土的渗透性及渗流
合集下载
土的渗透性及渗流

v q A
水力坡降 i h L
vi v ki
注:达西定律合用条件
层流(线性流) ——大部分砂土,粉土;疏松 旳粘土及砂性较重旳粘性土
砂土旳水力梯度与渗透速度呈线 性关系,符合达西渗透定律。
两种特例
v
粗粒土: 砾石类土中旳渗流不符合达西定律
vcr
o
vk i
v ki
i
粘性土:clay 致密旳粘土
第3章 土旳渗透性及渗流
3.1 概述
水在土体孔隙中流动旳现象 土具有被水等液体透过旳性质
渗流 渗透性
土石坝坝基坝身渗流
防渗斜墙及铺盖
土石坝
浸润线
不透水层
透水层
板桩围护下旳基坑渗流
板桩墙
基坑
透水层 不透水层
水井渗流
Q
天然水面
不透水层
透水层
渗流滑坡
三个方面 :
•渗流量问题: 基坑开挖排水 量计算,坝身、
k: 反应土旳透水性能旳百分比系数,称为渗透系数
△h 试样两端旳水位差,即水头损失
△ L 渗径长度
达西渗透定律 Darcy 's law
渗透试验
▪试验前提:层流 ▪试验条件: h1,A,L ▪量测变量: h2,QL↑, q↓
q A h L
断面平均流速
k x
1 H
kiHi
kz
H Hi
ki
5、渗透力 J —:渗透作用中,孔隙水对土骨架旳作用
力,方向与渗流方向一致。
Gd γwi
6、临界水力梯度
i cr
γ γω
Gs 1 1e
i icr 不发生流土
i icr 发生流土
Exercises
土渗透性及渗流

常水头试验法
变水头试验法 井孔抽水试验 井孔注水试验
渗透系数的室内测定 渗透系数的现场测定
(1) 常水头渗透试验
是指在整个试验过程中保持土样 两端水头不变的渗流实验。
Q vAt kAth / L
QL kT At h
h
A
土样
L Q V
对于黏性土,由于其渗透系数较小故渗水量较小, 用常水头渗透试验不易准确测定。因此,对于 渗透系数小的土可用变水头试验。
w
B
hB
L
zB
水头梯度(坡降) hydraulic gradient
i
hA hB h L L
水流损失与渗流路径长 度之比
二、地下水的运动方式和判别
地下水是指地下水位以下的重力水
按地下水的流线形态分类 1、层流 2、湍流 按水流特征随时间的变化状况分类 1、稳定流运动 2、非稳定流运动 按水流在空间上的分布状况分类 1、一维流动 2、二维流动 3、三维流动
(紊流)
地下水的渗流速度与 水力梯度成非线性关系
两种特例:
(1)粗粒土: ①砾石类土中的渗流常不符合达西定律 ②砂土中渗透速度 vcr=0.3-0.5cm/s v
v vcr
o
v ki m (m 1)
i
(2)粘性土: 致密的粘土 i > i0 修正:v = k(i - i0 )
o i0
i
五、 渗透系数的测定及其影响因素
渗流问题 土的渗透性 及渗透规律
三、达西定律
四、达西定律的适用范围 五、渗透系数的测定及其影响
因素
1. 水在土中渗流会使土的强度发生变化,引起土体变形,甚至影响建筑地基的 稳定。 2. 在层流渗透情况下,砂土中水的渗流服从达西定律,即水的渗流速度与水力 梯度呈正比。 3. 渗透系数是土的基本力学性能指标之一,用来表征土体被水透过的性能,渗 透系数可通过室内试验或现场试验测定。
变水头试验法 井孔抽水试验 井孔注水试验
渗透系数的室内测定 渗透系数的现场测定
(1) 常水头渗透试验
是指在整个试验过程中保持土样 两端水头不变的渗流实验。
Q vAt kAth / L
QL kT At h
h
A
土样
