圆中的计算问题PPT课件
合集下载
28.3.3圆中的计算问题 课件 华师大版数学九年级下册

圆心角占整个周角的 所对扇形面积是
1800
180 360
180 2 r 360 90 2 r 360
45 2 r 360
900
90 360
45 360 n 360
450
n0
n 2 r 360
结论:
如果扇形面积为s,圆心角度数为n,圆半 径是r,那么 ,扇形面积计算公式为
Q
28.3圆中的计算问题
28.3.1弧长和扇形的面积
知识回顾
圆的周长公式 o
r
p
C=2πr
圆的面积公式
2 S=πr
问题情景:
如图28.3.1是圆弧形状的铁轨示意图,其中 铁轨的半径为100米,圆心角为90°.你能求出 这段铁轨的长度吗?
zxxk
解:∵圆心角900
1 图 28.3.1 ∴铁轨长度是圆周长的 4 1 则铁轨长是 2 100 50米
4
问题探究
上面求的是圆心角为900所对的弧长,若圆 心角为n0,如何计算它所对的弧长呢?
思考:
请同学们计算半径为 r,圆心角分别为1800、 900、450、n0所对的弧长.
图 28.3.2
圆心角占整个周角的
1800
所对弧长是
180 360 90 360 45 360 n 360
180 2r 360 90 2r 360 45 2r 360
c 2r l
l s n r 2 或s 1 lr 扇 形 面 积 S 360 2 n° r O
扇形周长计算公式为
z、xxk
c 2r l
一、弧长的计算公式
n nr l 2r 360 180
二、扇形面积计算公式
《圆的面积计算公式的应用》PPT课件 西师大版六年级数学

=3.14×64 =200.96(平方米)
答:这个草坪的面积是200.96平方米。
返回
圆的面积计算公式的应用
课堂小结
这节课你们都学会了哪些知识?
运用圆的面积计算公式S=πr2解决生活中 的实际问题。 环形的面积等于外圆面积减去内圆面积。 用S表示环形的面积,环形的面积公式是 S=πR2-πr2或S=π(R2-r2)。
圆西的师面大积版计算数公学式的六应年用级 上册
2圆
圆的面积计算公式的应用
课前导入
探究新知
课堂练习
课堂小结
课后作业
返回
圆的面积计算公式的应用
课前导入
你还记得圆的面积的意义和计 算公式吗? 圆所占平面的大小或圆形物体表面 的大小就是圆的面积。 圆的面积计算公式:S=πr2。
返回
圆的面积计算公式的应用
探究新知
修建一个半径是30m的圆形鱼池,它的占地面积 例 3 是多少平方米?
S=πr2 3.14×302 =3.14×900 =2826(m2) 答:它的占地面积是2826m2。
返回
圆的面积计算公式的应用
量得一张圆桌的周长是3.14m。这张圆桌的面积 例 4 是多少平方米?
思路分析:
圆桌的 周长
C
提示:以正方形的边长为圆的直径。
返回Biblioteka 圆的面积计算公式的应用3.公园草地上的自动旋转喷水器的 射程是8m。它能喷洒的面积是多少 平方米? 半径的长度
3.14×82 =200.96(平方米)
答:它能喷洒的面积是200.96平方米。
返回
圆的面积计算公式的应用
4.一个圆形水缸口的外直径为1m。现在为这个水缸做 一个盖子,这个盖子的面积至少是多少平方米?
答:这个草坪的面积是200.96平方米。
返回
圆的面积计算公式的应用
课堂小结
这节课你们都学会了哪些知识?
运用圆的面积计算公式S=πr2解决生活中 的实际问题。 环形的面积等于外圆面积减去内圆面积。 用S表示环形的面积,环形的面积公式是 S=πR2-πr2或S=π(R2-r2)。
圆西的师面大积版计算数公学式的六应年用级 上册
2圆
圆的面积计算公式的应用
课前导入
探究新知
课堂练习
课堂小结
课后作业
返回
圆的面积计算公式的应用
课前导入
你还记得圆的面积的意义和计 算公式吗? 圆所占平面的大小或圆形物体表面 的大小就是圆的面积。 圆的面积计算公式:S=πr2。
返回
圆的面积计算公式的应用
探究新知
修建一个半径是30m的圆形鱼池,它的占地面积 例 3 是多少平方米?
S=πr2 3.14×302 =3.14×900 =2826(m2) 答:它的占地面积是2826m2。
返回
圆的面积计算公式的应用
量得一张圆桌的周长是3.14m。这张圆桌的面积 例 4 是多少平方米?
思路分析:
圆桌的 周长
C
提示:以正方形的边长为圆的直径。
返回Biblioteka 圆的面积计算公式的应用3.公园草地上的自动旋转喷水器的 射程是8m。它能喷洒的面积是多少 平方米? 半径的长度
3.14×82 =200.96(平方米)
答:它能喷洒的面积是200.96平方米。
返回
圆的面积计算公式的应用
4.一个圆形水缸口的外直径为1m。现在为这个水缸做 一个盖子,这个盖子的面积至少是多少平方米?
初中数学圆ppt课件

