八年级上册数学期中测试题及答案(1)
人教版八年级上册数学期中测试卷及答案(1)

人教版八年级上册数学期中测试卷及答案(1)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的平方根是()A.±2 B.2 C.﹣2 D.162.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 4.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是()A.5-313B.3 C.313-5 D.-35.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.6.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.67.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=10,则S2的值为()A.113B.103C.3 D.838.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC ⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D10.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°二、填空题(本大题共6小题,每小题3分,共18分)1.8 的立方根是__________.2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.3.4的平方根是.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分) 1.解分式方程:241244x x x x -=--+.2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于的方程2(2)210x k x k -++-=.(1)求证:该方程一定有两个不相等的实数根;(2)若12125x x x x +=-,求k 的值.4.如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).(1)求k的值;(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、B5、D6、C7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-22、如果两个角是同一个角的余角,那么这两个角相等3、±2.4、25、:略6、(-10,3)三、解答题(本大题共6小题,共72分)1、4x=2、22x-,12-.3、(1)见解析;(2)k=84、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)①132y x=-+;②四边形ABCD是菱形,理由略;(2)四边形ABCD能是正方形,理由略,m+n=32.6、(1)2元;(2)至少购进玫瑰200枝.。
江苏省常州市2023-2024学年八年级上学期期中数学试题(含答案解析)

江苏省常州市2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.剪纸是中国优秀的传统文化.下列剪纸图案中,是轴对称图形的是()A .B .C .D .2.全等图形是指两个图形()A .面积相等B .形状一样C .能完全重合D .周长相同3.下列各组线段中,能组成直角三角形的是()A .3a =,4b =,6c =B .7a =,24b =,25c =C .6a =,8b =,9c =D .5a =,6b =,7c =4.如图,已知12∠=∠,若用“SAS ”证明BDA ACB ≌,还需加上条件()A .AD BC =B .DC ∠=∠C .BD AC =D .OA OB=5.如图,在由4个相同的小正方形拼成的网格中,21∠-∠=()A .60︒B .75︒C .90︒D .105︒6.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,则CD 的长为()A.3B.4C.5D.67.已知直角三角形的面积为15,两直角边的和为11,则它的斜边长的平方为()A.61B.62C.63D.648.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A.B.C.D.二、填空题△10.如图,已知ABC≌则CF的长为的高,11.如图,CD是ABC12.等腰三角形的一边长12cm,另一边长13.如图,点E在正方形ABCD的边面积为.14.一个三角形的三边为2、5、x,另一个三角形的三边为全等,则x+y=.15.如图,在△ABC中,AB=AC,∠中,AB=17.在ABC三、计算题19.如图,ABC 中,10,6,8AB BC AC ===,求ABC 的面积.四、解答题20.小明在做数学作业时,遇到这样一个问题:如图,AB CD =,AC BD =,请说明BAC CDB =∠∠的道理.小明动手测量一下,发现确实相等,但不能说明道理,请你帮助说明其中的理由.21.如图,在△ABC 中,AB AC =,AD 为BC 边上的中线,E 为AC 上一点,且AE AD =,50BAD ∠=︒,求∠CDE 的度数.22.已知:如图,点C 、D 、B 、F 在一条直线上,且AB ⊥BD ,DE ⊥BD ,AB =CD ,CE =AF .求证:(1)△ABF≌△CDE;(2)CE⊥AF.五、证明题24.证明“直角三角形中,30A∠=︒.求证:12CB AB=.六、作图题25.如图,已知P是直线l外一点,用两种不同的方法求作一点Q,使得点Q到点P 的距离和点Q到直线l的距离相等.(要求:用直尺和圆规作图,保留作图痕迹.)七、解答题26.定义:若过三角形的一个顶点作射线与其对边相交,将这个三角形分成的两个三角形中有等腰三角形,那么这条射线就叫做原三角形的“等腰分割线”.(1)在Rt ABC △中,90C ∠=︒,8AC =,6BC =.