A B ?C 若A B ?则A B B =D 若A B ?则A B B =14.设n R E ?,则( A )A ()E E = B 0E E ? C E E '? D E E '?15.设(){},001E x x =≤≤,则( B )A 1mE =B 0mE =C E 是2R 中闭集DE 是2R 中完备集16.设()f x ,()g x 是E 上的可测函数,则( B )A ()()E x f x g x ??≥??不一定是可测集B ()()E x f x g x ??≠??是可测集C ()()E x f x g x ??≤??是不可测集D ()()E x f x g x ??=??不一定是可测集17.下列集合关系成立的是(A )(A )(\)A B B A B = (B )(\)A B B A =(C )(\)B A A A ? (D )\B A A ?18. 若()nE R是开集,则( B )(A )E 的导集E ? (B )E 的开核E = (C )E E = (D )E 的导集E = 19. 设P 的康托集,则(C)(A )P 为可数集(B )P 为开集(C )0mP = (D )1mP =20、设E 是1R 中的可测集,()x ?是E 上的简单函数,则( D )(A )()x ?是E 上的连续函数(B )()x ?是E 上的单调函数(C )()x ?在E 上一定不L 可积(D )()x ?是E 上的可测函数 21.下列集合关系成立的是( A )(A )()()()AB C A B A C = (B )(\)A B A =?(C )(\)B A A =? (D )A B A B ?22. 若()n E R ?是闭集,则( B )(A )0E E = (B )E E = (C )E E '? (D )E E '= 23. 设Q 的有理数集,则( C )(A )0mQ > (B )Q 为闭集(C )0mQ = (D )Q 为不可测集24.设E 是n R 中的可测集,()f x 为E 上的可测函数,若()0Ef x dx =?,则( A )(A )在E 上,()f x 不一定恒为零(B )在E 上,()0f x ≥ (C )在E 上,()0f x ≡ (D )在E 上,()0f x ≠ 四、判断题1. 可数个闭集的并是闭集. (× )2. 可数个可测集的并是可测集. (√ )3. 相等的集合是对等的. (√ )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. (√ )5. 可数个F σ集的交是F σ集. (× )6. 可数个可测函数的和使可测函数. (√ )7. 对等的集合是相等的. (× )8. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x =的x 全体是零测集. (× ) 9. 可数个G σ集的并是G σ集. (√ )10. 零测集上的函数是可测函数. (√ ) 11. 对等的集合不一定相等. (√ )12. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是零测集.(√ ) 13. 可数个开集的交是开集(× ) 14. 可测函数不一定是连续函数. (√ ) 15. 对等的集合有相同的基数. (√ )16. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体的测度大于0 (× ) 17. 可列个闭集的并集仍为闭集(× ) 18. 任何无限集均含有一个可列子集(√ ) 19. 设E 为可测集,则一定存在G σ集G ,使E G ?,且()\0m G E =. (√ ) 20. 设E 为零测集,()f x 为E 上的实函数,则()f x 不一定是E 上的可测函数(× ) 21. 设()f x 为可测集E 上的非负可测函数,则()()f x L E ∈ (× ) 22. 可列个开集的交集仍为开集(× ) 23. 任何无限集均是可列集(× ) 24. 设E 为可测集,则一定存在F σ集F ,使F E ?,且()\0m E F =. (√ ) 25. 设E 为零测集,则()f x 为E 上的可测函数的充要条件是:?实数a 都有()E x f x a ?≥是可测集(√ )26. 设()f x 为可测集E 上的可测函数,则f x dx ?一定存在. (× )五、简答题1. 简述无限集中有基数最小的集合,但没有最大的集合.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A的基数大于A 的基数.2. 简述点集的边界点,聚点和内点的关系.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点. 3. 简单函数、可测函数与连续函数有什么关系?答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4. [],a b 上单调函数与有界变差函数有什么关系?答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 5. 简述集合对等的基本性质.答:A A ;若A B ,则B A ;若A B ,且B C ,则A C . 6. 简述点集的内点、聚点、边界点和孤立点之间关系.答:内点一定是聚点,内点不是孤立点,边界点由点集的孤立点和聚点组成. 7. 可测集与开集、G σ集有什么关系?答:设E 是可测集,则0ε?>,?开集G ,使G E ?,使()\m G E ε<,或? G σ集G ,使G E ?,且()\0m G E =.8. [],a b 上单调函数、有界变差函数与绝对连续函数有什么关系?