AD转换器选择
数据采集系统的AD转换器选择

数据采集系统的A/D转换器选择做电子技术的人经常需要使用A/D转换器,尤其是在数据采集方面,那在选择A/D芯片时,主要需要考虑哪些因素呢?现就A/D芯片的转换速率、分辨率、输入电压范围、输出方式等几个主要参数简单说明一下【1】,以下是以线阵CCD(TCD1304AP)的数据采集为例。
(1)采样频率:A/D的转换速率限制了器件的最高采样速率,器件的采样速率是根据奈奎斯特理论(采样定理)来确定的;本设计的CCD输出信号是经过采样保持的离散模拟信号,频率为0.5MHz;因此A/D器件采样频率只要大于或等于0.5MHz即可。
正常推荐采样率为信号最高频率的5-20倍。
(2)分辨率:A/D的分辨率是由A/D的转换位数决定的。
对于分辨率的要求,需要根据输入信号特性决定(CCD输出信号),综合考虑A/D可能带入的量化噪声进行选择。
TCD1304AP 器件的动态范围为300(最小饱和输出电压与最大暗电压之比),即暗信号噪声幅度为信号幅值的1/300=0.33%。
8位A/D引入的量化噪声为1/28 =0.39%,12位A/D引入的量化噪声为1/212=0.024%,16位A/D引入的量化噪声为1/216=0.0015%。
可见,8位的A/D分辨率不够,而12和16位又有点浪费。
不过这是根据10ms光积分时间的动态范围理论值估计的结果,而实际上光积分时间增加,暗电流幅值也会增大,动态范围相应减小;此外如果A/D 转换时未达到满量程,还需要对A/D量化误差比例进行折算,如8位A/D的量程幅值为3V,实际信号为2V,则量化噪声不再是1/28=0.39%,而是1/28X3/2=0.59%;A/D的差分线性误差也会带入噪声。
综合考虑,选择12的A/D器件最适合系统要求。
(3)输入电压范围:CCD饱和输出电压经过预处理后的输出峰峰值为2V(1.5-3.5V),因此A/D的输入电压范围应该大于2V;另外,电压范围过大,量化误差也越大;综合考虑,A/D 器件的输入电压范围在大于2V的基础上,越小越好。
AD转换器的主要技术指标

A/D转换器的主要技术指标作者:测量测试…文章来源:EEFOCUS 点击数:111 更新时间:2007-8-26A/D转换器的主要技术指标有转换精度、转换速度等。
选择A/D转换器时,除考虑这两项技术指标外,还应注意满足其输入电压的范围、输出数字的编码、工作温度范围和电压稳定度等方面的要求。
1. 转换精度单片集成A/D转换器的转换精度是用分辨率和转换误差来描述的。
(1) 分辨率A/D转换器的分辨率以输出二进制(或十进制)数的位数来表示。
它说明A/D转换器对输入信号的分辨能力。
从理论上讲,n位输出的A/D转换器能区分2n个不同等级的输入模拟电压,能区分输入电压的最小值为满量程输入的1/2n。
在最大输入电压一定时,输出位数愈多,分辨率愈高。
例如A/D转换器输出为8位二进制数,输入信号最大值为5V,那么这个转换器应能区分出输入信号的最小电压为9.53mV。
(2) 转换误差转换误差通常是以输出误差的最大值形式给出。
它表示A/D转换器实际输出的数字量和理论上的输出数字量之间的差别。
常用最低有效位的倍数表示。
例如给出相对误差≤±LSB/2,这就表明实际输出的数字量和理论上应得到的输出数字量之间的误差小于最低位的半个字。
2.转换时间转换时间是指A/D转换器从转换控制信号到来开始,到输出端得到稳定的数字信号所经过的时间。
A/D转换器的转换时间与转换电路的类型有关。
不同类型的转换器转换速度相差甚远。
其中并行比较A/D转换器的转换速度最高,8位二进制输出的单片集成A/D转换器转换时间可达到50ns以内,逐次比较型A/D转换器次之,它们多数转换时间在10~50μs以内,间接A/D转换器的速度最慢,如双积分A/D转换器的转换时间大都在几十毫秒至几百毫秒之间。
在实际应用中,应从系统数据总的位数、精度要求、输入模拟信号的范围以及输入信号极性等方面综合考虑A/D转换器的选用。
3.例题某信号采集系统要求用一片A/D转换集成芯片在1s(秒)内对16个热电偶的输出电压分时进行A/D转换。
AD选型

A/D转换器的选型技巧及注意事项(转)AD的选择,首先看精度和速度,然后看是几路的,什么输出的比如SPI或者并行的,差分还是单端输入的,输入范围是多少,这些都是选AD需要考虑的。
DA的选择,主要是精度和输出,比如是电压输出还是电流输出等等。
