第九单元矩阵练习题及答案
结构力学课后习题解答:9矩阵位移法习题解答.docx

第9章矩阵位移法习题解答习题9.1是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。
()(2)矩阵位移法基本未知量的数目与位移法基本未知量的数目总是相等的。
()(3)单元刚度矩阵都具有对称性和奇异性。
()(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。
()(5)结构刚度矩阵与单元的编号方式有关。
()(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。
()【解】(1)正确。
(2)错误。
位移法中某些不独立的杆端位移不计入基本未知量。
(3)错误。
不计结点线位移的连续梁单元的单刚不具奇异性。
(4)正确。
(5)错误。
结点位移分量统一编码会影响结构刚度矩阵,但单元或结点编码则不会。
(6)错误。
二者只产生相同的结点位移。
习题9.2填空题(1)矩阵位移法分析包含三个基本环节,其一是结构的,其二是分析,其三是分析。
(2)已知某单元的定位向量为[3 5 6 7 8 9]七则单元刚度系数炫应叠加到结构刚度矩阵的元素中去。
(3)将非结点荷载转换为等效结点荷载,等效的原则是。
(4)矩阵位移法中,在求解结点位移之前,主要工作是形成矩阵和_________________ 列阵。
(5)用矩阵位移法求得某结构结点2的位移为4=[. V2 ft]T=[0.8 0.3 0.5]T,单元①的始、末端结点码为3、2,单元定位向量为尸>=[0 0 0 3 4 5]T ,设单元与x轴之间的夹角为a =买,则2 尹> =O(6 )用矩阵位移法求得平面刚架某单元在单元坐标系中的杆端力为F e =[7.5 -48 -70.9 -7.5 48 -121.09]T ,则该单元的轴力心=kN。
【解】(1)离散化,单元,整体;(2)灯8;(3)结点位移相等;(4)结构刚度,综合结点荷载;(5)[0 0 0 0.3 -0.8 0.5]。
(6)-7.5o离、空的值以及K ⑴中元素妍、愚、姒的值。
【解】各刚度系数的物理意义如习题解9.3图所示。
矩阵练习(带答案详解)(最新整理)

一、填空题:1.若,为同阶方阵,则的充分必要条件是A B 22))((B A B A B A -=-+。
BAAB =2. 若阶方阵,,满足,为阶单位矩阵,则=。
n A B C I ABC =I n 1-CAB3. 设,都是阶可逆矩阵,若,则=。
A B n ⎪⎪⎭⎫ ⎝⎛=00A B C 1-C ⎪⎪⎭⎫ ⎝⎛--0011B A 4. 设A =,则=。
⎪⎪⎭⎫ ⎝⎛--11121-A ⎪⎪⎭⎫⎝⎛21115. 设, .则。
⎪⎪⎭⎫ ⎝⎛--=111111A ⎪⎪⎭⎫⎝⎛--=432211B =+B A 2⎪⎪⎭⎫ ⎝⎛--7317336.设,则=⎪⎪⎪⎭⎫⎝⎛=300020001A 1-A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛310002100017.设矩阵,为的转置,则=.1 -1 32 0,2 0 10 1A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭T A A B A T⎪⎪⎪⎭⎫⎝⎛-1602228. ,为秩等于2的三阶方阵,则的秩等于 2 .⎪⎪⎪⎭⎫⎝⎛=110213021A B AB 二、判断题(每小题2分,共12分)1. 设均为阶方阵,则 (k 为正整数)。
……………( × )B A 、n kk k B A AB =)(2. 设为阶方阵,若,则。
……………………………(,,A B C n ABC I =111CB A ---=× )3. 设为阶方阵,若不可逆,则都不可逆。
……………………… ( × )B A 、n AB ,A B4. 设为阶方阵,且,其中,则。
……………………… ( B A 、n 0AB =0A ≠0B =× )5. 设都是阶矩阵,且,则。
……………………( C B A 、、n I CA I AB ==,C B =√ )6. 若是阶对角矩阵,为阶矩阵,且,则也是阶对角矩阵。
…( A n B n AC AB =B n × )7. 两个矩阵与,如果秩()等于秩(),那么与等价。
