数字图像处理重点

合集下载

数字图像处理要点简述详述

数字图像处理要点简述详述

第一.二章.采样,量化,数字图像的表示 基本的数字图像处理系统系统的层次结构I 应用程序 I 开发工具 操作系统 设备驱动程序I硬件I图像处理的主要任务: 图像获取与数字化 图像增强 图像恢复 图像重建 图像变换 图像编码与压缩 图像分割 特点:(1) 处理精度高。

(2) 重现性能好。

(3) 灵活性髙1•图像的数字化包括两个主要步骤:离散和量化2. 在数字图像领域,将图像看成是许多大小相同、形状一致的像素组成3. 为便于数字存储和计算机处理可以通过数模转换(A/D)将连续图像变为数字图像。

4•数字化包括取样和量化两个过程:取样:对空间连续坐标(x,y)的离散化量化:幅值f(x,y)的离散化(使连续信号的幅度用有限级的数码表示的过程。

)5.数字化图像所需的主要硬件:♦采样孔、图像扫描机构、光传感器、量化器、输岀存储体6•取样和量化的结果是一个矩阵 7.其中矩阵中的每个元素代表一个邃塞8•存储一幅图像的数据量又空间分辨率和幅度分辨率决定 9•灵敏度、分辨率、信噪比是三大指标第三章,傅里叶变换,DCT变换,WHT•余弦型变换:•傅里叶变换(DFT)和余弦变换(DCT)O•方波型变换:•沃尔什•哈达玛变换(DWT)1•二维连续傅里叶正反变换:F(u,v)= I f f(x.y)eJ_oc J_ocf g y)= \f F(u, v)ej27r(nA+vv)dwdvJ —oo J —oo二维离散傅里叶变换:M — 1 N — I=乏疋 Fgg 宀SS)if=o v=O。

F(u, v)即为f (x, y)的频谱。

频谱的直流成分说明在频谱原点的傅里叶变换尸(0,0)等于图像的平均灰度级 卷积定理:/(x,y)*^(x, y)= ss /O, n)g(x 一 m, y~n)/?/=() n=02•二维离散余弦变换(DCT)一维离散余弦变换:EO)=%)岳gfg 芈严 其中 c®=怜 ""DCT 逆变换为F(u.v)=1~MN A =0 y=02 A r -1/(«)=咅 C(0) + \1三工 F (gsn(2n +1)« ~~2N3•—维沃尔什变换核g (W ):1 X_JL£(乂申)=丄口(一 1)®(”)為一】一心)<N i=o• 厂、Cn 7V--1 ^T-l码3》=卡吝 /G 〉耳(—1)635—一 3«JC> =牙中 O )n (—O务i二维:•正变换: 1 N —l. N —!■H —1护(“*) = —X X /X%」)口( — 1)4(5—373$一_W] N 宜 U • JO■逆变换二1 AT-l JV-l 片_]/(X.y )=丄 £ 乞 疗(心巧 口弟-i -心)JN 為 v=o ~。