L Q V
对于黏性土,由于其渗透系数较小故渗水量较小, 用常水头渗透试验不易准确测定。因此,对于 渗透系数小的土可用变水头试验。
w
B
hB
L
zB
水头梯度(坡降) hydraulic gradient
i
hA hB h L L
水流损失与渗流路径长 度之比
二、地下水的运动方式和判别
地下水是指地下水位以下的重力水
按地下水的流线形态分类 1、层流 2、湍流 按水流特征随时间的变化状况分类 1、稳定流运动 2、非稳定流运动 按水流在空间上的分布状况分类 1、一维流动 2、二维流动 3、三维流动
(紊流)
地下水的渗流速度与 水力梯度成非线性关系
两种特例:
(1)粗粒土: ①砾石类土中的渗流常不符合达西定律 ②砂土中渗透速度 vcr=0.3-0.5cm/s v
v vcr
o
v ki m (m 1)
i
(2)粘性土: 致密的粘土 i > i0 修正:v = k(i - i0 )
o i0
i
五、 渗透系数的测定及其影响因素
渗流问题 土的渗透性 及渗透规律
三、达西定律
四、达西定律的适用范围 五、渗透系数的测定及其影响
因素
1. 水在土中渗流会使土的强度发生变化,引起土体变形,甚至影响建筑地基的 稳定。 2. 在层流渗透情况下,砂土中水的渗流服从达西定律,即水的渗流速度与水力 梯度呈正比。 3. 渗透系数是土的基本力学性能指标之一,用来表征土体被水透过的性能,渗 透系数可通过室内试验或现场试验测定。
土力学 第2章 土的渗透性

n Vv Av 1 Av V A1 A
A > Av
v
vs
v n
Vs=q/Av V=q/A
(3)适用条件
v
层流(线性流):大部分砂土,粉土;
疏松的粘土及砂性较重的粘性土。
o
v=k i
v
v ki (a) 层流 i
(4)两种特例
密实粘性土:近似适用: v=k(i - i0 ) ( i >i0 ) i0:起始水力梯度
选取几组不同的h1和h2及对应的时间t=t2-t1,利用式(2-11)计算出相 应的渗透系数k,然后取其平均值作为该土样的渗透系数。
2. 现场井孔抽水试验
(1)室内试验的优缺点 优点:设备简单、操作方便、费用低廉。 缺点:取样和制样对土扰动、试样不一定是现场的代表性土,导致室内
测定的渗透系数难以反映现场土的实际渗透性。
☆水工建筑物防渗
一般采用“上堵下疏”原则。即上游截渗,延长渗径;下 游通畅渗透水流,减小渗透压力,防止渗透变形。
☆基坑开挖防渗
工程实例:
2003年7月1日,上海市轨道交通4号线发生一起管涌坍 塌事故,防汛墙塌陷、隧道结构损坏、周边地面沉降、造成 三幢建筑物严重倾斜。直接经济损失高达1.5亿人民币。
(2-34)
式中Fs为流土安全系数,通常取1.5~2.0。
பைடு நூலகம்
流土
(2)管涌(潜蚀) 定义:在渗流作用下土体的细土粒在粗土粒形成的孔隙通道中
发生移动并被带出的现象。 长期管涌破坏土的结构,最终导致土体内形成贯通的渗流 管道,造成土体坍陷。
管涌(土体内部细颗粒被带走)
管涌破坏(土体坍塌)
◆判别
①土类条件
第3章 土的渗透性和渗流

板桩墙
基坑
渗流问题 1.渗流量(降水办法) 2.渗透破坏(流砂)
透水层 不透水层
§3.1 概 述
土坝蓄水后水透
土石坝坝基坝身渗流 过坝身流向下游
防渗体
坝体 浸润线
渗流问题: 1.渗流量? 2.渗透破坏?
透水层
3.渗透力?
不透水层
§3.1 概 述 水井渗流
Q 天然水面
透水层
不透水层
渗流问题: 1.渗流量Q? 2.降水深度?
