2017大一第一学期期末高数A试卷及答案
2017级高数一期末A解答(理工类多学时)(1)

2017级本科高等数学A (一)期末试题解答与评分标准A(理工类多学时)一、单项选择题(本大题共6小题,每小题3分,共18分) 1.数列极限2lim (1)n n n n →∞+-的值为( B ).A .0;B .12; C .1; D .∞. 2.若函数1cos ,0(),0xx f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( A ). A . 12ab =; B . 12ab =-; C . 0ab =; D . 2ab =. 3.已知函数()sin f x x x =,则(0)f '的值为( B ). A .1-; B .0; C .1; D .不存在.4.已知函数32()26187f x x x x =---,则在[1,4]上的最大值为( D ). A . 3; B . 61-; C . 47-; D . 29-. 5.设2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( C ).A .222(1)x C -+; B .222(1)x C --+;C .221(1)2x C --+; D .221(1)2x C -+. 6.一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度为221x x ρ=-++,则该细棒的质量为( A ). A .53; B . 73; C . 1; D . 2. 二、填空题(本大题共6小题,每小题3分,共18分) 7.()6sin 0lim 13kxx x e →+=(其中k 为常数),则k =2.8. 曲线22ln y x x =+在拐点处的微分dy =4dx . 解:222222(1)(1)2ln 22x x y x x y x y x x x +-'''=+⇒=+⇒=-=, 22(1)(1)01,1x x y x x x+-''==⇒==-(舍),且1,0;1,0x y x y ''''>><<,所以,拐点为(1,1),此处的微分为112(2)4x x dy x dx dx x===+=9.322(sin)x x dx πππ-+-=⎰32π.10.20sin()x d x t dt dx-=⎰2sin x . 11.D 是曲线段sin (0)2y x x π=≤≤及直线0,2y x π==所围成的平面图形,则D 绕x 轴旋转所得的旋转体的体积为24π.12.已知()y f x =的图像过点(0,0),且与xy a =相切于点(1,2),则10()xf x dx ''=⎰2ln 22-.解:因为()y f x =的图像过点(0,0),所以,(0)0f =;而xy a =过点(1,2),所以12a =,即2a =,曲线为2xy =,它在点(1,2)的切线的斜率为(1)2ln 2k y '==,又()y f x = x y a =相切于点(1,2),所以(1)2f =,(1)2ln 2f '=,则1111100()()()()(1)()xf x dx xdf x xf x f x dx f f x ''''''==-=-⎰⎰⎰(1)(1)(0)2ln 22f f f '=-+=-三、解答题(本大题共8小题,每小题8分,共64分) 13. 求极限20cos limarcsin 5x x t dtx→⎰.解:原式20cos =lim5x x t dt x→⎰ (3分)20cos lim 5x x →= (3分) =15(2分) 14. 已知曲线()y y x =由方程1yy xe =+确定,求该曲线在点(1,0)-处的切线方程. 解:方程两边关于x 求导得:y y y e xe y ''=+ (2分)1yydy e dx xe =- (2分)12dy dx =(-1,0) (2分)则过点(1,0)-的切线方程为:1(1)2y x =+,即21y x =+ . (2分) 15. 设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,求22t d ydx =.解:cos 1tdy dy dt tdx dx dt e ==+ (3分) 2223sin (1)cos 1sin (1)cos ==(1)1(1)t t t t t t t d y t e e t t e e tdx e e e -+--+-⋅+++ (3分) 221=8t d y dx =- (2分)16. 求不定积分e x x dx -⎰.解:原式x xde -=-⎰x x xe e dx --=-+⎰(4分)xx xee C --=--+(1)x x e C -=-++ (4分)17. 求定积分1cos 2x dx π+⎰.解:1cos 2x dx π+⎰202cos xdx π=⎰222(cos cos )xdx xdx πππ=-⎰⎰ (4分)2022(sin sin )xx πππ=-22= (4分)18. 求反常积分25143dx x x +∞-+⎰.解:2551143(1)(3)dx dx x x x x +∞+∞=-+--⎰⎰ 5111()231dx x x +∞=---⎰ 513ln21x x +∞-=- (4分)ln 22=(4分) 19. 已知曲线2:(0)L y x x =≥,点(0,0)O ,点(0,1)A .设P 是L 上的动点,S 是直线OA与直线AP 及曲线L 所围图形的面积.若P 运动到点(2,4)时沿x 轴正向的速度是4,求此 时S 关于时间t 的变化率.解:设在t 时刻,P 点的坐标为((),())x t y t ,则1(1)2y S ydy y y =+-⎰3211+62y y =31162x x =+, 或者22200(1)(1)22x x y x x x S x dx x dx ++=-=-⎰⎰31126x x =+, (4分) 所以2()1122dS t dx dxxdt dt dt=+, (2分) 又(2,4)=4dx dt,故2(2,4)()11424=1022dS t dt=⋅+⋅⋅. (2分) 解法二:设在t 时刻,P 点的坐标为((),())x t y t ,则22200(1)(1)22x x y x x x S x dx x dx ++=-=-⎰⎰, (4分)22()1(3)2dS t dx dx dxx x dt dt dt dt=+-, (2分) 故(2,4)()1(4344)44=102dS t dt=+⋅⋅-⋅. (2分) 20. 设(0,1)x ∈,证明:22(1)ln (1)x x x ++<.解:令22()(1)ln (1)g x x x x =++-,则 (2分)2()ln (1)2ln(1)2g x x x x '=+++-,2()[ln(1)]1g x x x x''=+-+, (2分) 又由拉格朗日中值定理有,ln(1)ln(1)ln11xx x x ξ+=+-=<+,(0,01)x x ξ<<<< (或者令()ln(1)h x x x =+-,用单调性证明()(0)0h x h <=.) 则()0,(0,1)g x x ''<∈,所以()g x '在(0,1)上单调减少, 又(0)0g '=,所以当(0,1)x ∈时,()(0)0g x g ''<=,从而()g x 在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,故有22(1)ln (1)x x x ++<. (4分)。