①如图1,若O 为AB 的中点,则射线OC _____ABC 的等腰分割线(填“是”或“不是”)②如图2,已知ABC 的一条等腰分割线BP 交AC 边于点P ,且PB PA =,请求出CP 的长度.(2)如图3,ABC 中,CD 为AB 边上的高,F 为AC 的中点,过点F 的直线l 交AD 于点E ,作CM l ⊥,DN l ⊥,垂足为M ,N ,3BD =,5AC =,且45A ∠<︒.若射线CD 为ABC 的“等腰分割线”,求CM DN +的最大值.参考答案:1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,关键是寻找对称轴,图形两部分折叠后可重合.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .2.C【分析】利用全等图形的定义可得答案.【详解】解:全等图形是指两个图形能完全重合.故选:C .【点睛】本题考查全等图形的概念,理解概念是解答的关键.3.B【分析】根据勾股定理的逆定理依次判断即可.【详解】A 、222346+≠,不能组成直角三角形;B 、22272425+=,能组成直角三角形;C 、222689+≠,不能组成直角三角形;D 、222567+≠,不能组成直角三角形;故选:B .【点睛】本题考查的是勾股定理的逆定理,若一个三角形中两个较短边的平方和等于最长边的平方,则这个三角形是直角三角形.4.C【分析】根据已知12∠=∠,AB BA =,添加条件BD AC =,即可用“SAS ”证明ACB BDA △≌△,即可求解.【详解】解:补充条件BD AC =,在ACB △与BDA △中21BD AC AB BA =⎧⎪∠=∠⎨⎪=⎩∴ACB BDA △≌△()SAS ,故选:C .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.C【分析】利用全等三角形的性质解答即可.【详解】解:如图所示,连接AD ,在ABD △和ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,()SSS ABD ACD ∴ ≌,1ACD ∴∠=∠,290ACD DCE ∠-∠=∠=︒ ,2190∴∠-∠=︒.故选:C .【点睛】本题考查了全等图形,主要利用了网格结构以及全等三角形的判定与性质,准确识图并确定出全等三角形是解题的关键.6.A【分析】过点D 作DE ⊥AB 于E ,根据角平分线上的点到角的两边距离相等可得DE =CD ,然后利用△ABD 的面积列式计算即可得解.【详解】解:如图,过点D 作DE ⊥AB 于E ,∵∠C =90°,AD 平分∠BAC ,【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,是解题的关键.7.A9.140【分析】先根据三角形的内角和定理可得70ACB ∠=︒,再根据轴对称的性质可得70ACD ACB ∠=∠=︒,由此即可得.【详解】解:60BAC ∠=︒ ,50B ∠=︒,18070ACB BAC B ∴∠=︒-∠-∠=︒,∵四边形ABCD 是轴对称图形,直线AC 是它的对称轴,70ACD ACB ∴∠=∠=︒,140BCD ACD ACB ∴∠=∠+∠=︒,故答案为:140.【点睛】本题考查了三角形的内角和定理、轴对称的性质,熟练掌握轴对称的性质是解题关键.10.3【分析】利用全等三角形的性质求解即可.【详解】解:由全等三角形的性质得:8EF BC ==,∴853CF EF CE =-=-=,故答案为:3.【点睛】本题考查全等三角形性质,熟练掌握全等三角形的性质是解答的关键.11.35︒/35度【分析】根据题意,得CD AB ⊥,则90ADC ∠=︒,根据三角形的内角和,则180A ADC ACD ∠+∠+∠=︒,求出ACD ∠的角度,再根据90ACB ACD BCD ∠=∠+∠=︒,即可.【详解】∵CD 是ABC 的高,∴CD AB ⊥,∴90ADC ∠=︒,∵在ACD 中,180A ADC ACD ∠+∠+∠=︒,35A ∠=︒,90ACB ∠=︒,∴55ACD ∠=︒在ABC 和DCB △中,AB CD AC BD BC BC =⎧⎪=⎨⎪=⎩∴()SSS ABC DCB ≌△△,∴BAC CDB =∠∠.【点睛】本题考查全等三角形的判定与性质,添加辅助线证明三角形全等是解答的关键.21.25°【分析】由题意知AD BC ⊥出ADE ∠的值,进而可求出【详解】解:∵AB AC =,∴AD BC ⊥,CAD BAD ∠=∠∵AE AD=∴18050652ADE ︒-︒∠==︒∴CDE ADC ADE ∠=∠-∠∴CDE ∠的值为25°.【点睛】本题考查了等腰三角形的性质,腰三角形的性质.22.(1)见解析;(2)见解析【分析】(1)根据题意由题干条件直接利用(2)由全等三角形的性质可求得∠=90°,即可证得结论.【详解】解:(1)证明:∵ABC 中,90C ∠=60B ∴∠=︒,BCD ∴△是等边三角形,,CB CD BDC ∴=∠=ACD BDC ∴∠=∠-∠ACD A ∴∠=∠,AD CD ∴=,CB AD ∴=,又AB AD BD =+ ,12∴=CB AB .【点睛】本题考查了等边三角形的判定与性质、三角形的判定与性质是解题关键.25.见详解【分析】方法一:过垂足为Q 点;方法二:在直线l 上任意取点BC 于点Q .【详解】如图,点Q 即为所作.证明:方法一:根据作图可知:直线l PA ⊥,PQ QA =,又有:点Q 到直线l 的距离为QA ,点Q 到点P 的距离为PQ ,∴点Q 满足要求;方法二:连接PQ ,如图,根据作图可知:直线l BQ ⊥,PQ QB =,又有:点Q 到直线l 的距离为QB ,点Q 到点P 的距离为PQ ,∴点Q 满足要求.【点睛】本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了点到直线的距离.。
(华师大版)初中数学八年级上册 期中测试试卷01及答案