土愈密实,k值得愈小。试
• 土的密实度
验表明,对于砂土,k值对数与孔
• 土的饱和度
隙比及相对密度呈线性关系;对
• 土的结构和构造 粘性土,孔隙比对k值影响更大。
(2)水的性质
§3.2 土的渗透性
4.影响土的渗透系数主要因素
(1)土的性质
• 粒径大小及级配 • 土的密实度
• 土的饱和度 • 土的结构和构造
第3章 土的渗透性和渗流
§3.1 概
述
§3.2 土的渗透性
§3.3 土中二维渗流及流网
§3.4 渗透破坏与控制
§3.1 概 述
土是一种三相组成的多孔介质,其孔隙在空 间互相连通。如果存在水位差的作用,水就会在 土的孔隙中从能量高的点向能量低的点流动。
水等液体在土体孔隙中
流动的现象称为渗流。
土具有被水等液体透过
k1
h1 L1
k2
h2 L2
已知:L1=L2=40cm, k1= 2k2,故2△h1= △h2 ,
代入△h1+△h2 = △h=30cm得:
△h1=10cm,△h2 = 20cm
由此可知,测压管中的水面将升至右端水面以上10cm处。
基坑
渗流问题 1.渗流量(降水办法) 2.渗透破坏(流砂)
透水层 不透水层
§3.1 概 述
土坝蓄水后水透
土石坝坝基坝身渗流 过坝身流向下游
防渗体
坝体 浸润线
渗流问题: 1.渗流量? 2.渗透破坏?
透水层
3.渗透力?
不透水层
§3.1 概 述 水井渗流
Q 天然水面
透水层
不透水层
渗流问题: 1.渗流量Q? 2.降水深度?
土愈密实,k值得愈小。试
• 土的密实度
验表明,对于砂土,k值对数与孔
• 土的饱和度
隙比及相对密度呈线性关系;对
• 土的结构和构造 粘性土,孔隙比对k值影响更大。
(2)水的性质
§3.2 土的渗透性
4.影响土的渗透系数主要因素
(1)土的性质
• 粒径大小及级配 • 土的密实度
• 土的饱和度 • 土的结构和构造
第3章 土的渗透性和渗流
§3.1 概
述
§3.2 土的渗透性
§3.3 土中二维渗流及流网
§3.4 渗透破坏与控制
§3.1 概 述
土是一种三相组成的多孔介质,其孔隙在空 间互相连通。如果存在水位差的作用,水就会在 土的孔隙中从能量高的点向能量低的点流动。
水等液体在土体孔隙中
流动的现象称为渗流。
土具有被水等液体透过
k1
h1 L1
k2
h2 L2
已知:L1=L2=40cm, k1= 2k2,故2△h1= △h2 ,
代入△h1+△h2 = △h=30cm得:
△h1=10cm,△h2 = 20cm
由此可知,测压管中的水面将升至右端水面以上10cm处。
2 土力学 第二章 土的渗透性及水的渗流

作用方向与渗流方向一致!
二、临界水力梯度及渗透破坏 当土中水向上渗流时,渗透力垂直向上而与土样重力方向相反,若渗透力 等于土样浮度,即
j = iγ w = γ , 得临界水力梯度: i cr =
γ' γw
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
因此,若土中水向上渗流: ⑴若i>icr,会发生流土破坏,即“管涌”; ⑵若i=icr,流土处于临界状态,即“悬浮”; ⑶若i<icr,不会发生流土破坏。
h = z + hW + hV
由于水在土中渗流的速度一般很小,hv≈0,因此
h = z + hW = z +
u
γw
式中 u为该点的静水压力
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
A、B两点的总水头可分别表示为:
hA = z A +
γω
uA
; hB = z B +
γω
uB
A、B两点间的总水头差:
作业题:P54: 2-7,2-9 补题1:什么是渗透力、临界水力梯度?