大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试之巴公井开创作一、单项选择题 (本大题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(l i m .5.,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.6.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .7. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解. 四、 解答题(本大题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线xy ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个分歧的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C 二、填空题(本大题有4小题,每小题4分,共16分)5.6e. 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:1033()x f x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =。
大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D)()f x 不可导。
2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。
(A)()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C)()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。
(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D)函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B)222x+(C )1x - (D )2x +。
二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。
7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x 。
三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。
大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C)(0)0f '= (D)()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。
(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B)()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D)()x β是比()x α高阶的无穷小。
3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +。
二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim 。
6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。
8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数。
大一上学期高数期末考试题

大一上学期(第一学期)高数期末考试题(有答案)(总5页)-本页仅作为预览文档封面,使用时请删除本页-大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则 .7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数.求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V . 六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰3()x xd e --=-+⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一上学期(第一学期)高数期末考试题(有答案)

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。
(A)(0)2f '= (B )(0)1f '=(C)(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。
(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +。
二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m 。
6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。
8. =-+⎰21212211arcsin -dx xx x 。
三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y 。
高数(大一上)期末试题及答案

高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。
0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。
2.已知 f(x) = { e^x。
x < 1.ln x。
x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。
3.曲线 y = xe^(-x^2) 的拐点是 (1/e。
1/(2e)),答案为 C。
4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。
+∞) 内发散。
5.若 f(x) 与 g(x) 在 (-∞。
+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。
三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。
2017级高数一期末A解答(理工类多学时)(1)