答:绝对连续函数是有界变差函数,反之不然;有界变差函数是单调增函数的差,而单调函数是有界变差函数. 9. 简述证明集合对等的伯恩斯坦定理. 答:若AB B *?,又B A A *?,则A B10. 简述1R 中开集的结构.答: 设G 为1R 中开集,则G 可表示成1R 中至多可数个互不相交的开区间的并. 11. 可测集与闭集、集有什么关系?答:设E 是可测集,则0ε?>,?闭集F E ?,使()\m E F ε<或? F σ集F E ?,使()\0m E F =.12. 为什么说绝对连续函数几乎处处可微?答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微.13. 简述连续集的基数大于可数集的基数的理由.答:连续集是无限集,因而包含可数子集,又连续集是不可数集,所以连续集的基数大于可数集的基数. 14. 简述n R 中开集的结构.答:n R 中开集可表示成可数个互不相交的半开半闭区间的并 15. 可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系?答:设()(),n f x f x 是可测集E 上的一列可测函数,那当mE <+∞时,()(),.n f x f x a e →于E ,必有()()n f x f x ?.反之不成立,但不论mE <+∞还是mE =+∞,(){}n f x 存在子列(){}k n f x ,使()(),.k n f x f x a e →于E .当mE <+∞时,()(),.n f x f x a e →于E ,由Egoroff 定理可得()n f x 近一致收敛于()f x ,反之,无需条件mE <+∞,结论也成立.16. 为什么说有界变差函数几乎处处可微?答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微.17. 简述无穷多个开集的交集是否必为开集?答:不一定,如[]1111,11,1n n n +∞=?---+=-18. 可测集E 上的可测函数与简单函数有什么关系?答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式. 19. [],a b 上的有界变差函数与单调函数有什么关系?答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差. 20. 简述无穷多个闭集的并集是否必为闭集?答:不一定如()1111,11,1n n n +∞=??---+=-21. 可测集E 上的可测函数与连续函数有什么关系?答:E 上连续函数必为可测函数但E 上的可测函数不一定时连续函数,E 上可测函数在E 上是“基本上”连续的函数 22. [],a b 上的绝对连续函数与有界变差函数有什么关系?答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数六、计算题1. 设()[]230,1\xx E f x xx E∈?=?∈??,其中E 为[]0,1中有理数集,求()[]0,1f x dx ?.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===?? 因此()[]0,114f x dx =. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈??=?∈??,求()[]0,1lim n n f x dx →∞?.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==??因此()[]0,1lim0nn f x dx →∞=?.3. 设()[]2sin 0,1\xx P f x x x P ∈?=?∈?,P 为康托集,求()[]0,1f x dx ?. 解:因为0mP =,所以()2,.f x x a e =于[]0,1 于是()[][]20,10,1f x dx x dx =而2x 在[]0,1上连续,所以[]()31221000,11|33x x dx R x dx ===?? 因此()[]0,113f x dx =?.4. 设()()[]22sin ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞?. 解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222sin 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===5. 设()3cos 0,\2x x E f x x x E π?∈?=?∈,E 为0,2π??中有理数集,求()0,2f x dx π??. 解:因为0mE =,所以()cos ,.f x x a e =于[]0,1 于是()0,0,22cos f x dx xdx ππ=??而cos x 在0,2π??上连续,所以黎曼可积,由牛顿莱布尼公式 []()22000,1cos cos sin |1xdx R xdx x ππ===??因此()0,21f x dx π=?6. 设()()[]22cos ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞?. 解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===7. 设()[]3sin 0,1\xx P f x xx P∈?=?∈??,P 为康托集,求()[]0,1f x dx ?.解:因为0mP =,所以(),.f x x a e =于[]0,1 于是()[][]0,10,1f x dx xdx =??