谢谢聆听
总结词
圆内接四边形定理是关于圆内接四边形的性质和定理。
详细描述
圆内接四边形定理指出,对于圆内接四边形,其对角之和为180°。具体来说, 如果一个四边形所有顶点都在同一个圆上,则其对角之和为180°。这个定理在 解决与圆有关的几何问题时非常有用。
弦定理和切线定理
要点一
总结词
弦定理和切线定理是关于圆的弦和切线的性质和定理。
圆的周长计算公式为C=2πr,其中r为 圆的半径,π是一个常数约等于 3.14159。这个公式用于计算圆的周 长,对于解决与圆相关的实际问题非 常重要。
圆面积和周长的应用
总结词
圆面积和周长的应用广泛,需结合实际问题理解
详细描述
圆面积和周长的应用非常广泛,例如在计算圆的面积时,可以解决与圆相关的几何问题 ,如计算圆的面积、周长、半径等;在计算圆的周长时,可以解决与圆相关的实际问题 ,如计算圆的周长、直径等。此外,圆面积和周长的应用还涉及到日常生活、工程、科
03 圆的面积和周长
圆的面积计算公式
总结词
掌握圆的面积计算公式是学习圆的基 础
详细描述
圆的面积计算公式为A=πr^2,其中r 为圆的半径,π是一个常数约等于 3.14159。这个公式是圆的面积计算 的基石,需要学生熟练掌握。
圆的周长计算公式
总结词
理解圆的周长计算公式有助于解决相 关问题
详细描述
同圆或等圆中,相等的 弦所对的弧相等。
直径的性质
同圆或等圆中,相等的 直径所对的圆周角相等 。
圆的分类
根据半径和直径的比 例划分:可分为等圆 、半圆、不同比例的 圆。
根据是否有中心划分 :可分为有中心圆的 和无中心圆的。
根据是否在同一平面 内划分:可分为共面 圆和异面圆。
第五章圆第6节解决问题课件(15张PPT)

(3)圆的半径越大,圆的面积就越大。
(√ )
巩固扩大
2.(教材P70页做一做)右图是一面我国唐代外圆内 方的铜镜。铜镜的直径是24cm。外面的圆与内部 的正方形之间的面积是多少?
3.14×(24÷2)2= 452.16(cm)2 (24÷2)2÷2×4=288(cm)2 452.16-288=164.16(cm)2
互动新授
3
中国建筑中经常能见到“外方内圆”和 “外圆内方”的设计。上图中的两个圆半径都 是1m,你能求出正方形和圆之间部分的面积吗?
互动新授
理解题意
图序 已知条件 图(1) 外方内圆
圆半径1m
图(2) 外圆内方 圆半径1m
问题 方圆之间的面积
方圆之间的面积
互动新授
解法探究
右图中正方形的边长就是圆的直径。 (1)列式计算 从图(1)可以看出:2×2=4(m2)
复习导入
1.根据已知条件求圆的面积。 (1)r =2dm (2) d =6cm (3)C=6.28m
3.14×22 =12.56(dm2) 3.14×(6÷2)2 =28.26(cm2) 3.14×(6.28÷3.14÷2)2 = 3.14(m2)
复习导入
2.求圆环的面积。(单位:cm) 6÷2=3(cm) 4÷2=2(cm) 3.14×(32-22)=15.7(cm2)
3.14×12=3.14(m2)4-3.14=0.86(m2)
互动新授
可是右图中正方形 的边长是多少呢?
从图(2)可以看出: (1 ×2×1)×2=2(m2)
2 3.14-2=1.14(m2)
可以把右图中的正方形 看成两个三角形,它的 底和高分别是……
互动新授
如果两个圆的半径都是 r,结果又是怎样的?
《已知圆的直径求面积》圆的周长和面积PPT 图文