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流 §2.1 土的渗透定律
土的渗透性:由于土中孔隙是相互连同 的,土体孔隙中的自由水会由于总水头 差而产生流动,这种土体被水透过的性 质,称为土的渗透性(permeability)。 一、土中渗流的总水头与水力梯度 土中一点的总水头由三项组成:势水头 z、静水头hw和动水头hv,即:
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
二、成层土的平均渗透系数 成层土渗透系数的计算方法见P43 三、渗透系数的室内测定方法 渗透系数k不能用理论方法求得,只能通过试验确定。 测定k值室内方法:定水头法、变水头法。 (1)定水头法 保持总水头差Δh不变,在t时间内,量得透过土样的水量为Q,求k: 根据达西定律
二、临界水力梯度及渗透破坏 当土中水向上渗流时,渗透力垂直向上而与土样重力方向相反,若渗透力 等于土样浮度,即
j = iγ w = γ , 得临界水力梯度: i cr =
γ' γw
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
因此,若土中水向上渗流: ⑴若i>icr,会发生流土破坏,即“管涌”; ⑵若i=icr,流土处于临界状态,即“悬浮”; ⑶若i<icr,不会发生流土破坏。
h = z + hW + hV
由于水在土中渗流的速度一般很小,hv≈0,因此
h = z + hW = z +
u
γw
式中 u为该点的静水压力
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
A、B两点的总水头可分别表示为:
hA = z A +
γω
uA
; hB = z B +
γω
uB
A、B两点间的总水头差:
作业题:P54: 2-7,2-9 补题1:什么是渗透力、临界水力梯度?
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流 §2.1 土的渗透定律
土的渗透性:由于土中孔隙是相互连同 的,土体孔隙中的自由水会由于总水头 差而产生流动,这种土体被水透过的性 质,称为土的渗透性(permeability)。 一、土中渗流的总水头与水力梯度 土中一点的总水头由三项组成:势水头 z、静水头hw和动水头hv,即:
土木工程学院 岩土系 冷伍明
第二章 土的渗透性及水的渗流
二、成层土的平均渗透系数 成层土渗透系数的计算方法见P43 三、渗透系数的室内测定方法 渗透系数k不能用理论方法求得,只能通过试验确定。 测定k值室内方法:定水头法、变水头法。 (1)定水头法 保持总水头差Δh不变,在t时间内,量得透过土样的水量为Q,求k: 根据达西定律
第三章 土的渗透性与渗流

土类 只要渗透力足够大,可 发生在任何土中
历时 破坏过程短
后果 导致下游坡面产生局部滑动等
土体内细颗粒通过粗粒形成的 孔隙通道移动
可发生于土体内部和渗流 溢出处
一般发生在特定级配的无 粘性土或分散性粘土
破坏过程相对较长
导致结构发生塌陷或溃口
k
Q
ln(r2 / r1 )
h
2 2
h12
缺点:费用较高,耗时较长
2.影响因素
k f (土粒特性、流体特性)
粒径大小及级配 孔隙比 矿物成分 结构
饱和度(含气量) 水的动力粘滞系数
2.影响因素
(1)土粒特性的影响 粒径大小及级配:是土中孔隙直径大小的主要影响因素;因由粗颗粒形 成的大孔隙可被细颗粒充填,故土体孔隙的大小一般由细颗粒所控制。 孔隙比:是单位土体中孔隙体积的直接度量;对于砂性土,渗透系数k 一般随孔隙比e增大而增大。 矿物成分:对粘性土,影响颗粒的表面力;不同粘土矿物之间渗透系 数相差极大,其渗透性大小的次序为高岭石>伊里石>蒙脱石;塑性指 数Ip综合反映土的颗粒大小和矿物成份,常是渗透系数的参数。