而x 在[]0,1上连续,所以[]()2121000,11|22x xdx R x dx ===?? 因此()[]0,112f x dx =. 8. 求()()0,ln lim cos xn n x n e xdx n -→∞+?. 解:令()()()()0,ln cos xn n x n f x x e x nχ-+= 显然()n f x 在()0,+∞上可测,且()()()()0,0,ln cos xn n x n e xdx f x dx n -+∞+=?? 因为()()() ()ln ln cos ,0,,1,2,x n x n x n f x e x x n n n -++≤≤?∈+∞=不难验证()()ln n x n g x n+=,当n 足够大时,是单调递减非负函数,且()lim 0n n g x →∞=,所以()()()()()()0,0,0,ln limlim lim n n n n n x n dx g x dx g x n →∞→∞→∞+∞+∞+∞+==()0,00dx +∞==?由勒贝格控制收敛定理()()0,lim0n n f x dx →∞+∞=?故()()0,ln limcos 0xn n x n e xdx n -→∞+=?.9. 设()[][]101001x D x x ??=?为,上的有理点为,上的无理点,求()[]01D x dx ?,.证明记1E 是[]0,1中有理数集,2E 是[]0,1中无理数集,则[]12120,1,E E E E ==?,120,1mE mE ==,且()1210E E D x χχ=+,所以()[]120,1100D x dx mE mE =+=?.10 求()0ln limcos xn x n e xdx n+∞-→∞+?. 证明易知()ln limcos 0xn x n e x n-→∞+=对任意0,1x n ≥≥,()()ln ln cos x x n x n e x n n-++≤ 设()ln ()x y f y y +=,0y >,则()2ln ()yx y x yf y y-++'=,当3y ≥时,()1ln yx y x y<<++,()0f y '<. 则()ln ()x n f n n+=是单调减函数且非负(3n ≥);又()ln 1limlim 0n n x n n x n →∞→∞+==+,由Levi 单调收敛定理得 ()()0 00ln ln lim lim 00n n x n x n dx dx dx n n +∞+∞+∞→∞→∞++===?,即()ln ()x n L E n+∈,再由Lebsgue 控制收敛定理得()()000ln ln lim cos lim cos 00x xn n x n x n e xdx e xdx dx n n+∞+∞+∞--→∞→∞++===?11. 设()[]230,1xx P f x xx P∈?=?∈-??,其中P 为康托集,求()[]01f x dx ?,.解:因为P 为康托集,故0mP =,[]()0,1\1m P = 所以()[]320,1P P f x x x χχ-=+ 所以()[][]()2330,10,1f x dx x mP x m P x=+-=?12. 求()[]22,0,11n nxf x E n x ==+,求()lim n n Ef x dx →∞?.解:易知:[]()22lim00,11n nxx n x →∞=∈+令()()2221,1n nx f x g x n x x==+,则()()()22232222222221110111n nx n x nx n x nx g x f x nx nx x n x x x n x n x+-+--=-==≥+++ 所以()()[]()00,1,1n f x g x x n ≤≤∈≥ 又因为()g x 在[]0,1上Lebesgue 可积,所以由控制收敛定理,得 22lim 001n E Enxdx dx n x →∞==+??七、证明题1.证明集合等式:(\)A B B A B =证明(\)()c A B B A B B =()()()c c A B A B B A BB B A B ===2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =证明设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而cF 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于E F =?,所以1[0,1]()0m m E F mE mF mF ===+=+,故1mF =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集证明设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤证明因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤?而[|()|][|()|]E x f x a adx a mE x f x a ≥=?≥?,所以1[|()|]|()|E mE x f x a f x dx a≥≤5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=?证明因为lim 0n n mE →∞=,所以0,1N δ?>?≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ?>?>当,e E me δ?<时|()|ef x dx ε<?于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<?,即lim ()0nE n f x dx →∞=?6.