在进行电路设计时,面对种类繁多的A/D、D/A芯片,如何选择你所需要的器件呢?这要综合设计的诸项因素,系统技术指标、成本、功耗、安装等,最重要的依据还是速度和精度。
精度:与系统中所测量控制的信号范围有关,但估算时要考虑到其他因素,转换器位数应该比总精度要求的最低分辩率高一位。
常见的A/D、D/A器件有8位,10位,12位,14位,16位等。
速度:应根据输入信号的最高频率来确定,保证转换器的转换速率要高于系统要求的采样频率。
通道:有的单芯片内部含有多个A/D、D/A模块,可同时实现多路信号的转换;常见的多路A/D器件只有一个公共的A/D模块,由一个多路转换开关实现分时转换。
数字接口方式:接口有并行/串行之分,串行又有SPI、I2C、SM等多种不同标准。
数值编码通常是二进制,也有BCD(二~十进制)、双极性的补码、偏移码等。
模拟信号类型:通常AD器件的模拟输入信号都是电压信号,而D/A器件输出的模拟信号有电压和电流两种。
根据信号是否过零,还分成单极性(Unipolar)和双极性(Bipolar)。
电源电压:有单电源,双电源和不同电压范围之分,早期的A/D、D/A器件要有+15V/-15V,如果选用单+5V电源的芯片则可以使用单片机系统电源。
基准电压:有内、外基准和单、双基准之分。
功耗:一般CMOS工艺的芯片功耗较低,对于电池供电的手持系统对功耗要求比较高的场合一定要注意功耗指标。
封装:常见的封装是DIP,现在表面安装工艺的发展使得表贴型封装的应用越来越多。
跟踪/保持(Track/Hold缩写T/H):原则上直流和变化非常缓慢的信号可不用采样保持,其他情况都应加采样保持。
AD转换器的选择

AD转换器的主要指标如下。
(1)分辨率(Resolution)。
指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。
分辨率又称精度,通常以数字信号的位数来表示。
(2)转换速率(Conversion Rate)。
是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。
积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此习惯上将转换速率在数值上等同于采样速率也是可以接受的。
常用单位是Ksps和Msps,表示每秒采样千/百万次(Kilo / Million Samples Per Second)。
(3)量化误差(Quantizing Error)。
由于AD的有限分辨率而引起的误差,即有限分辨率AD的阶梯状转移特性曲线与无限分辨率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。
通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。
(4)偏移误差(Offset Error)。
输人信号为雷时输出信号不为零的值,可外接电位器调至最小。
(5)满刻度误差(Full Scale Error)。
满刻度输出时对应的输人信号与理想输人信号值之差。
(6)线性度(Lineafity)。
实际转换器的转移函数与理想直线的最大偏移,不包括以上3种误差。
AD的其他指标还有绝对精度(Absolute Accuracy)、相对精度(Relative Accuracy)、微分非线性、单调性和无错码、总谐波失真(THD,Total Harmonic Distotortion)和积分非线性等。
AD转换器的主要技术指标

AD转换器的主要技术指标AD转换器(Analog-to-Digital Converter)是将模拟信号转换成数字信号的电子器件,广泛应用于测量、通信、控制和信号处理等领域。
主要技术指标是指影响AD转换器性能的关键参数。
下面将介绍AD转换器的主要技术指标。
1. 位数(Resolution):位数是指转换结果的二进制位数,也可理解为ADC的精度。
位数越高,转换结果的精度越高。
常见的位数有8位、10位、12位、16位等。
常见的高精度应用需要12位以上的位数。
2. 采样率(Sampling Rate):采样率是指ADC在单位时间内完成采样的次数,常用单位为千赫兹(kHz)或兆赫兹(MHz)。
采样率决定了ADC对信号的处理能力,即ADC能够处理多快的信号。
高速应用需要高采样率的ADC。