我幸,今生在最美的时光遇见了你。张 爱玲说 ,因为 爱了, 所以慈 悲。因 为懂得 ,所以 宽容。 总有那 么一个 人,即 便全世 界都不 爱你, 也会为 你低眉 ,为你 垂泪, 为你留 一盏温 暖的灯 ,默默 守护在 你身旁 ,在清 浅的时 光里, 陪你看 草长莺 飞,陪 你数散 落星辰 !
因为有缘,你我同住同修,同见同知, 相互依 靠,相 互取暖 。生死 契阔, 与子成 说;执子 之手, 与子携 老。爱 ,最长 情的告 白,不 是千万 句“我 爱你” ,也不 是春花 秋月前 的山盟 海誓, 天长地 久。而 是愿意 用其一 生的光 阴来陪 伴你, 来包容 你!即 便在寡 味的日 子里, 也会用 爱去 浇灌, 用心去 呵护, 为你种 出一朵 妖艳之 花,㶷 烂至极 。
=2826(cm²) =6358.5(cm²) 3.14 ×(110÷2)2
=9498.5(cm²)
4.餐厅圆桌的直径是1.6米,把它用一块 圆形桌布盖上(如下图)。这块桌布的 面积是多少?桌布周边的花边是多少?
5.在一张边长是1分米的正方形彩纸上剪 下一个最大的圆。这个圆形彩纸的面积 是多少平方厘米?
已知圆的直径求面积
教学目标
1、结合具体事例,经历灵活运用圆的面积公式 解决简单实际问题的过程。 2、掌握已知直径求面积的计算方法,能解决生 活中简单的实际问题。 3、感受数学与生活的密切联系,增强学生的应 用意识,提高运用知识解决实际问题的能力。
1.圆的周长和面积公式是什么?
2.计算。
(1)花坛的半径是10米,这个花坛的 面积是多少平方米?
(2)花坛的直径是20米,这个花坛的 面积是多少平方米?
某公司要在办公大楼前建一个圆形 草坪。
算一算:需要多少平方米草皮?(得 数保留整数)
第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt

复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5
∘
解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1
2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,
《圆的面积复习》课件

圆的面积公式的应用
展示圆的面积公式在实际问题中的应用案例。
题目二:圆的面积计算
1
圆的半径和直径的概念
介绍圆的半径和直径的定义及其与圆的面积计算的关系。
2
计算圆的半径和直径
讲解如何根据给定信息计算圆的半径和直径的方法和公式。
3
圆的面积的计算方法
详细说明根据圆的半径或直径计算圆的面积的步骤和公式。
题目三:圆的面积的应用
圆的面积在生活中的应用
展示圆的面积在建筑、设计等领 域的实际应用案例。
圆的面积在几何中的应用
介绍圆的面积与其他几何形状的 关系,如圆、矩形、三角形等。
圆的面积与其他数学领域 的应用
介绍圆的面积与其他数学概念如 方程、函数等的关系。
题目四:圆的面积的推广
圆的面积推广到三维空间 中
探讨圆的面积概念在三维空间 中的应用,并介绍相关公式。
《圆的面积复习》PPT课 圆的面积公式、计算方法、 应用以及面积的推广。通过本课件,你将深入了解圆的面积的原理与应用。
题目一:圆的面积公式
认识圆的面积公式
介绍圆的面积公式的含义、作用和重要性。
推导圆的面积公式
详细解释如何推导圆的面积公式,并展示推导过程。
圆的面积推广到复数的应 用中
展示圆的面积概念在复数和复 平面中的应用。
圆的面积推广到更高维度 的几何空间中
介绍圆的面积概念如何推广到 更高维度的几何空间中。
结论
通过学习这份PPT课件,你将会了解:
1 圆的面积公式及其推导过程
通过详细解释圆的面积公式的推导过程,加 深对其原理的理解。
2 圆的面积的计算方法和应用
学习如何计算圆的面积以及在实际问题中的 应用。
3 圆的面积与其他几何形状的关系
展示圆的面积公式在实际问题中的应用案例。
题目二:圆的面积计算
1
圆的半径和直径的概念
介绍圆的半径和直径的定义及其与圆的面积计算的关系。
2
计算圆的半径和直径
讲解如何根据给定信息计算圆的半径和直径的方法和公式。
3
圆的面积的计算方法
详细说明根据圆的半径或直径计算圆的面积的步骤和公式。
题目三:圆的面积的应用
圆的面积在生活中的应用
展示圆的面积在建筑、设计等领 域的实际应用案例。
圆的面积在几何中的应用
介绍圆的面积与其他几何形状的 关系,如圆、矩形、三角形等。
圆的面积与其他数学领域 的应用
介绍圆的面积与其他数学概念如 方程、函数等的关系。
题目四:圆的面积的推广
圆的面积推广到三维空间 中
探讨圆的面积概念在三维空间 中的应用,并介绍相关公式。
《圆的面积复习》PPT课 圆的面积公式、计算方法、 应用以及面积的推广。通过本课件,你将深入了解圆的面积的原理与应用。
题目一:圆的面积公式
认识圆的面积公式
介绍圆的面积公式的含义、作用和重要性。
推导圆的面积公式
详细解释如何推导圆的面积公式,并展示推导过程。
圆的面积推广到复数的应 用中
展示圆的面积概念在复数和复 平面中的应用。
圆的面积推广到更高维度 的几何空间中
介绍圆的面积概念如何推广到 更高维度的几何空间中。
结论
通过学习这份PPT课件,你将会了解:
1 圆的面积公式及其推导过程
通过详细解释圆的面积公式的推导过程,加 深对其原理的理解。
2 圆的面积的计算方法和应用
学习如何计算圆的面积以及在实际问题中的 应用。
3 圆的面积与其他几何形状的关系
与圆有关的定点定值问题(共70张PPT )