1. 渗流量问题: 基坑开挖或施工围堰的渗水及排水量计算、土 坝渗水量计算、水井供水量或排水量计算等。
2. 渗透破坏问题: 土中渗流会对土颗粒施加渗透力,当渗透力过 大时就会引起土颗粒或土体的移动,产生渗透 变形,甚至渗透破坏。如滑坡、溃坝、地下水 开采引起地面下沉。
3. 渗流控制问题: 当渗流量或渗透变形不满足设计要求时,要研 究如何采取工程措施进行渗流控制。
量测变量: h2,V,T 试验结果
Δh=h1-h2
Q
断面平均流速 v Q A
水力坡降
历时 破坏过程短
后果 导致下游坡面产生局部滑动等
土体内细颗粒通过粗粒形成的 孔隙通道移动
可发生于土体内部和渗流 溢出处
一般发生在特定级配的无 粘性土或分散性粘土
破坏过程相对较长
导致结构发生塌陷或溃口
k
Q
ln(r2 / r1 )
h
2 2
h12
缺点:费用较高,耗时较长
2.影响因素
k f (土粒特性、流体特性)
粒径大小及级配 孔隙比 矿物成分 结构
饱和度(含气量) 水的动力粘滞系数
2.影响因素
(1)土粒特性的影响 粒径大小及级配:是土中孔隙直径大小的主要影响因素;因由粗颗粒形 成的大孔隙可被细颗粒充填,故土体孔隙的大小一般由细颗粒所控制。 孔隙比:是单位土体中孔隙体积的直接度量;对于砂性土,渗透系数k 一般随孔隙比e增大而增大。 矿物成分:对粘性土,影响颗粒的表面力;不同粘土矿物之间渗透系 数相差极大,其渗透性大小的次序为高岭石>伊里石>蒙脱石;塑性指 数Ip综合反映土的颗粒大小和矿物成份,常是渗透系数的参数。
1. 渗流量问题: 基坑开挖或施工围堰的渗水及排水量计算、土 坝渗水量计算、水井供水量或排水量计算等。
2. 渗透破坏问题: 土中渗流会对土颗粒施加渗透力,当渗透力过 大时就会引起土颗粒或土体的移动,产生渗透 变形,甚至渗透破坏。如滑坡、溃坝、地下水 开采引起地面下沉。
3. 渗流控制问题: 当渗流量或渗透变形不满足设计要求时,要研 究如何采取工程措施进行渗流控制。
量测变量: h2,V,T 试验结果
Δh=h1-h2
Q
断面平均流速 v Q A
水力坡降
土质学与土力学土的渗透性与土中渗流

级配良好的土和 级配不良的土哪 一种土易发生管涌?
第22页/共35页
有效应力原理
(K.Terzaghi,1936) 1. 饱和土中的两种应力形态
饱和土是由固体颗粒构成的骨架和充满其间的水组成的两相体,当外力 作用于土体后一部分由土骨架承担,并通过颗粒之间的接触面进行应力的传 递.称之为粒间应力;另一部分则由孔隙中的水来承担,水虽然不能承担剪 应力,但却能承受法向应力.并且可以通过连通的孔隙水传递,这部分水压 力称为孔隙水压力。
第8页/共35页
土的渗透系数范围
土的类型
渗透系数 k(cm/s)
砾石、粗砂
a×10-1 ~ a×10-2
中砂
a×10-2 ~ a×10-3
细砂、粉砂
a×10-3 ~ a×10-4
粉土
a×10-4 ~ a×10-6
粉质粘土
a×10-6 ~ a×10-7
粘土
a×10-7 ~ a×10-10
第9页/共35页
n
h h1 h2 h3 hi i 1
将达西定律代入上式可得沿竖直方向的等效
渗透系数kz:
kz
H n hi k i 1 i
第12页/共35页
渗透力和渗透变形
(一)渗透力实验验证 当h1=h2时,土中水处于静止状态,无渗流发生, 贮水器向上提升,使h1>h2,由于存在水头差.土中产生向上的渗流。水 头差h是土体中渗流所损失的能量。能量损失说明土粒对水流给以阻力;反 之.渗流必然对每个土颗粒有推动、摩擦和拖曳的作用力,称之为渗透力,可 定义为每单位土体内土颗粒所受的渗流作用力,用 j表示。