考研数学一(矩阵)模拟试卷9(题后含答案及解析)

考研数学一(矩阵)模拟试卷9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A,B是n阶矩阵,则下列结论正确的是( )A.AB=0A=0且B=0。
B.A=D|A|=0。
C.|AB|=0|A|=0或|B|=0。
D.|A|=1A=E。
正确答案:C解析:取,则AB=O,但A≠O,B≠O,A项不成立。
取,B项不成立。
取,D项不成立。
|AB|=|A||B|=0,故有|A|=0或|B|=0,反之亦成立,故选C。
知识模块:矩阵2.设A,B均为n阶对称矩阵,则不正确的是( )A.A+B是对称矩阵。
B.AB是对称矩阵。
C.A*+B*是对称矩阵。
D.A—2B是对称矩阵。
正确答案:B解析:由题设条件,则(A+B)T=AT+BT=A+B,(kB)T=kBT=kB,所以有(A —2B)T=AT—(2BT)=A—2B,从而A、D两项是正确的。
首先来证明(A*)T=(AT)*,即只需证明等式两边(i,j)位置元素相等。
(A*)T在位置(i,j)的元素等于A*在(j,i)位置的元素,且为元素aij的代数余子式Aij。
而矩阵(AT)*在(i,j)位置的元素等于AT的(j,i)位置的元素的代数余子式,因A为对称矩阵,即aji=aij,则该元素仍为元素aij的代数余子式Aij。
从而(A*)T=(AT)*=A*,故A*为对称矩阵,同理,B*也为对称矩阵。
结合选项A可知C项是正确的。
因为(AB)T=BTAT=BA,从而B项不正确,故选B。
注意:当A,B均为对称矩阵时,AB为对称矩阵的充要条件是AB=BA。
知识模块:矩阵3.设A为n阶非零矩阵,E为n阶单位矩阵。
若A3=0,则( )A.E—A不可逆,E+A不可逆。
B.E—A不可逆,E+A可逆。
C.E—A可逆,E+A可逆。
D.E—A可逆,E+A不可逆。
正确答案:C解析:已知(E—A)(E+A+A2)=E—A3=E,(E+A)(E—A+A2)=E+A3=E。
高教线性代数第九章 欧氏空间课后习题答案

第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在nR 中定义内积βαβα'A =),(,1) 证明在这个定义之下, nR 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。
解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j iij y x a,),(αααα,由于A 是正定矩阵,因此∑ji j iij y x a,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。
2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =,因此有B A =。
4) 由定义,知∑=ji ji ij y x a ,),(βα,,(,)ij i ji ja x xααα==∑,,(,)iji ji jay y βββ==∑,故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设: 1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。
2019年沪教版高二必修三第九章矩阵与行列初步单元练习题

2019年沪教版高二必修三第九章矩阵与行列初步单元练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543B.1024C.1523D.60542.关于x y 、的二元一次方程组50234x y x y +=⎧⎨+=⎩,其中行列式x D 为( )A.0543- B.1024C.0543D.0543-3.展开式为ad bc -的行列式是( ) A.a b d cB.a cb dC.a db cD.b a d c4.已知关于x y 、的二元一次线性方程组的增广矩阵为111222a b c a b c ⎛⎫⎪⎝⎭,记121212(,),(,),(,)a a a b b b c c c ===,则此线性方程组有无穷多组解的充要条件是( ) A.0a b c ++= B.a b c 、、两两平行 C.