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。

3.图像处理:对图像进行一系列操作,以到达预期目的的技术。

4.图像处理三个层次:狭义图像处理、图像分析和图像理解。

5.图像处理五个模块:采集、显示、存储、通信、处理和分析。

第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。

它包括采样和量化两个过程。

像素的位置和灰度就是像素的属性。

8.将空间上连续的图像变换成离散点的操作称为采样。

采样间隔和采样孔径的大小是两个很重要的参数。

采样方式:有缝、无缝和重叠。

9.将像素灰度转换成离散的整数值的过程叫量化。

10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。

11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。

12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。

13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。

例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。

2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。

数字图像处理知识点

数字图像处理知识点

数字图像处理知识点课程重点:图像数字化,图像变换,图像增强,图像的恢复与重建,图像的编码,图像的分割与特征提取,图像识别。

数字图像处理的基本内容:1、图像获取。

举例:摄像机+图像采集卡、数码相机等。

2、图像增强。

显示图像中被模糊的细节,或是突出图像中感兴趣的特征。

3、图像复原。

以图像退化的数学模型为基础,来改善图像质量。

4、图像压缩。

减小图像的存储量,或者在图像传输时降低带宽。

5、图像分割。

将一幅图像划分为几个组成部分或分割出目标物体。

6、图像的表达与描述。

图像分割后,输出分割标记或目标特征参数。

7、目标识别。

把目标进行分类的过程。

8、彩色图像处理。

9、形态学处理。

10、图像的重建。

第一章导论图像按照描述模型可以分为:模拟图像和数字图像。

1)模拟图像,模拟图像可用连续函数来描述。

其特点:光照位置和光照强度均为连续变化的。

2)数字图像,数字图像是图像的数字表示,像素是其最小的单位,用矩阵或数组来描述图像处理:对图像进行一系列的操作,以达到预期的目的的技术。

内容:研究图像信息的获取、传输、存储,变换、显示、理解与综合利用”的一门崭新学科。

三个层次:狭义图像处理,图像分析,图像理解。

狭义图像处理主要指对图像进行各种操作以改善图像的视觉效果,或对图像进行压缩编码以减少所需存储空间或传输时间、传输通路的要求。

图像分析主要是对图像中感兴趣的目标进行检测和测量,从而建立对图像的描述。

图像分析是一个从图像到数值或符号的过程。

图像理解则是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解译,从而指导和规划行动;图像分析主要是以观察者为中心研究客观世界,图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界。

图像处理的三个层次:低级图像处理内容:主要对图像进行各种加工以改善图像的视觉效果、或突出有用信息,并为自动识别打基础,或通过编码以减少对其所需存储空间、传输时间或传输带宽的要求。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

《数字图像处理》期末考试重点总结(5篇材料)

《数字图像处理》期末考试重点总结(5篇材料)

《数字图像处理》期末考试重点总结(5篇材料)第一篇:《数字图像处理》期末考试重点总结*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。

(1)处理精度高,再现性好。

(2)易于控制处理效果。

(3)处理的多样性。

(4)图像数据量庞大。

(5)图像处理技术综合性强。

*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

图像增强不存在通用理论。

图像增强的方法:空间域方法和变换域方法。

*图像反转:S=L-1-r 1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。

*对数变换 S=C*log(1+r)c为常数,r>=0 作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。

对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。

*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。

*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。

直方图均衡化变换函数必须为严格单调递增函数。

直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。

获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。

*平滑滤波器用于模糊处理和减小噪声。

平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。

优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。

负面效应:模糊了图像的边缘,因为边缘也是由图像灰度的尖锐变化造成的。

数字图像处理重点汇总

数字图像处理重点汇总

第一章:数字图像处理研究的内容主要有:(1)图像获取,表示和表现(2)图像增强(3)图像复原(4)图像分割(5)图像分析(6)图像重建(7)图像压缩编码数字图像处理:利用计算机对图像进行去除噪声、增强、复原、分割、特征提取、识别等处理的理论、方法和技术。

一般情况下,图像处理是用计算机和实时硬件实现的,因此,也称之为计算机图像的实现。

数字图像处理的特点:(1)处理精度高,再现性好(2)易于控制处理效果(3)处理的多样性(4)图像数据量庞大(5)处理费时(6)图像处理技术综合性强图像:就是三维场景在二维平面上的影像数字图像:是用配置在二维平面(画面)上的灰度值或彩色值来表示信息的,信息扩展在二维平面上。

数字图像以数字格式存储图像数据,数字图像常用矩阵来描述。

图像处理的研究目的:(1)提高图像的视感质量,以达到赏心悦目的目的(2)提取图像中所包含的某些特征或特殊信息,只要用于计算机分析,经常用作模式识别,计算机视觉的预处理(3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输图像工程三层示意图:图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。

图像处理、图像分析、图像理解各有什么特点?它们之间有何联系和区别?图像处理:的重点是图像之间进行的变换。

尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析:主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。

如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。

这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。

图像理解:的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。

《数字图像处理》期末考试重点总结

《数字图像处理》期末考试重点总结

《数字图像处理》期末考试重点总结work Information Technology Company.2020YEAR*数字图像处理的主要内容及特点图像获取、图像变换、图像增强、图像恢复、图像压缩、图像分析、图像识别、图像理解。

(1)处理精度高,再现性好。

(2)易于控制处理效果。

(3)处理的多样性。

(4)图像数据量庞大。

(5)图像处理技术综合性强。

*图像增强:通过某种技术有选择地突出对某一具体应用有用的信息,削弱或抑制一些无用的信息。

图像增强不存在通用理论。

图像增强的方法:空间域方法和变换域方法。

*图像反转:S=L-1-r1.与原图像视觉内容相同2.适用于增强嵌入于图像暗色区域的白色或灰色细节。

*对数变换 S=C*log(1+r)c为常数,r>=0作用与特点:对数变换将输入中范围较窄的低灰度值映射为输出中较宽范围的灰度值,同时,对输入中范围较宽的高灰度值映射为输出中较窄范围的灰度值。