3. 信噪比(Signal-to-Noise Ratio, SNR):信噪比表示转换后的数字信号与输入模拟信号之间的噪声水平差异。
信噪比越高,ADC的抗干扰能力越强,输出结果越准确。
4. 有效比特数(Effective Number of Bits, ENOB):有效比特数表示ADC输出二进制数据的有效位数,与信噪比有关。
一般来说,ENOB比位数小,这是由于ADC的非线性误差、噪声和失配等因素导致的。
5. 误差(Error):误差是指ADC转换结果与输入信号之间的差异。
常见的误差包括非线性误差、积分非线性误差、增益误差、失配误差等。
误差越小,ADC的准确度越高。
6. 电源电压(Supply Voltage):ADC的电源电压指使用电路所需的电源电压。
一般来说,工作电压越低,功耗越小,对系统电源需求越低。
7. 噪声(Noise):噪声是指ADC输出结果中包含的非期望信号。
噪声可由转换器内部电路、供电电压和输入信号引起。
噪声影响了ADC对小信号的测量准确性,因此较低的噪声水平对高精度测量至关重要。
8. 温度效应(Temperature Coefficient):温度效应衡量ADC对温度变化的敏感程度。
AD转换器的主要技术指标

AD转换器的主要技术指标AD转换器(Analog-to-Digital Converter,简称ADC)是将模拟信号转换为数字信号的设备或系统。
在现代电子设备中,AD转换器广泛应用于很多领域,比如通信、仪器仪表、图像处理、传感器读取等。
AD转换器的主要技术指标对于评估其性能至关重要,以下将详细介绍几个常见的主要技术指标。
1. 分辨率(Resolution):分辨率是指AD转换器能够区分的最小电压变化或电压间隔。
它决定了转换器的精确度。
分辨率通常以位(bit)表示,如8位、10位、12位等。
分辨率越高,ADC对输入信号的精确度就越高。
例如,一个10位ADC的分辨率为1/1024 V,即能够将输入电压区分为1024个不同的离散值。
2. 采样率(Sampling Rate):采样率是指AD转换器在单位时间内对模拟输入信号进行采样的次数。
它决定了AD转换器对输入信号频率的响应能力。
通常以每秒采样次数(Samples per Second,SPS)表示,如1ksps、10ksps、1Msps等。
采样率越高,ADC能够捕获更高频率的信号。
3. 信噪比(Signal-to-Noise Ratio,SNR):信噪比是指在输入信号中,有用信号与噪声信号之间的比值。
它描述了AD转换器的输出是否受到噪声的影响,以及转换器对输入信号的真实度和准确度。
信噪比通常以分贝(dB)表示,如60dB、70dB、80dB等。
信噪比越高,ADC的输出信号与输入信号的一致性越好。
4. 非线性误差(Nonlinearity Error):非线性误差是指AD转换器输出值与输入信号之间的差异,通常以百分比或最大误差(LSB)表示。
AD转换器的非线性误差一般分为零点误差和增益误差。
零点误差表示在输入为零时的偏移量,增益误差表示输入信号增大时输出的误差。
非线性误差越小,ADC的线性度越好。
5. 电源电压范围(Supply Voltage Range):电源电压范围是指AD转换器能够正常工作的电源电压范围。
AD转换器的技术指标

A/D转换器的主要技术指标A/D转换器的主要技术指标有转换精度、转换速度等。
选择A/D转换器时,除考虑这两项技术指标外,还应注意满足其输入电压的范围、输出数字的编码、工作温度范围和电压稳定度等方面的要求。
1. 转换精度单片集成A/D转换器的转换精度是用分辨率和转换误差来描述的。
(1)分辨率A/D转换器的分辨率以输出二进制(或十进制)数的位数来表示。
它说明A/D转换器对输入信号的分辨能力。
从理论上讲,n位输出的A/D 转换器能区分2个不同等级的输入模拟电压,能区分输入电压的最小值为满量程输入的1/2n。
在最大输入电压一定时,输出位数愈多,分辨率愈高。
例如A/D转换器输出为8位二进制数,输入信号最大值为5V,那么这个转换器应能区分出输入信号的最小电压为9.53mV。
(2)转换误差转换误差通常是以输出误差的最大值形式给出。
它表示A/D转换器实际输出的数字量和理论上的输出数字量之间的差别。
常用最低有效位的倍数表示。
例如给出相对误差≤±LSB/2,这就表明实际输出的数字量和理论上应得到的输出数字量之间的误差小于最低位的半个字。