期中测试一、选择题(本大题共10小题,共30分)1.下列不能用平方差公式计算的是( )A .(21)(21)a a +-B .(21)(21)a a ---C .()()a b a b +--D .()()a b b a +-2.下列计算正确的是( )A .66a a a ¸=B .67·a a a =C .222(3)6ab a b -=D .4222()()bc bc b c -¸-=-3.如图,在ABC △中,D 、E 分别是AC 、AB 上的点,在ADE BDE BDC △≌△≌△,则A Ð的度数是( )A .15°B .20°C .25°D .30°4.的叙述,错误的是( )A 是有理数B .面积为12C =D .的点5.课堂练习中,王莉同学做了如下4道因式分解题,你认为王莉做得不够完整的一道是( )A .()321x x x x -=-B .2222()x xy y x y ++=+C .22()x y xy xy x y -=-D .2269(3)ab ab a a b -+=-6.设432522024x x x x -++-能被x a -整除,则a 的值为( )A .2±B .3±C .2±,3D .3±,27.下列命题正确的有( )①2±是83a =的立方根为24=A .1个B .2个C .3个D .4个8.如图,120AOB Ð=°,OP 平分AOB Ð,且2OP =.若点M ,N 分别在OA ,OB 上,且PMN △为等边三角形,则满足上述条件的PMN △有( )A .1个B .2个C .3个D .无数个9.下列各多项式中,有公因式的是( )A .2()xy a b +与2()ab x y +B .22()x y m n -与()xy m n -C .()()a b a b +-与22a b +D .()()a b c m n -++与()()b c a m n +--10.如图,在已知的ABC △中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD .若CD AC =,25B Ð=°,则ACB Ð的度数为( )A .90°B .95°C .100°D .105°二、填空题(本大题共6小题,共18分)11.已知等腰三角形一个内角的度数为70°,则它的其余两个内角的度数分别是________.12.已知实数x ,y 20132014的值为____________.13.如图,在ABC △中,AB AC =,40B Ð=°,点D 在线段BC 上运动(点D 不与点B ,C 重合),连接AD ,作40ADE Ð=°,DE 交线段AC 于点.E 当ADB Ð等于________度时,ADE △是等腰三角形.14.估算比较大小:(填“>”、“<”或“=”)12.14.已知222246140x y z x y z ++-+-+=,则23x y z +-=________.15.分解因式222ax ay 2axy ab +--得________.三、解答题(本大题共9小题,共72分)16.乘法公式的探究和应用.(1)如图中的左图,可以求出阴影部分的面积是________(写成两数平方差的形式);(2)如图中的右图,若将阴影部分裁剪下来,重新拼成一个长方形,它的宽是________,长是________,面积是________(写成多项式乘法的形式);(3)比较左、右两图的阴影部分面积,可以得到乘法公式________(用式子表达);(4)运用你所得到的公式,计算下列各题:10.39.7´①.()()22m n p m n p +--+②.17.在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C 是MON Ð的平分线OP 上一点,点A 在OM 上,此时,在ON 上截取OB OA =,连接BC ,根据三角形全等判定()S A S ,容易构造出全等三角形OBC △和OAC △,参考上面的方法,解答下列(2)中的问题:如图2,在非等边ABC △中,60B Ð=°,AD ,CE 分别是BAC Ð,BCA Ð的平分线,且AD ,CE 交于点F .图1图2(1)填空:AFC Ð=________,CFD Ð=________,AFE Ð=________;(2)说明AC AE CD =+的理由.18.如图,在ABC △中,D 是AB 上一点,DF 交AC 于点E ,D E FE =,AE CE =,AB 与CF 有什么位置关系?说明你判断的理由.19.某种产品的商标如图所示,O 是线段AC ,BD 的交点,并且AC BD =,.AB CD =小明认为图中的两个三角形全等,他的思考过程是:在ABO △和DCO △中,.AC BD AOB DOC ABO DCO AB CD =ìïÐ=Ю@íï=îV V 你认为小明的思考过程正确吗?如果正确,他用的是判定三角形全等的哪个条件?如果不正确,请你增加一个条件,并说明你的理由.20.如图,已知90AOB Ð=°,OM 是AOB Ð的平分线,将三角尺的直角顶点P 在射线OM 上滑动,两直角边分别与OA ,OB 交于点C ,D ,求证:PC PD =.21.乘法公式的探究和应用图1图2(1)如图1,可以求出阴影部分的面积是________.(写成两数平方差的形式)(2)如图,若将阴影部分剪下来,重新拼成一个长方形,它的面积是________.(写成多项式乘积的形式)(3)比较左、右两图阴影部分的面积,可以得到乘法公式________.(用式子来表示)(4)运用你所得到的公式,计算()()2323x y x y -+-+.(5)下列纸片中有两张是边长为a 的正方形,三张是长为a ,宽为b 的长方形纸片,一张是边长为b 的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.22.如图,点P 为AOB Ð的边OB 上一点,利用直尺和圆规作直线PE ,使PE OA ∥(保留作图痕迹,不写作法).23.已知ABN △和ACM △位置如图所示,AB AC =,AD AE =,12Ð=Ð.(1)求证:BD CE =;(2)求证:M N Ð=Ð.24.如图,点O 是等边ABC △内一点,D 是ABC △外的一点,110AOB Ð=°,BOC a Ð=,BOC ADC △≌△,60OCD Ð=°,连接OD .(1)求证:OCD △是等边三角形;(2)当150a =°时,试判断AOD △的形状,并说明理由;(3)AOD △能否为等边三角形?为什么?(4)探究:当a 为多少度时,AOD △是等腰三角形.期中测试答案解析一、1.【答案】C【解析】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.原式利用平方差公式的结构特征判断即可.解:下列不能用平方差公式计算的是()()222()2a b a b a b a ab b +--=-+=---,故选C 。