证明集合等式:\(\)A A B A B =证明 \(\)()(())()c c cc c cA AB AA B A A B A A B ===()()c A A A B A B ==7.设12,A A 是[0,1]的可测子集,且121mA mA +>,则12()0m A A >证明因为12[0,1],[0,1]A A ??,所以12[0,1]A A ?,于是12()[0,1]1m A A m ≤=另一方面,121122[\()]A A A A A A =,所以()12112211221122()[\()][\()]()m A A m A A A A m A A A mA mA m A A mA ==+=-+ 于是121212()()0m A A mA mA m A A =+->8.设()f x 是定义在可测集nE R ?上的实函数,n E 为E 的可测子集(1,2,n =),且1n n E E ∞==,则()f x 在E 上可测的充要条件是()f x 在每个n E 上可测证明对任何实数a ,因为11[|()][|()]([|()])n nn n E x f x a E x f x a E E x f x a ∞∞==>=>=>所以()f x 在E 上可测的充要条件是对每个1,2,n =,()f x 在每个n E 上可测9.设()f x 是E 上的可测函数,则对任何常数0a >,有()[|()]af x EmE x f x a e e dx -≥≤?证明因为()f x 在E 上可测,所以()f x e是非负可测函数,于是由非负可测函数积分性质,()()[|()][|()]a f x f x E x f x a E x f x a Ee dx e dx e dx ≥≥≤≤?而[|()][|()]a a E x f x a e dx e mE x f x a ≥=?≥?,所以 ()[|()]af x EmE x f x a ee dx -≥≤?10.设()f x 是E 上的可积函数,{}n E 为E 的一列可测子集,mE <+∞,如果lim n n mE mE →∞= 则lim()()nE En f x dx f x dx →∞=??证明因()f x 在E 上L -可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ?,当mA δ<时有|()|Af x dx ε<?,由于lim n n mE mE →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ?,且有()n n mE mE m E E δ-=-<,于是|()()||()|nnEE E E f x dx f x dx f x dx ε--=<?,即 lim()()nE En f x dx f x dx →∞=??11.证明集合等式:()\(\)(\)A B C A C B C =证明 ()\()()()(\)(\)c c c AB C A B C A C B C A C B C ===12.设nE R ?是零测集,则E 的任何子集F 是可测集,且0mF =证明设F E ?,*0m E =,由外测度的单调性和非负性,*00m F mE ≤≤=,所以 *0m F =,于是由卡氏条件易知F 是可测集13.设(),(),(),()n n f x g x f x g x 是E 上几乎处处有限的可测函数,且()()n f x f x ?,()()n g x g x ?,则()()()()n n f x g x f x g x +?+.证明对任何正数0σ>,由于|(()())(()())||()()||()()|n n n n f x g x f x g x f x f x g x g x +-+≤-+- 所以[|(()())(()())|]n n E x f x g x f x g x σ+-+≥ [|()()|][|()()|]2 2n n E x f x f x E x g x g x σσ-≥-≥于是[|(()())(()())|]n n mE x f x g x f x g x σ+-+≥ [|()()|][|()()|]22n n mE x f x f x mE x g x g x σσ≤-≥+-≥0()n →→∞故()()()()n n f xg x f x g x +?+ 14.设(),()f x g x 是E 上L -E 上也是L -可积的证明因(),()f x g x 是E 上L -可积,所以|()|,|()|f x g x 在E 上L -可积,从而|()||()|f x g x +L -可积,|()||()|f x g x ≤=+ E 上L -可积15.设()f x 是可测集E 上的非负可测函数,如果()0Ef x dx =?,则()0.f x a e =于E证明反证,令[|()0]A E x f x =>,则由()f x 的可测性知,A 是可测集.下证0mA =,若不然,则0mA >由于11[|()0][|()]n A E x f x E x f x n ∞==>=≥,所以存在1N ≥,使1[|()]0mE x f x d N≥=> 于是11[|()][|()]111()()[|()]0EE x f x E x f x NNdf x dx f x dx dx mE x f x N N N N≥≥≥≥=≥=>?因此()0Ef x dx >?,矛盾,故()0.f x a e =于E16.证明等式:\()(\)(\)A B C A B A C = 证明 \()()()()()(\)(\)c cc c c A BC A B C A B C A B A C A B A C ==== 17.设nE R ?是有界集,则*m E <+∞。