2. 转换时间转换时间是指A/D转换器从转换控制信号到来开始,到输出端得到稳定的数字信号所经过的时间。
A/D转换器的转换时间与转换电路的类型有关。
不同类型的转换器转换速度相差甚远。
其中并行比较A/D转换器的转换速度最高,8位二进制输出的单片集成A/D转换器转换时间可达到50ns以内,逐次比较型A/D转换器次之,它们多数转换时间在10~50s以内,间接A/D转换器的速度最慢,如双积分A/D转换器的转换时间大都在几十毫秒至几百毫秒之间。
在实际应用中,应从系统数据总的位数、精度要求、输入模拟信号的范围以及输入信号极性等方面综合考虑A/D转换器的选用。
3. 例题某信号采集系统要求用一片A/D转换集成芯片在1s(秒)内对16个热电偶的输出电压分时进行A/D转换。
已知热电偶输出电压范围为0~0.025V(对应于0~450oC温度范围),需要分辨的温度为0.1oC,试问应选择多少位的A/D转换器,其转换时间是多少?解:对于0~450oC温度范围,信号电压为0~0.025V,分辨温度为0.1oC,这相当于的分辨率。
AD转换器选型需要考虑的因素

AD选型需要考虑的因素的品种繁多、性能各异,在设计数据采集系统时,首先碰到的就就是如何选择合适的A/D转换器以满足系统设计要求的问题。
选择A/D转换器件需要考虑器件本身的品质与应用的场合要求,基本上,可以根据以下几个方面的指标选择一个A/D器件。
(1)A/D转换器位数A/D转换器位数的确定,应该从数据采集系统的静态精度与动态平滑性这两个方面进行考虑。
从静态精度方面来说,要考虑输入信号的原始误差传递到输出所产生的误差,它就是模拟信号数字化时产生误差的主要部分。
量化误差与A/D转换器位数有关。
一般把8位以下的A/D 转换器归为低分辨率A/D转换器,9~12 位的称为中分辨率转换器,13位以上的称为高分辨率转换器。
10位A/D芯片以下误差较大,11位以上对减小误差并无太大贡献,但对A/D转换器的要求却提得过高。
因此,取10位或11位就是合适的。
由于模拟信号先经过测量装置,再经A/D转换器转换后才进行处理,因此,总的误差就是由测量误差与量化误差共同构成的。
A/D转换器的精度应与测量装置的精度相匹配。
也就就是说,一方面要求量化误差在总误差中所占的比重要小,使它不显著地扩大测量误差;另一方面必须根据目前测量装置的精度水平,对A/D转换器的位数提出恰当的要求。
目前,大多数测量装置的精度值不小于01%~0、5%,故A/D转换器的精度取0、05%~0。
1%即可,相应的二进制码为10~11位,加上符号位,即为11~12位。
当有特殊的应用时,A/D转换器要求更多的位数,这时往往可采用双精度的转换方案。
(2)A/D转换器的转换速率A/D转换器从启动转换到转换结束,输出稳定的数字量,需要一定的转换时间。
转换时间的倒数就就是每秒钟能完成的转换次数,称为转换速率。
确定A/D转换器的转换速率时,应考虑系统的采样速率。
例如,如果用转换时间为100us的A/D转换器,则其转换速率为10KHz。
根据采样定理与实际需要,一个周期的波形需采10个样点,那么这样的A/D转换器最高也只有处理频率为1KHz的模拟信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ADS5422是14bit的最高采样频率可达62Msps的高速AD转换芯片,采用单- 5V电源供电,在采样 频率为10M时其最大动态范围为82dB,最高信噪比达到72dB,其数字量输出可以直接和5V或者3.3V的CMOS 芯片连接,模拟量输入的峰峰值为4V,可以直接输人0.5~4.5V的模拟量,封装形式为64脚的扁平四方 封装,目前TI的官方报价为29美元/片(一次购买千片以上的单价)。国内也有该芯片出售,国内价格在 300元左右。
欢迎转载,信息来源ic37网()
客服热线 0755-26000950 0755-26007355
相关技术资料
虚拟专用网应用平台.. XC9500系列C.. 语音芯片APR96.. 单片无线收发一体芯.. CDCT 数字无绳.. 通用无绳电话子系统.. 扩频E1无线中继器.. 由LM567组成的.. 900MHz、1W.. SRD用的发送器和.. 高性能小功率FM接.. FM/FSK无线发.. 低成本UHF/VH.. AD8309用于接.. HSP50214B.. Analog De.. 433/868/9.. 单片可编程RF收发.. 基于可编程芯片的软.. RXD-315-K..