人教版八年级数学上册期中测试题及参考答案(WL统考精编)

八年级数学上册期中测试题及参考答案(WL统考精编)(时间:120分钟满分:120分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()2.一副三角板如图叠放在一起,则图中∠a的度数为()A.15°B.25°C.30°D.35°3.已知等腰三角形的两边长分别为4cm、8cm,则该等腰三角形的周长是()A.12cmB.16cmC.16cm或20cmD. 20cm4.下列说法正确的是()A.三角形三条高交于三角形内一点B.一个钝角三角形一定不是等腰三角形,也不是等边三角形C.有两条边及其中一条边的对角对应相等的两个三角形全等D.平面上两个全等的图形不一定关于某直线对称5.如右图,已知点A(2,3)和点B(4,1),在坐标轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A(1,0) B.(0,-1)C.(1,0)或(0,-1)D.(2,0)或(0,1)6.△ABC中,AC=5,中线AD=6,则AB边的取值范围是()A.1<AB<11B.4<AB<6 C 5<AB<17 D.7<AB<177.如右图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,EB、CF相交于D,则∠CDE的度数是()A.130°B.70°C.80°D.75°8.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N为圆心、大于1/2MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60(8题)(9题图)(10题图)(11题图)9.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若AB=1,BC=2,则△ABE和△BC'F的周长之和为()A.3B.4C.6D.810.如图,△ABC是等边三角形,D为BA的中点,DE⊥AC,垂足为点E,EF∥AB,AE=1,下列结论错误的是()A.∠ADE=30°B. AD=2C.△ABC的周长为10D.△EFC的周长为911.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°12.如图,已知△ABC和△CDE都是等边三角形,且A、C、E三点共线,AD与BE交点O,AD与BC交于点P,BE与CD交于点Q,连接PQ有以下五个结论:①AD=BE;②∠AOB=60°;③AP=BO;④△PCQ是等边三角形;⑤PQ∥AE.其中正确结论的个数是()A.5B.4C.3D.2第Ⅱ卷(非选择题共84分)二、填空题(本大题共4个小题;每小题4分,共16分)13.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为______。
八年级上册数学期中测试题及答案

八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
人教版数学八年级上册期中测试题及答案(一)

人教版数学八年级上册期中测试题(一)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.243.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.117.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.1913.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB 于点G.求证:CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.(3分)若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2) B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【考点】待定系数法求正比例函数解析式.【专题】待定系数法.【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选D.2.(3分)直线y=3x+6与两坐标轴围成的三角形的面积为()A.6 B.12 C.3 D.24【考点】一次函数图象上点的坐标特征.【专题】数形结合.【分析】求出直线y=3x+6与两坐标轴的交点坐标,画出函数图象,再根据三角形的面积公式求出三角形的面积.【解答】解:设直线与x轴交点坐标为A(x,0),与y轴交点为B(0,y).将A、B两点分别代入解析式得,x=﹣2,y=6.故A、B两点坐标为A(﹣2,0)、B(0,6).于是S=×2×6=6.△ABC如图:3.(3分)直角三角形两锐角的平分线相交得到的钝角为()A.150o B.135o C.120o D.120o或135o【考点】直角三角形的性质.【专题】计算题.【分析】本题可根据直角三角形内角的性质和三角形内角和为180°进行求解.【解答】解:直角三角形中,两锐角三角形度数和为90°,则两锐角的各一半度数和为45°,根据三角形内角和为180°,可得钝角度数为135°,故选B.4.(3分)已知正方形ABCD中,A(﹣3,1),B(1,1),C(1,﹣3),则D点的坐标是()A.(﹣3,﹣3)B.(﹣1,1)C.(﹣3,3)D.(1,3)【考点】坐标与图形性质.【专题】计算题.【分析】因为四边形为正方形,四条边相等,根据正方形的性质与边长为:|AB|=4,从而可计算出D的坐标.【解答】解:设D点的坐标为(x,y),已知四边形为正方形,四条边相等,且易知|AB|=4,AB∥CD,∴C,D两点的从坐标相等,∴y=﹣3,又∵AD∥BC,∴A,D两点的横坐标相等,∴x=﹣3,∴D的坐标为(﹣3,﹣3),故选A.5.