对数函数的一个重要特征是可压缩像素值变化较大的图像的动态范围;*幂律(伽马)变换 s=c*(r+ɛ)ɤ伽马小于1时减小图像对比度,伽马大于1时增大对比度。

*灰度直方图:是数字图像中各灰度级与其出现的频数间的统计关系。

*直方图均衡化:直方图均衡化就是通过变换函数将原图像的直方图修正为均匀的直方图,即使各灰度级具有相同的出现频数,图象看起来更清晰。

直方图均衡化变换函数必须为严格单调递增函数。

直方图均衡化的特点:1.能自动增强图像的对比度2.得到了全局均衡化的直方图,即均匀分布3.但其效果不易控制*直方图规定化(匹配):用于产生处理后有特殊直方图的图像的方法*空间滤波即直接对图像像素进行处理。

获得最佳滤波效果的唯一方法是使滤波掩模中心距原图像边缘的距离不小于(n-1)/2个像素。

*平滑滤波器用于模糊处理和减小噪声。

平滑线性空间滤波器的输出是:待处理图像在滤波器掩模邻域内的像素的简单平均值。

优点:减小了图像灰度的“尖锐”变化,故常用于图像降噪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章名词解释:(2)数字图像:指由被称作像素的小块区域组成的二维矩阵。

将物理图像行列划分后,每个小块称为像素. (4)数字图像处理:计算机技术或其他数字技术,对图像信息进行某些数字运算和各种加工处理,以改善图像的视觉效果和提高数字实用性的技术。

第二章名词解释(12)图像采样:将空间上连续的图像变换成离散点的操作称为采样,就是对图像的连续空间坐标x和y的离散化。

(14)图像灰度级量化:对图像函数的幅值 f 的离散化。

(28)欧氏距离:像素p和q之间的欧氏(Euclidean)距离定义为:De(p,q)=[(x-u)2+(y-v)2]1/2 (2.12)也即,所有距像素点(x,y)的欧氏距离小于或等于d的像素都包含在以(x,y)为中心,以d为半径的圆平面中。

(29)街区距离:像素p和q之间的D4距离,也即街区(city-block)距离,定义为:D4(p,q)=|x-u| + |y-v| (2.13)也即,所有相距像素点(x,y)的D4距离为小于d或等于d的像素组成一个中心点在(x,y)的菱形。

(30)棋盘距离:像素p和q之间的D8距离,也即棋盘距离,定义为:D8(p,q)=max(|x-u|,|y-v|) (2.14)也即,所有距像素点(x,y)的D8距离为小于d或等于d的像素组成一个中心点在(x,y)的方形(33)调色板:在16色或256色显示系统中,将图像中出现最频繁的16中或256中颜色组成一个颜色表,并将他们分别编号为0-15或0-255,这样就是每一个4位或8位的颜色编号与颜色表中4位颜色值相对应。

这种4位或者8位的颜色编号成为颜色的索引号,有颜色索引号及其对应的24位颜色值组成的表成为颜色查找表,也即调色板。

第四章名词解释(1)空间域图像增强:在图像平面中对图像的像素灰度值进行运算处理,使之更适合于人眼的观察或机器的处理的一种技术。

(7)图像锐化:图像锐化是一种突出和加强图像中景物的边缘和轮廓的技术。

课本Page84(10)领域平均:一种基本的空间域噪声消除方法或噪声平滑方法。

Page93(13)中值滤波:一种能够很好地弥补领域平均方法不足的图像噪声消除方法。

第五章名词解释(1)图像恢复:是一种从图像退化的数学或概率模型出发,研究改进图像外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目的一种技术,其目的是获得与景物真实面貌相像的图像。

(4)高斯噪声:是一种源于电子电路噪声和由低照明度或高温带来的传感器噪声。

高斯噪声也称为正态噪声,其概率密度函数为:其中,高斯随机变量z表示灰度值;μ表示z的平均值或期望值;σ表示z的标准差,而标准差的平方σ2称为z的方差。

(6)椒盐噪声:又称脉冲噪声,(双极)脉冲噪声的概率密度为:式中表示的脉冲噪声在Pa或Pb均不可能为零,且在脉冲可能是正的,也可能是负值的情况下,称为双极脉冲噪声。