实变函数(复习资料,带答案)

实变函数(复习资料,带答案)

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( ) (A )=P c (B) 0mP = (C) P P ='(D) P P =3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的 4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

《实变函数》习题库参考答案

《实变函数》习题库参考答案

《实变函数》习题库参考答案《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ?),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。

满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-?--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ?知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由+∞<="" 4、(="" b="" m="" ma="" p="" √="" 。

从而移项可得结论。

="" 知,+∞<-+∞理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数,从而再其和集上也是可测函数。

5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。

6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。

[法二]:可建立一个映射==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合,1,,31,21,1,0n 到集合 ,1,,31,21,1n 的一一映射。

7、( √ )理由:由B A ?知A A B B )(-=,且φ=-A A B )(,故mA mA A B mmB =+-=)(8、( √ )理由:狄利克莱函数-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。

9、( √ )理由:由于E E ?Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。

(完整版)实变函数(复习资料_带答案)

(完整版)实变函数(复习资料_带答案)

《实变函数》试卷一一、单项选择题(3分×5=15分) 1、下列各式正确的是( )(A )1lim n k n n k n A A ∞∞→∞===⋃⋂; (B )1lim n k n k n n A A ∞∞==→∞=⋂⋃;(C )1lim n k n n k nA A ∞∞→∞===⋂⋃; (D )1lim n k n k nn A A ∞∞==→∞=⋂⋂;2、设P 为Cantor 集,则下列各式不成立的是( )(A )=P c (B) 0mP = (C) P P =' (D) P P =ο3、下列说法不正确的是( )(A) 凡外侧度为零的集合都可测(B )可测集的任何子集都可测(C) 开集和闭集都是波雷耳集 (D )波雷耳集都可测 4、设{}()n f x 是E 上的..a e 有限的可测函数列,则下面不成立的是( )(A )若()()n f x f x ⇒, 则()()n f x f x → (B){}sup ()n nf x 是可测函数(C ){}inf ()n nf x 是可测函数;(D )若()()n f x f x ⇒,则()f x 可测5、设f(x)是],[b a 上有界变差函数,则下面不成立的是( )(A) )(x f 在],[b a 上有界 (B) )(x f 在],[b a 上几乎处处存在导数(C ))('x f 在],[b a 上L 可积 (D)⎰-=b aa fb f dx x f )()()('二. 填空题(3分×5=15分)1、()(())s s C A C B A A B ⋃⋂--=_________2、设E 是[]0,1上有理点全体,则'E =______,oE =______,E =______.3、设E 是n R 中点集,如果对任一点集T 都_________________________________,则称E 是L 可测的4、)(x f 可测的________条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设()f x 为[],a b 上的有限函数,如果对于[],a b 的一切分划,使_____________________________________,则称()f x 为[],a b 上的有界变差函数。