(3分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程x km计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图所示(其中x=0对应的函数值为月固定租赁费),则下列判断错误的是()A.当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B.当月用车路程为2300km时,租赁乙汽车租赁公司车比较合算C.除去月固定租赁费,甲租赁公司每公里收取的费用比乙公司多D.甲租赁公司每月的固定租赁费高于乙租赁公司【考点】函数的图象.【专题】计算题;应用题;函数及其图像.【分析】观察函数图象可知,函数的横坐标表示路程,纵坐标表示收费,根据图象上特殊点的意义即可求出答案.【解答】解:A、交点为(2000,2000),那么当月用车路程为2000km,两家汽车租赁公司租赁费用相同,说法正确,不符合题意;B、由图象可得超过2000km时,相同路程,乙公司收费便宜,∴租赁乙汽车租赁公司车比较合算,说法正确,不符合题意;C、由图象易得乙的租赁费较高,当行驶2000千米时,总收费相同,那么可得甲租赁公司每公里收取的费用比乙租赁公司多,说法正确,不符合题意;D、∵由图象易得乙的租赁费较高,说法错误,符合题意,故选:D.6.(3分)若一个三角形的两边长分别为3和7,则第三边长可能是()A.2 B.3 C.5 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.7.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.8.(3分)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.9.(3分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130° D.140°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.10.(3分)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【考点】全等三角形的判定.【分析】根据全等三角形的判定得出点P的位置即可.【解答】解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB 的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选C11.(3分)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【考点】角平分线的性质;三角形内角和定理.【专题】计算题.【分析】根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.【解答】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣50°﹣60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°﹣∠BAC﹣∠ABO=180°﹣70°﹣25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°﹣60°)=60°,∴∠BDC=180°﹣85°﹣60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°﹣70°)=55°,故D选项正确.故选:B.12.(3分)如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.13.(3分)如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【考点】轴对称的性质.【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.14.(3分)如图,AD是△ABC的角平分线,则AB:AC等于()A.BD:CD B.AD:CD C.BC:AD D.BC:AC【考点】角平分线的性质.【专题】压轴题.【分析】先过点B作BE∥AC交AD延长线于点E,由于BE∥AC,利用平行线分线段成比例定理的推论、平行线的性质,可得∴△BDE∽△CDA,∠E=∠DAC,再利用相似三角形的性质可有=,而利用AD时角平分线又知∠E=∠DAC=∠BAD,于是BE=AB,等量代换即可证.【解答】解:如图过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=,∴AB:AC=BD:CD.故选:A.15.(3分)如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个 B.2个 C.3个 D.4个【考点】等边三角形的性质;全等三角形的判定;角平分线的性质.【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,从而判断出①正确,然后根据等边对等角的性质可得∠APQ=∠PAQ,然后得到∠APQ=∠PAR,然后根据内错角相等两直线平行可得QP∥AB,从而判断出②正确,然后证明出△APR与△APS全等,根据全等三角形对应边相等即可得到③正确,④由△BPR≌△CPS,△BRP≌△QSP,即可得到④正确.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.二.解答题(共9小题)16.(6分)如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】在直角三角形中,根据两锐角互余即可得到∠BAD=20°,根据角平分线的性质可求出∠BAO和∠ABO,最后由三角形外角的性质求得∠AOF=75°.【解答】解:∵AD是高,∠ABC=70°,∴∠BAD=90°﹣70°=20°,∵AE、BF是角平分线,∠BAC=80°,∠ABC=70°,∴∠ABO=35°,∠BAO=40°,∴∠AOF=∠ABO+∠BAO=75°.17.