第4页/共35页
达西定律的适用范围
达西定律是描述层流状态下渗透流速与水头损失关系的规律, 即渗流速度v与水力坡降i成线性关系只适用于层流范围。在土木 工程中,绝大多数渗流,无论是发生砂土中或一般的粘性土中, 均介于层流范围,故达西定律均可适用。
第22页/共35页
有效应力原理
(K.Terzaghi,1936) 1. 饱和土中的两种应力形态
饱和土是由固体颗粒构成的骨架和充满其间的水组成的两相体,当外力 作用于土体后一部分由土骨架承担,并通过颗粒之间的接触面进行应力的传 递.称之为粒间应力;另一部分则由孔隙中的水来承担,水虽然不能承担剪 应力,但却能承受法向应力.并且可以通过连通的孔隙水传递,这部分水压 力称为孔隙水压力。
第8页/共35页
土的渗透系数范围
土的类型
渗透系数 k(cm/s)
砾石、粗砂
a×10-1 ~ a×10-2
中砂
a×10-2 ~ a×10-3
细砂、粉砂
a×10-3 ~ a×10-4
粉土
a×10-4 ~ a×10-6
粉质粘土
a×10-6 ~ a×10-7
粘土
a×10-7 ~ a×10-10
第9页/共35页
n
h h1 h2 h3 hi i 1
将达西定律代入上式可得沿竖直方向的等效
渗透系数kz:
kz
H n hi k i 1 i
第12页/共35页
渗透力和渗透变形
(一)渗透力实验验证 当h1=h2时,土中水处于静止状态,无渗流发生, 贮水器向上提升,使h1>h2,由于存在水头差.土中产生向上的渗流。水 头差h是土体中渗流所损失的能量。能量损失说明土粒对水流给以阻力;反 之.渗流必然对每个土颗粒有推动、摩擦和拖曳的作用力,称之为渗透力,可 定义为每单位土体内土颗粒所受的渗流作用力,用 j表示。
第4页/共35页
达西定律的适用范围
达西定律是描述层流状态下渗透流速与水头损失关系的规律, 即渗流速度v与水力坡降i成线性关系只适用于层流范围。在土木 工程中,绝大多数渗流,无论是发生砂土中或一般的粘性土中, 均介于层流范围,故达西定律均可适用。
土的渗透性及渗流

3.3.2 不同土渗透3.3系土的渗透系数 数的范围
1、P37,表3-2. 2、卡萨哥兰德三界限值
K=1.0cm/s为土中渗流的层流与紊流的界限; K=10-4cm/s为排水良好与排水不良的界限,也是 对应于发生管涌的敏感范围; K=10-4cm/s大体上为土的渗透系数的下限。
3、在孔隙比相同的情况下,粘性土的渗透系 数一般远小于非性土。
水井渗流
Q
天然水面
不透水层
透水层 渗流量
渠道渗流
原地下水位
渗流量
渗流时地下水位
渗流滑坡
渗流滑坡
板桩围护下的基坑渗流 板桩墙
基坑
透水层 不透水层
渗水压力 渗流量 渗透变形 扬压力
土石坝坝基坝身渗流 防渗斜墙及铺盖
不透水层
土石坝
浸润线
渗流量
透水层 渗透变形
本章研究内 容
土的渗流 土的变形 土的强度
讨论 ❖ 砂土、粘性土:小水流为层流,渗透规律符合
达西定律,-i 为线性关系
❖ 粗粒土: i 小、 大水流为层流,渗透规律符合 达西定律,-i 为线性关系 i 大、 大水流为紊流,渗透规律不符合 达西定律,-i 为非线性关系
3.3.1 渗透系数的3.3 土的渗透系数
影响因素1
1、孔隙比
v
nvs
e 1 e
素2
3、土的饱和度
土的饱和度愈低,渗透系数愈小。因为低饱和土 的孔隙中存在较多气泡会减小过水面积,甚至赌 塞细小孔道。
4、温度
渗透系数k实际上反映流体经由土的孔隙通道时 与土k颗20 粒k间T 摩T 擦20力或粘滞滞T系、性数2。,0分可别而查为流表T℃体和2的0℃粘时水滞的性动力与粘 其温度有关。试验测得的渗透系数kT需经温度修 正(P36,表3-1)