实变函数(复习资料,带答案).doc

实变函数(复习资料,带答案).doc

《实变函数试卷一一、单项选择题(3分X5=15分)1、下列各式正确的是( )_________ oo oo oo oo(A) limA = u n A ; (B) lim A = n u A ;n—H=1k=n,?一z?=l k=n00 00 00 00(C) limA" = n u ; (D) lim= A k ;打一>oo z:=l k=n z?=l k=n2、设P为Cantor集,则下列各式不成立的是( )(A) ~P= c (B) mP = 0 (C) P = P (D) P=P3、下列说法不正确的是( )(A)凡外侧度为零的集合都可测(B)可测集的任何子集都可测(C)开集和闭集都是波雷耳集(D)波雷耳集都可测4、设以(4是£上的E有限的可测函数列,则下而不成立的是( )(A)若又(x)=>/(x),则又(x) + /(x) (B)sup{/…Cr)}是可测函数(O inf{//%)}是可测函数;(D)若/T H又⑺=>/U),则/(X)可测5、设f(X)是上有界变差函数,则卜*面不成立的是()(A) /(X)在[6Z,/7]上有界(B) /(X)在[6/,刎上儿乎处处存在导数c b(C) / (X)在上L 可积(D) J a f\x)cbc=f(b)-f(a)二.填空题(3分X 5=15分)1、(C s AuC v5)n(A-(A-B))= ________________2、设£是[0,1]上有理点全体,则E - ______ , E- ________ , E- _______ .3、设£是/?。

中点集,如果对任一点集r都,贝1J称£是£可测的4、/⑶可测的________ 条件是它可以表成一列简单函数的极限函数.(填“充分”,“必要”,“充要”)5、设/(x)为上的有限函数,如果对于的一切分划,使_____________________________________ ,则称/(x)为[6Z,/7]上的有界变差函数。

实变函数积分理论部分复习题(附答案版)

实变函数积分理论部分复习题(附答案版)

实变函数积分理论部分复习题(附答案版)2022级实变函数积分理论复习题一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例)1、设fn(某)是[0,1]上的一列非负可测函数,则f(某)可积函数。

(某)2、设fn(某)是[0,1]上的一列非负可测函数,则f(某)可测函数。

(√)3、设fn(某)是[0,1]上的一列非负可测函数,则fn1n(某)是[0,1]上的Lebeguefn1n(某)是[0,1]上的Lebegue[0,1]nlimfn(某)d某limn[0,1]fn(某)d某。

(某)4、设fn(某)是[0,1]上的一列非负可测函数,则存在fn(某)的一个子列fnk(某),使得,[0,1]klimfnk(某)d某limk[0,1]fnk(某)d某。

(某,比如fn(某)为单调递增时,由Levi定理,这样的子列一定不存在。

)5、设fn(某)是[0,1]上的一列非负可测函数,则存在fn(某)的一个子列fnk(某),使得,[0,1]klimfnk(某)d某limk[0,1]fnk(某)d某。