(6分)如图,AB=AD,CB=CD,求证:AC平分∠BAD.【考点】全等三角形的判定与性质.【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.【解答】解:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC平分∠BAD.18.(7分)如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先通过∠BAD=∠CAE得出∠BAC=∠DAE,从而证明△ABC≌△ADE,得到BC=DE.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.(7分)如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.【考点】等腰三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.【解答】证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…(1分)∵点D是BC边上的中点∴BD=DC …(2分)∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…(3分)在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).20.(8分)如图,一艘轮船以18海里/时的速度由西向东航行,在A处测得小岛C在北偏东75°方向上,两小时后,轮船在B处测得小岛C在北偏东60°方向上,在小岛周围15海里处有暗礁,若轮船仍然按18海里/时的速度向东航行,请问是否有触礁危险?并说明理由.【考点】解直角三角形的应用-方向角问题.【分析】作CE⊥AB,利用直角三角形性质求出CE长,和15海里比较即可看出船不改变航向是否会触礁.【解答】解:作CE⊥AB于E,∵A处测得小岛P在北偏东75°方向,∴∠CAB=15°,∵在B处测得小岛P在北偏东60°方向,∴∠ACB=15°,∴AB=PB=2×18=36(海里),∵∠CBD=30°,∴CE=BC=18>15,∴船不改变航向,不会触礁.21.(8分)如图,在等腰三角形ABC中,AC=BC,分别以BC和AC为直角边向上作等腰直角三角形△BCD和△ACE,AE与BD相交于点F,连接CF并延长交AB于点G.求证:CG垂直平分AB.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】求证△AFC≌△CEB可得∠ACF=∠BCF,根据等腰三角形底边三线合一即可解题.【解答】证明:∵CA=CB∴∠CAB=∠CBA∵△AEC和△BCD为等腰直角三角形,∴∠CAE=∠CBD=45°,∠FAG=∠FBG,∴∠FAB=∠FBA,∴AF=BF,在三角形ACF和△CBF中,,∴△AFC≌△BCF(SSS),∴∠ACF=∠BCF∴AG=BG,CG⊥AB(三线合一),即CG垂直平分AB.22.(10分)如图,在等边△ABC中,点F是AC边上一点,延长BC到点D,使BF=DF,若CD=CF,求证:(1)点F为AC的中点;(2)过点F作FE⊥BD,垂足为点E,请画出图形并证明BD=6CE.【考点】作图—基本作图;等边三角形的性质.【专题】作图题.【分析】(1)根据等边三角形的性质得∠ABC=∠ACB=60°,利用∠CFD=∠D,则根据三角形外角性质得到∠ACB=2∠D,即∠D=∠ACB=30°,然后利用FB=FD得到∠FBD=∠D=30°,则BF平分∠ABC,于是根据等边三角形的性质可得到点F为AC的中点;(2)如图,过点F作FE⊥BD于E,利用含30度的直角三角形三边的关系得到CF=2CE,而CD=CF,则CF=2CE,再利用BC=2CF,所以BD=6CE.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵CF=CD,∴∠CFD=∠D,∴∠ACB=2∠D,即∠D=∠ACB=30°,∵FB=FD,∴∠FBD=∠D=30°,∴BF平分∠ABC,∴AF=CF,即点F为AC的中点;(2)如图,在Rt△EFC中,CF=2CE,而CD=CF,∴CF=2CE,在Rt△BCF中,BC=2CF,∴BC=4CE,∴BD=6CE.23.(11分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A 向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【考点】等边三角形的性质;全等三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC= QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.24.(12分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.(1)求证:△ADF≌△CEF;(2)试证明△DFE是等腰直角三角形.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)根据在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中点,∠A=∠FCE=∠ACF=45°,即可证明:△ADF≌△CEF.(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可证明△DFE是等腰直角三角形.【解答】证明:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,∴∠A=∠B=45°,又∵F是AB中点,∴∠ACF=∠FCB=45°,即,∠A=∠FCE=∠ACF=45°,且AF=CF,在△ADF与△CEF中,,∴△ADF≌△CEF(SAS);(2)由(1)可知△ADF≌△CEF,∴DF=FE,∴△DFE是等腰三角形,又∵∠AFD=∠CFE,∴∠AFD+∠DFC=∠CFE+∠DFC,∴∠AFC=∠DFE,∵∠AFC=90°,∴∠DFE=90°,∴△DFE是等腰直角三角形.。