,
消去参数m,得2 x y 6 0,
圆心在定直线2 x y 6 0上.
Q 直线l经过点(1,1),对任意实数m, 定直线l被圆C (半径为3)截得的弦长为 定值,则圆心C到直线l的距离为定值. 直线l //圆心C所在直线. 设l方程为2 x y c 0, 将(1,1)代入, 得c 1,故直线l方程为2 x y 1 0.
问题转化为求点D到点O 距离的最大值.
AB 2 3, AC 2,结合垂径定理和勾股 定理可得CD 1.故动点D在 以C(3, 0)为圆心,1为半径的 圆( x 3)2 y2 1上运动. 则ODmax OC 1 4,
uuur uuur OA OB 的最大值为8.
变式:在平面直角坐标系xoy中,圆C的 方程为( x 1)2 y2 4, P为圆C上一点, 若存在一个定圆M,过P作圆M的两条 切线PA,PB,切点分别为A, B,当P 在圆C上运动时,使得APB恒为600, 则圆M的方程为_____________
联立解得
x y
0或 0
பைடு நூலகம்
x y
4 5, 2 5
怎样验证
故猜想定点为(0, 0),( 4 , 2),下面验证: 55
将点(0, 0),( 4 , 2)代入 55
x2 y2 2mx (m 2) y 2m 0都符合,
所以圆过两个定点(0, 0),( 4 , 2). 55
法2.将已知圆方程关于参数m整理 恒等式
右侧,圆M被y轴截得的弦长为 3r.若对 任意正常数r , 定直线l与圆M 相切,则定直 线l的方程为___________________
解析:设圆心M (a, b), 利用M 在线段AB的 垂直平分线上,从而 MA = MB ,结合M 在
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 例2、如图,在Rt△AOB中,∠AOB=90°,
OA=3,OB=2,将Rt△AOB绕点O顺时针旋
转90°后得Rt△FOE,将线段EF绕点E逆时
针旋转90°后得线段ED,分别以O,E为圆
心,OA、ED长为半径画弧AF和弧DF,连接
AD,则图中阴影部分面积是
;
• 例3、如图,AB是⊙O的切线,B为切点,
AC经过点O,与⊙O分别相交于点D,
C.若∠ACB=30°,AB= 3 ,则阴影部
分的面积是
;
五、练习
• 1、如图,在等腰直角三角形ABC中,∠ACB=90°,
AB=4,以点A为圆心,AC长为半径作弧,交AB于
点D,则图中阴影部分面积为
.
• 2、如图,AB为⊙O的直径,点C在AB的延长线上, 且AB=2BC=4,CD与⊙O相切于点D,则图中阴影 部分的面积是 .(结果保留根号和n)
180 360
的
,因此它所对的弧长是圆周长
180
的 360 ;
• (2)圆心角是90°,占整个周角的 90 , 360 因此它所对的弧长是圆周长的 90; 360
45
(3)圆心角是45°,占整个周角的 360 ,
45
因此它所对的弧长是圆周长的 360 ;
1
(4)圆心角是1°,占整个周角的 360 ,
• 3、如图,在半径为4,圆心角为90°的扇形内,以 BC为直径作半圆交AB于点D,连接CD,则阴影部 分的面积是 .(结果保留π)
1
因此它所对的弧长是圆周长的 360 ;
1
(5)圆心角是n°,占整个周角的 360 ,因 1
此它所对的弧长是圆周长的 360 ;
如果弧长为l,圆心角的度数为n, 圆的半径为r,那么,弧长为
弧长公式
三、探索扇形面积公式
• 提出问题: • 扇形的面积与组成扇形的
弧所计算圆 心角为n的扇形的面积呢?
圆中的计算问题
一、引入
• 提出问题:如图是圆弧形状的铁轨示意图, 其中铁轨的半径为100m,圆心角为90°, 你能求出这段铁轨的长度吗?(精确到 0.1m)
如果圆心角是任意的角度,如何 计算它所对的弧长呢?
二、探索弧长公式
• 思考:如图,各圆心角所对的弧长分别是 圆周长的几分之几?
• (1)圆心角是180°,占整个周角
• 思考:如下图所示的各扇形面积分别是圆面积 的几分之几?
180
90
45
n
360
360
360
360
• 如果设圆心角是n°的扇形的面积为s,圆 的半径为r,那么扇形的面积为:
扇形的面积公式
四、典型例题
• 例1、如图,圆心角为60°的扇形的半径为 10cm,求这个扇形的面积和周长(精确到 0.01cm2和0.01cm)