(某,比如课本上法都引理取严格不等号的例子。

)6、设fn(某)是[0,1]上的一列非负可测函数,则[0,1]nlimfn(某)d某limn[0,1]fn(某)d某。

(√)7、设fn(某)是[0,1]上的一列非负可测函数,则[0,1]nlimfn(某)d某limn[0,1]fn(某)d某。

(某)8、设f(某)是[0,1]上的黎曼可积函数,则f(某)必为[0,1]上的可测函数。

(√,Lebegue积分与正常黎曼积分的关系)9、设f(某)是[0,)的上黎曼反常积分存在,则f(某)必为[0,)上的可测函数。

(√,注意到黎曼反常积分的定义的前提条件,对任意自然数n>0,f(某)在[0,n]上黎曼可积,从而f(某)是[0,n]上的可测函数,进而f(某)是[0,)n1[0,n]上的可测函数)10、设fn(某)是[0,1]上的一列单调递增非负可测函数,G([0,1],fn)表示fn(某)在[0,1]上的下方图形,f(某)=limfn(某),则G([0,1],fn)单调递增,且nnlimG([0,1],fn)=UG([0,1],fn=1¥n)=G([0,1],f),mG([0,1],f)=nlimmG([0,1],fn)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集。
0, 开集 G E,使 m* (G E)
,则 E 是可测
(第 7 页,共 19 页)
3. (6 分)在 a, b 上的任一有界变差函数 f ( x) 都可以表示为 两个增函数之差。
5. (8 分)设 f ( x) 在 E a,b 上可积,则对任何 0 ,必存
b
在 E 上的连续函数 ( x) ,使 | f ( x) (x) | dx . a
E
四、解答题 (8 分× 2=16 分) .
1、(8分)设 f (x)
x2, x为无理数 ,则 f ( x) 在 0,1 上是否 R
1, x为有理数
可积,是否 L 可积,若可积,求出积分值。
五、证明题 (6 分× 4+10=34 分) . 1、(6 分)证明 0,1 上的全体无理数作成的集其势为 c
可测集;
二. 填空题 (3 分× 5=15 分)
1、设 An
11 [ , 2 ], n 1,2,
,则 lim An
_________。
nn
n
2、设 P 为 Cantor 集,则 P
o
,mP _____,P =________。
3、设 Si 是一列可测集,则 m i 1 Si ______ mSi i1 4、鲁津定理:
4.(8 分)设函数列 fn (x) ( n 1,2, ) 在有界集 E 上“基本上” 一致收敛于 f ( x) ,证明: fn (x) a.e.收敛于 f ( x) 。
2. x
E , 则存在 E中的互异点列
{
xn },
使 lim n
xn
x ……… .2

xn E, f ( xn ) a ………………… .3 分
xi
b
所以 V ( f ) 1,从而 V ( f ) m,因此, f (x) 是 [ a,b] 上的有界
xi 1
a
变差函数……… ..6 分
4、 f (x) 在 E 上可积
0,
3、( 6 分)在 a,b 上的任一有界变差函数 f ( x) 都可以表示为 存在闭子集 F E ,使 f ( x) 在 F 上连续,且 m( E F ) ,
两个增函数之差。
证明: f (x) 是 E 上的可测函数。 ( 鲁津定理的逆定理
(第 3 页,共 19 页)
试卷一 (参考答案及评分标准)
常数 c , E { x | f (x) c} 是一开集 .
四. 解答题 (8 分× 2=16 分)
x, x为无理数
1、设 f ( x)
,则 f ( x) 在 0,1 上是否 R 可积,
1,x为有理数
是否 L 可积,若可积,求出积分值。
lim
n
1
01
nx n2
x2
sin
3
nxdx
.
2、求极限
2.(6 分) 设
2、若 mE 0 ,则 E 一定是可数集 .
(第 1 页,共 19 页)
3、若 | f (x) |是可测函数,则 f (x) 必是可测函数
2、(8分)求 lim
ln( x
n) e
x cos xdx
n0
n
4.设 f (x) 在可测集 E 上可积分,若 x E, f ( x) 0 ,则 f ( x) 0
一、 1. C 2 D 3. B 4. A 5. D
二、 1.
2 、 0,1 ; ; 0,1 3 、
m* T m* (T E) m* (T CE)
n
4、充要 5 、 | f ( xi ) f (xi 1) | 成一有界数集。
i1
三、1.错误 2 分例如: 设 E 是 0,1 上有理点全体, 则 E 和 CE
(第 5 页,共 19 页)
又 m( E F ) 0, 所以 f (x) 是 E F 上的可测函数, 从而是 E 上
的 可测函数…………………… ..10 分
《实变函数》试卷二
一 . 单项选择题 (3 分× 5=15 分)
1.设 M , N 是两集合,则 M ( M N ) =(