AD公司其他的高速AD芯片还有AD6644,为其早期产品,操作方法和ADS5422、AD9244不一样, AD6644功耗达到1.3W。和AD9244相比,没有什么优点,AD9244是其替代产品。
高速AD的另外一个厂家Maxim公司也有一批高速AD产品,但采样频率在40MHz以上没有14bit数据 的AD,其产品优势主要集中在中速AD上。
首页
供应
采购
非IC
PDF资料
资讯
技术
企业
招聘
博士
技术文章分类:单片机/DSP 嵌入式系统 测试仪表 电源技术 接口电路 存储器 传感与控制 通信网络 无线通信 模拟技术 显示与光电 EDA/PLD 汽车电子 消费电子 电子综合 电子综合工具:PDF资料大全 电子缩略语 IC型号替换 IC厂家 电子电路图 技术参数 设计应用 解决方案
w
页码,1/2(W)
TEL:400-606-1411 公司简介 - 委托交易 - 收费标准 - 汇款方式 - 联系我们 - 免责申明 - 站点地图
设为桌面图标 | 设为首页 | 加入收藏夹 | 中文版 | 英文版
供货
PDF资料
IC价格
求购
请输入IC型号!
热门型号:88E1111-RCJ AD706ARZ AD96685BQ ADUC814ARU AT49BV162AT-70TI BCP69-25
当前位置: IC37首页 > 技术资料 > 无线通信 > AD转换器的选择
AD转换器的选择
类别:无线通信 阅读:922
AD转换器的主要指标如下。 (1)分辨率(Resolution)。指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与
2n的比值。分辨率又称精度,通常以数字信号的位数来表示。 (2)转换速率(Conversion Rate)。是指完成一次从模拟转换到数字的AD转换所需的时间的倒
14bit的AD转换适应信号的范围为10lg(214)dB=42dB,基本上可以适应各种应用场合。 ADS5422的采样频率的大小由其输人时钟决定,输入时钟的范围可以在16ns~1μs,输人时钟为16ns时对应 采样频率为62MHz,AD可以接受3V或者5V的TTL或者CM0S电平。DSP可以提供该时钟信号,并且可以软件设 置输人时钟的各种特征量,包括时钟频率、高电平宽度等,基本上可以满足AD5422对时钟信号的要求。这 里确定AD的实际采样频率为60MHz。这样,一秒钟内采样的数据量为50M个,由于DSP系统无法及时处理这 些数据,在数据处理之前,必须将这些数据保存起来,使用ΠFO保存1M个数据,也就是20ms内的采样数 据,1M个数据采集结束开始信号处理。由于高速AD采样导致信号不稳定,甚至出现错误。将设计多层板, 加强布线的合理性,从电路板上尽可能去除干扰;其次提高算法的效率,节省计算时间。
数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达 到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率 (Sample Rate)必须小于或等于转换速率。因此习惯上将转换速率在数值上等同于采样速率也是可以接 受的。常用单位是Ksps和Msps,表示每秒采样千/百万次(Kilo / Million Samples Per Second)。
(3)量化误差(Quantizing Error)。由于AD的有限分辨率而引起的误差,即有限分辨率AD的 阶梯状转移特性曲线与无限分辨率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1个或 半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。
(4)偏移误差(Offset Error)。输人信号为雷时输出信号不为零的值,可外接电位器调至最 小。
版权所有 © 2000-2009
/htm_tech/2008-12/60322_834441.htm
2011-7-15
和ADS5422功能接近的其他型号的AD还有AD公司的AD9244。和ADS5422相比,两者数据位数都是 14bit,在信噪比上两者相近,时钟输入和操作方法相近,电源都是5V,输出数字信号都可以和3.3V的芯 片兼容;其主要优点是功耗是ADS5422的一半,500mW;其主要缺点是输人模拟电压峰峰值为ADS5422的一 半,只有2V。
(5)满刻度误差(Full Scale Error)。满刻度输出时对应的输人信号与理想输人信号值之 差。
(6)线性度(Lineafity)。实际转换器的转移函数与理想直线的最大偏移,不包括以上3种误 差。
AD的其他指标还有绝对精度(Absolute Accuracy)、相对精度(Relative Accuracy)、微分非 线性、单调性和无错码、总谐波失真(THD,Total Harmonic Distotortion)和积分非线性等。
/htm_tech/2008-12/60322_834441.htm
2011-700-606-1411 传真:0755-61661718 联系我们 投诉建议 地址:深圳市福田区福虹路世界贸易广场B座26F 库存上载:ic37@