2017级本科高等数学A (一)期末试题解答与评分标准A(理工类多学时)一、单项选择题(本大题共6小题,每小题3分,共18分) 1.数列极限2lim (1)n n n n →∞+-的值为( B ).A .0;B .12; C .1; D .∞. 2.若函数1cos ,0(),0xx f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( A ). A . 12ab =; B . 12ab =-; C . 0ab =; D . 2ab =. 3.已知函数()sin f x x x =,则(0)f '的值为( B ). A .1-; B .0; C .1; D .不存在.4.已知函数32()26187f x x x x =---,则在[1,4]上的最大值为( D ). A . 3; B . 61-; C . 47-; D . 29-. 5.设2()f x dx x C =+⎰,则2(1)xf x dx -=⎰( C ).A .222(1)x C -+; B .222(1)x C --+;C .221(1)2x C --+; D .221(1)2x C -+. 6.一根长为1的细棒位于x 轴的区间[0,1]上,若其线密度为221x x ρ=-++,则该细棒的质量为( A ). A .53; B . 73; C . 1; D . 2. 二、填空题(本大题共6小题,每小题3分,共18分) 7.()6sin 0lim 13kxx x e →+=(其中k 为常数),则k =2.8. 曲线22ln y x x =+在拐点处的微分dy =4dx . 解:222222(1)(1)2ln 22x x y x x y x y x x x +-'''=+⇒=+⇒=-=, 22(1)(1)01,1x x y x x x+-''==⇒==-(舍),且1,0;1,0x y x y ''''>><<,所以,拐点为(1,1),此处的微分为112(2)4x x dy x dx dx x===+=9.322(sin)x x dx πππ-+-=⎰32π.10.20sin()x d x t dt dx-=⎰2sin x . 11.D 是曲线段sin (0)2y x x π=≤≤及直线0,2y x π==所围成的平面图形,则D 绕x 轴旋转所得的旋转体的体积为24π.12.已知()y f x =的图像过点(0,0),且与xy a =相切于点(1,2),则10()xf x dx ''=⎰2ln 22-.解:因为()y f x =的图像过点(0,0),所以,(0)0f =;而xy a =过点(1,2),所以12a =,即2a =,曲线为2xy =,它在点(1,2)的切线的斜率为(1)2ln 2k y '==,又()y f x = x y a =相切于点(1,2),所以(1)2f =,(1)2ln 2f '=,则1111100()()()()(1)()xf x dx xdf x xf x f x dx f f x ''''''==-=-⎰⎰⎰(1)(1)(0)2ln 22f f f '=-+=-三、解答题(本大题共8小题,每小题8分,共64分) 13. 求极限20cos limarcsin 5x x t dtx→⎰.解:原式20cos =lim5x x t dt x→⎰ (3分)20cos lim 5x x →= (3分) =15(2分) 14. 已知曲线()y y x =由方程1yy xe =+确定,求该曲线在点(1,0)-处的切线方程. 解:方程两边关于x 求导得:y y y e xe y ''=+ (2分)1yydy e dx xe =- (2分)12dy dx =(-1,0) (2分)则过点(1,0)-的切线方程为:1(1)2y x =+,即21y x =+ . (2分) 15. 设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,求22t d ydx =.解:cos 1tdy dy dt tdx dx dt e ==+ (3分) 2223sin (1)cos 1sin (1)cos ==(1)1(1)t t t t t t t d y t e e t t e e tdx e e e -+--+-⋅+++ (3分) 221=8t d y dx =- (2分)16. 求不定积分e x x dx -⎰.解:原式x xde -=-⎰x x xe e dx --=-+⎰(4分)xx xee C --=--+(1)x x e C -=-++ (4分)17. 求定积分1cos 2x dx π+⎰.解:1cos 2x dx π+⎰202cos xdx π=⎰222(cos cos )xdx xdx πππ=-⎰⎰ (4分)2022(sin sin )xx πππ=-22= (4分)18. 求反常积分25143dx x x +∞-+⎰.解:2551143(1)(3)dx dx x x x x +∞+∞=-+--⎰⎰ 5111()231dx x x +∞=---⎰ 513ln21x x +∞-=- (4分)ln 22=(4分) 19. 已知曲线2:(0)L y x x =≥,点(0,0)O ,点(0,1)A .设P 是L 上的动点,S 是直线OA与直线AP 及曲线L 所围图形的面积.若P 运动到点(2,4)时沿x 轴正向的速度是4,求此 时S 关于时间t 的变化率.解:设在t 时刻,P 点的坐标为((),())x t y t ,则1(1)2y S ydy y y =+-⎰3211+62y y =31162x x =+, 或者22200(1)(1)22x x y x x x S x dx x dx ++=-=-⎰⎰31126x x =+, (4分) 所以2()1122dS t dx dxxdt dt dt=+, (2分) 又(2,4)=4dx dt,故2(2,4)()11424=1022dS t dt=⋅+⋅⋅. (2分) 解法二:设在t 时刻,P 点的坐标为((),())x t y t ,则22200(1)(1)22x x y x x x S x dx x dx ++=-=-⎰⎰, (4分)22()1(3)2dS t dx dx dxx x dt dt dt dt=+-, (2分) 故(2,4)()1(4344)44=102dS t dt=+⋅⋅-⋅. (2分) 20. 设(0,1)x ∈,证明:22(1)ln (1)x x x ++<.解:令22()(1)ln (1)g x x x x =++-,则 (2分)2()ln (1)2ln(1)2g x x x x '=+++-,2()[ln(1)]1g x x x x''=+-+, (2分) 又由拉格朗日中值定理有,ln(1)ln(1)ln11xx x x ξ+=+-=<+,(0,01)x x ξ<<<< (或者令()ln(1)h x x x =+-,用单调性证明()(0)0h x h <=.) 则()0,(0,1)g x x ''<∈,所以()g x '在(0,1)上单调减少, 又(0)0g '=,所以当(0,1)x ∈时,()(0)0g x g ''<=,从而()g x 在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,故有22(1)ln (1)x x x ++<. (4分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学I
1. 当0x x →时,()(),x x αβ都是无穷小,则当0x x →时( D )不一定是
无穷小. (A) ()()x x βα+
(B) ()()x x 2
2βα+
(C)
[])()(1ln x x βα⋅+
(D) )()
(2x x βα
2. 极限
a
x a x a x -→⎪⎭⎫ ⎝⎛1sin sin lim 的值是( C ). (A ) 1
(B ) e
(C ) a
e
cot (D ) a
e
tan
3.