//a bD.a b c 、、方向都相同5.若线性方程组的增广矩阵是,解为,则 的值为( ) A.1B.2C.3D.46.三阶行列式816357492中,元素9的代数余子式的值为( )A.38B.-38C.360D.-3607.设1122A ⎛⎫= ⎪⎝⎭是一个二阶方程,100个A 的乘积100A =( )A.992AB.993AC.1002AD.1003A8.关于x 、y 的二次一次方程组50234x y x y +=⎧⎨+=⎩,其中行列式x D 为( )A.0543-B.1024C.0543D.0543-二、填空题9.行列式4125的值为___.10.设0a >,1a ≠,行列式log 11201123a x D -=-中第3行第2列的元素的代数余子式记作y ,函数()y f x =的反函数经过点()1,2,则a =__________.11.三阶行列式567421031x -中元素5-的代数余子式为()f x ,则方程()0f x =的解为________12.增广矩阵为3?110m n -⎛⎫ ⎪⎝⎭的二元一次方程组的实数解是12x y =⎧⎨=⎩,则m +n =__________.三、解答题13cos 0.5sin 0(0)1cos A x A A x A x>1121312M M -+, 记函数1121()f x M M =+,且()f x 的最大值是4. (1)求A ;(2)将函数()y f x =的图像向左平移12π个单位,再将所得图像上各点的横坐标扩大为原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 在11,1212ππ⎛⎫-⎪⎝⎭上的值域. 14.用行列式讨论关于x ,y 的方程组6(2)320x my m x y m +=-⎧⎨-++=⎩的解的情况.参考答案1.C 【解析】关于,x y 的二元一次方程组50230x y x y +=⎧⎨+=⎩的系数行列式1523D =,故选C.2.C 【解析】关于x 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式:1523D =,故选C.3.B 【解析】a b ac bd d c=-,错误;a c ad bcb d=-,正确;a d ac bdb c=-,错误;b a bc ad d c=-,错误, 故选B. 4.B 【解析】试题分析:由题意,二元一次线性方程组有无穷多组解等价于方程组中未知数的系数与常数项对应成比例121212(,),(,),(,)a a a b b b c c c ===,所以a b c 、、两两平行,答案为B . 考点:二元线性方程组的增广矩阵的涵义. 5.C 【解析】 【分析】由题意得,,解方程即可得到所求值. 【详解】由题意得,, 解得 , , 则 ,故选C. 【点睛】本题主要考查了线性方程组的解法,以及增广矩阵的概念,考查运算能力,属于中档题.6.B 【解析】 【分析】元素9为32a ,先求得32M ,然后由()1i jij M +-求得代数余子式.【详解】依题意329a =,32863837M ==,所以元素9的代数余子式的值为()3232138M +-=-.故选:B. 【点睛】本小题主要考查三阶行列式的代数余子式的求法,属于基础题. 7.B 【解析】 【分析】根据矩阵乘法的定义运算。
矩阵练习题及答案

矩阵练习题及答案一、选择题1. 矩阵的转置是指将矩阵的行和列互换,以下哪个矩阵不是A的转置?A. [a11 a12; a21 a22]B. [a21 a22; a11 a12]C. [a12 a22; a11 a21]D. [a22 a12; a21 a11]2. 矩阵的加法是元素对应相加,以下哪个矩阵不能与矩阵B相加?矩阵A = [1 2; 3 4]矩阵B = [5 6; 7 8]A. [4 3; 2 1]B. [6 7; 8 9]C. [1 2; 3 4]D. [5 6; 3 4]3. 矩阵的数乘是指用一个数乘以矩阵的每个元素,以下哪个矩阵是矩阵A的2倍?矩阵A = [1 2; 3 4]A. [2 4; 6 8]B. [1 0; 3 4]C. [0 2; 3 4]D. [1 2; 6 8]4. 矩阵的乘法满足结合律,以下哪个等式是错误的?A. (A * B) * C = A * (B * C)B. A * (B + C) = A * B + A * CC. (A + B) * C = A * C + B * CD. A * (B - C) ≠ A * B - A * C5. 矩阵的逆是满足AA^-1 = I的矩阵,以下哪个矩阵没有逆矩阵?A. [1 0; 0 1]B. [2 0; 0 2]C. [0 1; 1 0]D. [1 2; 3 4]二、填空题6. 给定矩阵A = [1 2; 3 4],矩阵B = [5 6; 7 8],矩阵A和B的乘积AB的元素a31是________。