如果b>a,灰度b的值在图像中将显示一个亮点,而灰度a的值在图像中将显示一个暗点。

如果Pa或Pb均不可能为零,尤其是它们近似相等时,脉冲噪声值就类似于随机分布在图像上的胡椒和盐粉微粒,所以双极脉冲噪声也称为椒盐噪声.式中表示的脉冲噪声如果Pa或Pb为零,则脉冲噪声称为单极脉冲噪声。

通常情况下脉冲噪声总是数字化为允许的最大值或最小值,所以负脉冲以黑点(胡椒点)出现在图像中,正脉冲以白点(盐点)出现在图像中。

第六章名词解释:(2)编码冗余:由于大多数图像的直方图不是均匀(水平)的,所以图像中某个(或某些)灰度级会比其它灰度级具有更大的出现概率,如果对出现概率大和出现概率小的灰度级都分配相同的比特数,必定会产生编码冗余。

(3)图像间冗余:所谓“像素间的冗余”,是指单个像素携带的信息相对较少,单一像素对于一幅图像的多数视觉贡献是多余的,它的值可以通过与其相邻的像素的值来推断。

(7)保真度准则:由于图像的有损压缩有一定的信息损失,所以在对压缩的图像进行解压缩后获得的图像可能会与原图像不完全相同,这样就需要有一种对信息损失的程度进行度量的标准,以描述解压缩所获得的图像相对于原图像的偏离程度。

保准度准则就是这样一种用于评价压缩后图像质量的量度标准。

主观保真度准则:通过给一组观察者提供原图像和典型的解压缩图像,由每个观察者对解压缩图像的质量给出一个主观评价,并将他们的评价结果进行综合平均,从而得出一个统计平均意义上的评价结果。

这种评价方法称为主观保真度准则。

第七章名词解释(1)图像分割:图像分割就是依据图像的灰度、颜色、纹理、边缘等特征,把图像分成各自满足某种相似性准则或具有某种同质特征的连通区域的集合的过程。

(2)图像边缘:图像边缘意味着图像中一个区域的终结和另一个区域的开始,图像中相邻区域之间的像素集合构成了图像的边缘。

进一步讲,图像的边缘是指图像灰度发生空间突变的象素的集合。

(4)基于阀门的图像分割方法:基于阈值的图像分割方法是提取物体与背景在灰度上的差异,把图像分为具有不同灰度级的目标区域和背景区域的一种图像分割技术。

(6)基于跟踪的图像分割方法是先通过对图像上的点的简便运算,来检测出可能存在的物体上的点,然后在检测到的点的基础上通过跟踪运算来检测物体的边缘轮廓的一种图像分割方法。

(16)纹理:纹理就是由纹理基元按某种确定性的规律或者某种统计规律排列组成的一种结构。

(19)监督分类:监督分类是对图像中样本区内的地物类属已有先验知识的情况下,利用这些样本类别的特征作为依据来判别非样本数据的类别。

第十章名词解释(1)链码:链码是一种用若干条具有特定长度和方向的线段连接起来表示目标边界的方法。

(6)统计矩:如果将目标边界看作一系列直线段,那么边界线段的形状可以利用一些简单的统计矩如均值,方差和高阶矩等,利用其对边界进行描述具有对旋转不敏感和边界空间位置无关的特点。

(page267)第一章简答题:3、数字图像处理技术研究的基本内容包括哪些?答:包括图像变换、图像增强、图像恢复、图像压缩编码、图像特征提取、形态学图像处理方法等。

彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展出了一些特有的图像处理技术和方法。

数字图像处理目的:提高图像的视感质量,以达到赏心悦目的目的。

提取图像中所包含的某些特征或特殊信息,便于计算机分析。

对图像数据进行变换、编码和压缩,便于图像的存储和传输。

数字图像处理的主要内容:不管图像处理是何种目的,都需要用计算机图像处理系统对图像数据进行输入、加工和输出,因此数字图像处理研究的内容主要有以下8个部分:1) 图像获取、表示和表现该过程主要是把模拟图像信号转化为计算机所能接受的数字形式,以及把数字图像显示和表现出来(如打印)。