人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。
2024年全新八年级数学上册期中试卷及答案(人教版)

2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。
答案:b2. 若a的绝对值是5,那么a可能是_________。
答案:5或53. 若a的三次方是27,那么a的平方是_________。
答案:94. 若a的平方根是b,那么b的平方根是_________。
答案:a5. 若a的绝对值是5,那么a的平方是_________。
答案:25三、解答题1. 若一个数的平方根是4,求这个数。
解:设这个数为x,根据题意,有√x = 4。
解这个方程,得到x= 4^2 = 16。
所以这个数是16。
2. 若一个数的三次方是8,求这个数。
解:设这个数为y,根据题意,有y^3 = 8。
解这个方程,得到y = 2。
所以这个数是2。
3. 若一个数的绝对值是7,求这个数的平方。
解:设这个数为z,根据题意,有|z| = 7。
由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。
无论z是正数还是负数,其平方都是49。
所以这个数的平方是49。
4. 若一个数的平方根是5,求这个数的立方。
解:设这个数为w,根据题意,有√w = 5。
解这个方程,得到w= 5^2 = 25。
求w的立方,得到w^3 = 25^3 = 15625。
所以这个数的立方是15625。
5. 若一个数的绝对值是3,求这个数的立方根。
解:设这个数为v,根据题意,有|v| = 3。
由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试题一、选择题(每题3分,共24分) 1.下列图案是轴对称图形的有()2•如果一个有理数的平方根和立方根相同,那么这个数是()A. ± 1B. 1C. 0D. 0 和 13.下列说法:①用一张底片冲洗出来的 2张1寸相片是全等形;②所有的正五边形是全等形;③全等形的周长相等;④面积相等的图形一定是全等形•其中正确的是( )4.将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后 AB 与E B 与在同一条直线<X^X>D . 4个A. ①②③B .①③④C .①③D .③上,则/ CBD 的度数 ( )A.大于90°B.等于90°C.小于90°D. 不能确定5.-81的平方根是()A . 9B-9C . 36.估计20的算术平方根的大小在(A . 2与3之间B . 3与4之间D . -3)C . 4与5之间D . 5与6之间7.如图1所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是当输入X 的值为-4时,则输出的结果为 _____________ . 12. 已知等腰三角形的一个内角为70。
,则另外两个内角的度数是 ___________ 一13. 如图,△ ABDACE,则AB 的对应边是 ______________ ,/ BAD 的对应角是 _____ .8.如图,在△ ABC 中,AB=AC ,/ A=36° , BD 、CE 分别是 △ ABC >△ BCD 的角平分线, 则图中的等腰三角形有() A . 5个B . 4个C . 3个D . 2个二、填空题(每题 4分,共32分)9. ____________________________ 无理数-的相反数是 _____ ,绝对值是 10. 在-3 , - <3 , — 1, ________________ 0这四个实数中,最大的是,最小的是 _______________________ ,11.以下是一个简单的数值运算程序: ( )B B图A .B .C .D .14.如图,AD II BC, / ABC 的平分线 BP 与/ BAD 的平分线 AP 相交于点 P ,作 PE 丄 AB 于点E .若PE=2,则两平行线 AD 与BC 间的距离为 ________________ ,15.如图,点 P 在/ AOB 的内部,点 M 、N 分别是点P 关于直线 OA 、OB ?的对称点, 线段MN 交OA 、OB 于点E 、F ,若△ PEF 的周长是 20cm ,则线段 MN 的长是16.如图所示,• E =/F =90 , - B — C , AE 二 AF ,结论:① EM 二 FN :②CD =DN :③N FAN EAM :④厶ACN ABM •其中正确的有 _____________ .三、解答题(共56分)17.计算(每小题5分,共10 分) (1) 1 . 0.81 - 3 -8496(2)血-2彳8-J (-16产(-£)(第 13题图) C(第 14题图)(第16题图)218. (6分)自由下落的物体的高度h (m)与下落时间t (s )的关系为h = 4.9 t •有一学生不慎让一个玻璃杯从19.6 m高的楼上自由下落,刚好另一学生站在与下落的玻璃杯同一直线的地面上,在玻璃杯下落的同时楼上的学生惊叫一声,这时楼下的学生能躲开吗(声音的速度为340 m / s)?19. (6分)已知:如图,D是厶ABC的边AB上一点,DF交AC于点E, DE = FE, FC // AB.求证:AD=CF •20. (6分)如图,写出A、B、C关于y轴对称的点坐标,并作出与△ ABC关于x轴对称的图形.>13!2 d i •* -3 -i -IO B (-11"!^ '1 2 3x hL21. (8分)认真观察下图4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1 : _____________________________________________________特征2: _________________________________________________________________(2)请在下图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征22. (8分)如图,两条公路AB, AC相交于点A,现要建个车站D,使得D到A村和B村的距离相等,并且到公路AB、AC的距离也相等.