的 (A) f ( x) 在 a,b L 可积 | f ( x) | 在 a, b L 可积; (B) f ( x)在 a, b R 可积 | f (x) | 在 a,b R 可积 (C) f ( x)在 a, b L 可积 | f ( x) | 在 a,b R 可积 ; (D) f ( x)在 a, R 广义可积 f ( x)在 a,+ L 可积
使 _____________________________________则, 称 f ( x) 为
a, b 上的有界变差函数。 三、下列命题是否成立 ?若成立 , 则证明之 ; 若不成立 , 则举反 例说明 . (5 分× 4=20 分 ) 1、设 E R1 ,若 E 是稠密集,则 CE 是无处稠密集。
5. 若 f ( x)是可测函数 ,则下列断言(
)是正确
(第 6 页,共 19 页)
2、可数个零测度集之和集仍为零测度集。 3、 a.e.收敛的函数列必依测度收敛。 4、连续函数一定是有界变差函数。
五. 证明题 (6 分× 3+ 8 2 =34 分 ) 1.(6 分) 1、设 f(x) 是 ( , ) 上的实值连续函数,则对任意
(D) 内点必是聚点
3. 下列断言 ( ) 是正确的。
(A)任意个开集的交是开集; (B) 任意个闭集的交是
闭集;
(C) 任意个闭集的并是闭集; (D) 以上都不对;
4. 下列断言中 ( ) 是错误的。
(A)零测集是可测Βιβλιοθήκη ;(B)可数个零测集的并是
零测集;
(C)任意个零测集的并是零测集; (D)零测集的任意子集是
__________________________________________ 5、设 F ( x) 为 a, b 上的有限函数,如果 _________________则
称 F ( x) 为 a, b 上的绝对连续函数。 三. 下列命题是否成立 ?若成立 , 则证明之 ; 若不成立 , 则说明 原因或举出反例 . (5 分× 4=20 分) 1、由于 0,1 0,1 0,1 ,故不存在使 0,1 和 0,1 之间 1 1 对 应的映射。
________________________________,_则称 E 是 L 可测的 4、 f ( x) 可测的 ________条件是它可以表成一列简单函数的极 限函数 . (填“充分”,“必要”,“充要”) 5、设 f ( x) 为 a, b 上的有限函数, 如果对于 a, b 的一切分划,
(ai ,bi ) ( a, b)
n
当 (bi ai )
i1
n
时,有 f (b)i f (ai ) 1……………… 2 分
i1
n
将 [a,b] m 等分,使 xi xi 1
i1
,对
T : xi 1 z0 z1
k
zk xi ,有 f ( zi ) f (zi 1) 1 ,所以
i1
| f ( x) | dx ……… .4 分
k , x n k F,n n , k x Fn () f x
又对任意 k , m E F
m[ E
( n
k
Fn )]
m[ (E nk
Fn )]
m( E
nk
Fn )
1 2k
…………………………
.6 分
f ( x) 在 [ xi 1, xi ] 上是有界变差函数……………… .5 分
故 m( E F ) 0, f ( x) 在 F E 连续………… ..8 分
B是无限集, 可数子集 M B ……………… 2 分
A是可数集, A M M . ……………………………… .3 分
(第 4 页,共 19 页)
B M ( B M ), E A B A M ( B M ), ……… ..5 分
且(A M ) (B M ) , M (B M ) ,
E B, B c.………………………… 6 分
e
对上述 0, k, n k, mE(| f | n)
,从而
n men
| f ( x) | dx
en
,即 lim n
n me n 0
………………… 6 分
5. n N , 存在闭集 Fn 续………… 2 分
E , m E Fn
1 2n , f (x) 在 Fn 连
令F
Fn ,则 x F
k 1n k
在 F 连续……… 4 分
《实变函数》试卷一
一、单项选择题 ( 3 分×5=15 分)
1、下列各式正确的是(

( A) lim An
Ak ; (B) lim An
Ak ;
n
n 1k n
n
n 1k n

C)
lim
n
An
n 1 k n Ak ;
( D)
lim
n
An
n 1 k n Ak ;
2、设 P 为 Cantor 集,则下列各式不成立的是(
(A) M (B)
N (C) M N (D)
2. 下列说法不正确的是 ( )
(A) P0 的任一领域内都有 E 中无穷多个点,则 P0 是 E 的聚点
(B) P0 的任一领域内至少有一个 E 中异于 P0 的点,则 P0 是 E
的聚点
(C) 存在 E 中点列 Pn ,使 Pn P0 ,则 P0 是 E 的聚点
n0
0n
则 | f ( x) |是 a,b 上的可测函数, 但 f (x) 不是 a,b 上的可测函 五、 1.设 E [0,1], A E Q, B E (E Q).
相关文档
最新文档