这一过程主要包括摄取图像及数字化等几个步骤。

2) 图像复原当造成图像退化(图像品质下降)的原因已知时,复原技术可以对图像进行校正。

图像复原最关键的是对每种退化都需要有一个合理的模型。

退化模型和特定数据一起描述了图像的退化,因此,复原技术是基于模型和数据的图像恢复,其目的是消除退化的影响,从而产生一个等价于理想成像系统所获得的图像。

3) 图像增强图像增强是对图像质量在一般意义上的改善。

当无法知道图像退化有关的定量信息时,可以使用图像增强技术较为主观地改善图像的质量。

有时可能需要彻底改变图像的视觉效果,以便突出重要特征的可观察性,使人或计算机更易观察或检测。

在这种情况下,可以把增强理解为增强感兴趣特征的可检测性,而非改善视感质量。

4) 图像分割把图像分成区域的过程就是图像分割。

图像中通常包含多个对象,图像处理为达到识别和理解的目的,几乎都必须按照一定的规则将图像分割成区域,每个区域代表被成像的一个物体。

5) 图像压缩编码数字图像的特点之一是数据量庞大。

因此在实际应用中图像压缩是必需的。

图像编码主要是利用图像信号的统计特性及人类视觉的生理学及心理学特性,对图像信号进行高效编码,即研究数据压缩技术,目的是解决数据量大的矛盾。

一般来说,图像编码的目的有三个:①减少数据存储量;②降低数据率以减少传输带宽;③压缩信息量,便于特征提取,为后续识别作准备。

6) 图像处理中的频域变换数字图像处理的方法主要分为:一是空域法,二是频域法.把图像变换到频率域可以从另一个角度来分析图像的特性,以便更准确地处理它.在频域处理法中最为关键的预处理便是变换处理. 目前,在图像处理技术中,频率域变换正被广泛地运用于图像的特征提取,图像增强,图像复原以及图像的变换编码等领域中.7) 目标表达与描述通过图像分割把图像空间分成一些有意义的区域,然后采用不同于原始图像的适当形式将目标表示出来,并对目标特征进行描述,再对图像进行分析和理解处理图像分割的结果要么是区域内的像素的集合,要么是位于区域边界上的像素的集合,所以对图像中目标的表达方法分为区域表达和边界表达,对目标的描述一般也分为对边界的描述和对区域的描述8)形态学以形态为基础对图像进行分析的一类数学工具。

基本思想是用具有一定形态的结构元素,去量度和提取图像中的对应形状,以达到对图像分析和识别的目的。

初期的数学形态学方法仅可应用于二值图像,所以需将灰度图像先进行二值化。

后来灰度形态学得到发展,使得数学形态学方法不仅可用于二值图像也可直接应用于各种灰度图像和彩色图像。

第二章简答题:2.15 一幅200X300的二值图像,16灰度级图像和256灰度级图像分别需要多少存储空间?答:二值图像:200X300X1/8=7500B16灰度级图像:200X300X4/8=30000B256灰度级图像:200X300X8/8=60000B第四章简答题4.2直方图均衡的基本思想是什么?直方图均衡图像增强处理的主要步骤是什么?直方图均衡化是一种借助于直方图变换实现灰度映射从而达到图像增强的目的.直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了像素灰度值的动态范围,从而可以达到增强图像整体对比度的效果.步骤:(1)计算原图像的归一化灰度级别及其分布概率pr(rk)=nk/n。

(2)根据直方图均衡化公式(4.13)求变换函数的各灰度等级值sk。

(3)将所得的变换函数的各灰度等级值转化成标准的灰度级别值。

也即把第(2)步求得的各sk值,按靠近原则近似到与原图像灰度级别相同的标准灰度级别中。

此时获得的即是均衡化后的新图像中存在的灰度级别值,其对应的像素个数不为零;对于那些在变换过程中“被丢失了的”灰度级别值,将其像素个数设为零。

(4)求新图像的各灰度级别值sl’(l=0,1,…,L-1)的像数数目。

在前一步的计算结果中,如果不存在灰度级别值sl’,则该灰度级别的像素数目为零;如果存在灰度级别值sl’,则根据其与之相关的sk=T(rk)和sk的对应关系,确定该灰度级别sl’的像数数目。

相关文档
最新文档