7. 矩阵的行列式是一个标量,可以表示矩阵的某些性质。
对于矩阵C = [2 1; 1 2],其行列式det(C)是________。
8. 矩阵的特征值是指满足Av = λv的非零向量v和标量λ。
对于矩阵D = [4 1; 0 3],其特征值是________。
9. 矩阵的迹是主对角线上元素的和。
对于矩阵E = [1 0; 0 -1],其迹tr(E)是________。
(完整版)矩阵练习(带答案详解).docx

2
3
解:AB
A 2B
即( A
2I ) B
A..........................2分
2
2
3
1
4
3
1
而( A
2I )1
1
1
0
1
5
3 ....................3分
1
2
1
1
6
4
精彩文案
实用标准文档
1
4
3
4
2
3
所以B ( A 2I )1A
1
5
3
1
1
0
1
6
4
1
2
3
3
8
6
=2
9
6
四、解答题:
1
1
1
1
2
3
1.给定矩阵A2
1
3
,B
2
2
1
,求BTA及A1
3
4
4
3
4
3
解:
1
2
3
1
1
1
4
9
5
BTA 2
2
4
2
1
3
6
12
8
⋯⋯⋯⋯⋯⋯⋯..(5
3
1
3
3
4
4
4
8
6
分)
401
A11
1
1
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)
2
2
2
5
1
1
2
2
2
1
0
1
1
1
矩阵练习题及答案

矩阵练习题及答案矩阵是线性代数中的一个重要概念,也是在数学、物理、计算机科学等领域中广泛应用的工具。
通过解矩阵练习题,可以帮助我们加深对矩阵运算和性质的理解。
下面给出一些矩阵练习题及其答案,供大家参考。
1. 问题描述:已知矩阵 A = [4 2],求 A 的转置矩阵 A^T。
解答:矩阵的转置就是将矩阵的行和列互换得到的新矩阵。
因此,A 的转置矩阵为 A^T = [4; 2]。
2. 问题描述:已知矩阵 B = [1 -2; 3 4],求 B 的逆矩阵 B^-1。
解答:对于一个可逆矩阵 B,其逆矩阵 B^-1 满足 B * B^-1 = I,其中 I 是单位矩阵。
通过矩阵的求逆公式,可以得到 B 的逆矩阵 B^-1 = [4/11 2/11; -3/11 1/11]。
3. 问题描述:已知矩阵 C = [2 1; -3 2],求 C 的特征值和特征向量。
解答:矩阵的特征值和特征向量是矩阵在线性变换下的重要性质。
特征值λ 是方程 |C - λI| = 0 的根,其中 I 是单位矩阵。
解方程可得特征值λ1 = 1 和λ2 = 3。
特征向量 v1 对应于特征值λ1,满足矩阵C * v1 = λ1 *v1,解方程可得 v1 = [1; -1]。
特征向量 v2 对应于特征值λ2,满足矩阵C * v2 = λ2 * v2,解方程可得 v2 = [1; 3]。
4. 问题描述:已知矩阵 D = [1 2 -1; 3 2 4],求 D 的行列式和秩。
解答:矩阵的行列式表示线性变换后单位面积或单位体积的变化率。
计算 D 的行列式可得 det(D) = 1 * (2*4 - 4*(-1)) - 2 * (3*4 - 1*(-1)) + (-1) * (3*2 - 1*2) = 10。
矩阵的秩表示矩阵中独立的行或列的最大个数。
对矩阵 D 进行行变换得到矩阵的行最简形式为 [1 0 6; 0 1 -3],因此 D 的秩为 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章 矩阵
一、填空题
⒈ 两个矩阵B A ,既可相加又可相乘的充分必要条件是 .