⎪⎩⎪
⎨⎧=≠-+=001
sin )(2x a x x
e x x
f ax 在0x =处连续,则a =( D ). (A ) 1
(B ) 0
(C ) e (D ) 1-
4. 设)(x f 在点x a =处可导,那么=
--+→h h a f h a f h )2()(lim 0( A ). (A ) )(3a f ' (B ) )(2a f '
(C) )(a f ' (D ) )
(31
a f '
二、填空题(本大题有4小题,每小题4分,共16分)
5. 极限)
0(ln )ln(lim 0>-+→a x a a x x 的值是 a 1.
6. 由x x y e y
x 2cos ln =+确定函数y (x ),则导函数='y x
xe ye x y
x xy
xy ln 2sin 2+++
- . 7. 直线l 过点M (,,)123且与两平面x y z x y z +-=-+=202356,都平行,则直
线l 的方程为 13
1211--=--=-z y x . 8. 求函数2
)4ln(2x x y -=的单调递增区间为 (-∞,0)和(1,+∞ ) .
三、解答题(本大题有4小题,每小题8分,共32分)
9. 计算极限10(1)lim
x
x x e
x →+-.
解:1
1
ln(1)120
00(1)1
ln(1)lim
lim lim
2x x x
x x x x e e
x x e
e e x x
x +-→→→+--+-===-
10. 设)(x f 在[a ,b ]上连续,且
]
,[)()()(b a x dt
t f t x x F x
a
∈-=⎰,试求出)(x F ''。
解:
⎰⎰-=x
a
x
a
dt
t tf dt t f x x F )()()(
⎰⎰=-+='x
a
x
a
dt
t f x xf x xf dt t f x F )()()()()( )()(x f x F =''
11. 求
3
cos .sin x
x
dx x ⎰
解
:2
3c o s i
s i
x
x
d x -=-⎰⎰2
2
11s i
22
x x --=-
⎰
四、解答题(本大题有4小题,每小题8分,共32分)
12. 求
⎰
-2
3
2
21
x x dx .
令
1x t =
⎰
--=21
2
322)1
(11
11dt t t t
原式
=-⎰d t
t 121
2
3
2
=arcsin t
12
3
2=
π
6
13. 求函数
212x x y +=
的极值与拐点. 解:函数的定义域(-∞,+∞)
22)1()1)(1(2x x x y ++-=' 322)1()3(4x x x y +--=
''
令0='y 得 x 1
= 1, x 2
= -1
0)1(<''y x 1 = 1是极大值点,0)1(>-''y x 2
= -1是极小值点
极大值1)1(=y ,极小值1)1(-=-y
0=''y 33
故拐点(-3,-23),(0,0)(3,23
)
14. 求由曲线43
x y =与2
3x x y -=所围成的平面图形的面积. 解 :,,
x x x x x x 3
232431240=--+=
x x x x x x ()(),,,.+-==-==620602123
S x x x dx x x x dx
=-++---⎰⎰()()3260
2
3024334 =-++---()()x x x x x x 423602340
21632332316
=+=4521347
1
3 15. 设抛物线2
4x y -=上有两点(1,3)A -,(3,5)B -,在弧 A B 上,求一点(,)P x y 使ABP ∆的面积最大.
AB y x AB P AB x y x x x ABP 连线方程: 点到的距离 的面积
+-==+-=-++-≤≤2104521
5
235
132()
∆
S x x x x x ()()=
⋅⋅-++=-++12452352232
2
当 '=-+='=S x x x S x ()()4410 当时取得极大值也是最大值''=-<=S x x S x ()()401 此时 所求点为,y =313()
另解:由于的底一定故只要高最大而过点的抛物线
的切线与平行时高可达到最大值问题转为求,使 解得所求点为∆ABC AB C AB C x x f x x x C ,,,()
,(),,(,)
002
0004253312113-'=-=--+=-=
六、证明题(本大题4分)
16. 设0x >,试证x x e x +<-1)1(2.
证明:设
0),1()1()(2>+--=x x x e x f x
1)21()(2--='x e x f x ,x xe x f 24)(-='',0)(,
0≤''>x f x ,因此)(x f '在(0,
+∞)内递减。
在(0,+∞)内,)(,0)0()(x f f x f ='<'在(0,+∞)内递减,在(0,+∞)
内,),0()(f x f <即0)1()1(2<+--x x e x 亦即当 x >0时,
x x e x +<-1)1(2 试证x x e x +<-1)1(2.。