(1)请在图1中画出车站的位置.(2)若将A、B抽象为两个点,公路AC抽象为一条直线,请在直线AC上找一个点M , 使厶ABM是等腰三角形,这样的点能找几个?请你找出所有符合条件的点.C论:AE图1 图223. (10分)在厶ABC 中,AB =CB , / ABC =90o, F 为AB 延长线上一点,点E 在BC 上,且AE =CF •⑴ 求证:Rt △ ABE 也 Rt △ CBF ; (2) 若/ CAE =30o,求/ ACF 度数.24. ( 10分)数学课上,李老师出示了如下框中的题目, 在等边三角形ABC 中,点E 在AB 上, 点D 在CB 的延长线上,且ED=EC ,如图I 试确定线段AE 与DB 的大小关系,并说明 I 理由•I D 十B‘C 1I _______________________________________ I小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结DB (填“〉”,或”“=”.第24题图1第24题图2(2 )特例启发,解答题目解:题目中,AE与DB的大小关系是:AE _ DB (填“〉”,或:”“=”.理由如下:如图2,过点E作EF//BC,交AC于点F .(请你完成以下解答过程)(3 )拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED = EC .若ABC的边长为1,AE =2,求CD的长(请你直接写出结果)一、选择题(24分)1. B2. C3. C4. B5. D6. C7. D8. A二、填空题(32分)9. <3^/3 ; 10. 0, -3 ; 11. 2 ; 12. 70° 40°或55° 55°; 13. AC , / CAE ;14. 4 ; 15. 20cm ;16.①③④.三、解答题(64分)117.(10 分)(1)原式=-0.9_(_2)7 .................................... 2 分61 9= 2亠7 ..................................... 4分6 103 、= 9 ............................................. 5 分20⑵原式=2 - .2 2 -16 (-2) ..................... 2 分4= 2 - • 2 ——32 ..................................... 4 分4= 34 -—V2 ................................................. 5 分418. (6分)解:根据题意得 4.9t2=19.6 ......................... 1分丄2 19.6 八t ....................... 2分4.9t =2 .................... 3 分声音传播所用的时间是19.6" 340、0.6(s) ..................... 4分因为0.6 v 2 ............................................. 5分答:楼下的学生能躲开。
......................... 6分19. (6 分)证明(1)v CF // AB•••/ ADE = Z F ....................... 1 分在厶ADE 和厶CFE 中 厂 / ADE = Z F丿 DE=FEI / AED=Z CEF•••△ ADE ◎△ CFE ........................................... 5 分••• AD=CF.......................................... 6 分20. (6分)A 、B C 关于y 轴对称的点坐标分别为(4, 1) (1 , -1) (3, 2)每点1分, 共3分图略(3分)21.(8分)解:(1)特征1:都是轴对称图形; .................. 2分特征2:这些图形的面积都等于 4个单位面积; (2)分(2)满足条件的图形有很多,只要画正确一个,都可以得满分. (4)分22.(8分)(1) Z BAC 的平分线与线段 AB 的中垂线的交点即为车站位置(图略)C分(2)符合条件的点共有4个。
每找对一个得1分,共4分。
23. (10 分)(1 )•••/ ABC=90° ,•••/ CBF=Z ABE=90° .在Rt△ ABE 和Rt △ CBF 中,•/ AE=CF, AB=BC, • Rt △ ABE也Rt△ CBF(HL) ............ 5 分(2) •/ AB=BC, Z ABC=90° , • Z CAB=Z ACB=45°.vZ BAE=Z CAB- Z CAE=45°-30 °=15° . ............................... 7 分F由( 1) 知Rt △ ABE也Rt △ CBF , BCF = Z BAE=15° , ....... 8 分9 £ ....................... T W i者月阴ao :昜(e)t L ..................................... aa=3v.-4d3=aa ••• dm v^3aav.-7=c□日7••• 49937 = aa3 7 •••493=03 .-.'09=39d 7 +903 7 =99V 7'09=a3a 7+aa3 7=oav 7--.'do=3a ds 4dv- ov=3v - av •.•t d3=dV=3V.- 4ova 7= 09=3dV7 = d3V 7 ••- 499 // d3 /. ov=oa=av 4 09=ova 7=aov7=oav 7 oavv 率蓊丑9乙............................. 二⑵9乙............. =⑴(q OL)P乙09= 91+ 9i7=g9V7 + d9a 7=dOV 7 ••-。