⒉ 设B A ,为两个已知矩阵,且B I -可逆,则方程X BX A =+的解=X .
⒊ 设A 为m n ⨯矩阵,B 为s t ⨯矩阵,若AB 与BA 都可进行运算,则m n s t ,,,有关系式 .
4.设⎥
⎦
⎤⎢
⎣⎡--=2131
A ,则A I 2-= . 5.当a 时,矩阵⎥⎦
⎤
⎢⎣⎡-=a A 131可逆.
6.设⎥⎥⎥
⎦
⎤
⎢⎢⎢⎣⎡-=1320201b a A ,当a =
,b = 时,A 是对称矩阵.
7.当λ= 时,矩阵⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡-----λ420
451143
21的秩最小.
二、单项选择题
⒈设B A ,为两个n 阶矩阵,则有( )成立.
A . 22))((
B A B A B A -=-+ B . T T T A B AB =)(
C . T T T A B B A -=-)(
D . )(2B A A BA A +=- ⒉ 下列说法正确的是( ).
A . 0矩阵一定是方阵
B . 可转置的矩阵一定是方阵
C . 数量矩阵一定是方阵
D . 若A 与A T
可进行乘法运算,则A 一定是方阵 ⒊ 设A 是可逆矩阵,且A AB I +=,则A -=1( ).
A . I
B + B . 1+B
C . B
D . ()I AB --1 ⒋ 设A 是n 阶可逆矩阵,k 是不为0的常数,则()kA -=1( )
A .kA -1
B .
11k
A n
- C . --kA 1
D . 11k A - 5.设A 是4阶方阵,若秩3)(=A ,则( ).
A . A 可逆
B . A 的阶梯阵有一个0行
C . A 有一个0行
D . A 至少有一个0行
6. 设B A ,为同阶方阵,则下列说法正确的是( ).
A .若0=A
B ,则必有0=A 或0=B B .若0≠AB ,则必有0≠A ,0≠B
C .若秩0)(≠A ,秩0)(≠B ,则秩0)(≠AB
D . 秩=+)(B A 秩+)(A 秩)(B 三、解答题
⒈ 设⎥⎥
⎥⎦⎤
⎢⎢⎢⎣⎡-=113421201A ,⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-=303112B ,求B A I T
)2(-.
⒉ 设⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡-=012411210A ,⎥⎦⎤⎢⎣⎡-=653312B ,求解矩阵方程T
B AX =. ⒊ 若A -=---⎡⎣⎢⎢⎢⎤
⎦
⎥⎥
⎥1253140132,求A . ⒋ 求矩阵⎥⎥⎥⎥
⎦⎤⎢⎢⎢
⎢⎣⎡----=12412116030242201211A 的秩 ⒌ 已知矩阵 )(2
1I B A +=,且A A =2,试证B 是可逆矩阵,并求1
-B .
6. 设n 阶矩阵A 满足A I 2=,AA I T
=,证明A 是对称矩阵.
答案及解答:
一、填空题
⒈ A 与B 是同阶矩阵 ⒉ A B I 1)(-- ⒊ m t n s ==, ⒋ ⎥
⎦
⎤⎢⎣⎡--1165
5. 3≠
6. 0, 3
7. 0 二、单项选择题
⒈ B ⒉ C ⒊ A ⒋ D 5. B 6. B 三、解答题
⒈ 因为⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-=142120
311T A ,
T
2A I -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡142120311100
010
0012=⎥⎥
⎥⎦⎤
⎢⎢⎢⎣⎡----142
100
31
1
所以, B A I )2(T
-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----142100311⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-303112=⎥⎥⎥⎦
⎤⎢
⎢⎢⎣⎡---1103051
⒉ 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=12000101083021041
1100010001012411210)(I A
⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→123124112200010001123001011200
210201。