第六章 异方差性
异方差性及其检验

异方差性及其检验I 概念对于多元线性回归模型同方差性假设为 如果出现即对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同,不具有等同的分散程度,则认为出现了异方差(Heteroskedasticity ) II 类型同方差性假定是指,回归模型中不可观察的随机误差项i u 以解释变量X 为条件的方差是一个常数,因此每个i u 的条件方差不随X 的变化而变化,即有2()i i f X σ=≠常数在异方差的情况下,总体中的随机误差项i u 的方差 2i σ不再是常数,通常它随解释变量值的变化而变化,即异方差一般可归结为三种类型:01122 1,2,,i i i k ki i Y X X X i n ββββμ=+++++=2(), 1,2,...,i Var i n μσ==2(), 1,2,...,i i Var i nμσ==2()i i f X σ=异方差类型图:III来源(1)截面数据(不同样本点除解释变量外其他影响差异大)(2)时间序列(规模差异)(3)分组数据、异常值等(4)模型函数形式设置不正确和数据变形不正确(5)边错边改学习模型IV影响计量经济学模型一旦出现异方差,如果仍然用普通最小二乘法估计模型参数,会产生一系列不良后果。
(1)参数估计量非有效(2)OLS估计的随机干扰项的方差不再是无偏的(3)基于OLS估计的各种统计检验非有效(4)模型的预测失效V检验异方差性,即相对于不同的样本点,也就是相对于不同的解释变量观测值,随机干扰项具有不同的方差,那么检验异方差性,也就是检验随机干扰项的方差与解释变量观测值之间的相关性。
一般检验方法如下:(1)图示检验法(2)帕克(Park)检验与戈里瑟(Gleiser)检验(3)G-Q(Goldfeld-Quandt)检验(4)F检验(5)拉格朗日乘子检验(6)怀特检验(具体步骤随后介绍)VI修正方法加权最小二乘法定义:加权最小二乘法是对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用OLS法估计其参数。
计量经济学第六章异方差性1

以因变量的拟合值 (或某个解释变量)为横坐 标,残差平方为纵坐标,将n个样本点的值描在 坐标系中。根据这n个点的分布情况,可以寻找 模型错误或方差不相同的证据。
残差散点图例
ei2
无趋势, 满足假定。
ei2
误差随 y 的增加 而增加
0
yi
0
ei2
ei2
yi
0
误差呈规律性变化,原因可能是模型不适合, 也可能是缺少某些重要值变量
yi
0
yi
二、异方差性的侦察
正式方法:检验随机误差项的方差与解 释变量观测值之间的相关性。
帕克(Park)检验
先做OLS回归,不考虑异方差性问题。 从OLS回归中获得ei2 ,作下述回归:
三、 已知时的异方差修正
以一元回归为例: yi=β1+β2xi+i
σi σi σi
2 σi
Var ( i ) = σ i2
(1)
用σi除上式得:yi = β ( 1 ) + β ( xi ) + i 1 2
σi
对上式进行OLS估计,即最小化如下函数:
min
∑σ
( 1
yi
i
1 β xi ) 2 = β1 2
t = (3.7601) (-1.6175) R2 = 0.1405 ①和②表明,可以拒绝同方差性(存在异方差)
③
异方差的修正
2 E ( i ) = CX i RD 1 变换: = 246.68 + 0.0368 salei salei salei se : (341.13) (0.0071) t : (0.6472) (5.1723) r 2 = 0.6258
异方差性的概念、类型、后果、检验及其修正方法含案例

Yi和Xi分别为第i个家庭的储蓄额和可支配收入。
在该模型中,i的同方差假定往往不符合实际情况。对高收 入家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律 性(如为某一特定目的而储蓄),差异较小。
因此,i的方差往往随Xi的增加而增加,呈单调递增型变化 。
– 在选项中,EViews提供了包含交叉项的怀特检验“White Heteroskedasticity(cross terms)”和没有交叉项的怀特检 验“White Heteroskedasticity(no cross terms)” 这样两个 选择。
• 软件输出结果:最上方显示两个检验统计量:F统计 量和White统计量nR2;下方则显示以OLS的残差平 方为被解释变量的辅助回归方程的回归结果。
随机误差项具有不同的方差,那么: 检验异方差性,也就是检验随机误差项的方差与解
释变量观测值之间的相关性及其相关的“形式”。 • 各种检验方法正是在这个共同思路下发展起来的。
路漫漫其修远兮, 吾将上下而求索
问题在于:用什么来表示随机误差项的方差? 一般的处理方法:
路漫漫其修远兮, 吾将上下而求索
2.图示检验法
路漫漫其修远兮, 吾将上下而求索
3.模型的预测失效
一方面,由于上述后果,使得模型不具有良好的统计性质;
【书上这句话有点问题】
其中 所以,当模型出现异方差性时,Y预测区间的建立将发生困 难,它的预测功能失效。
路漫漫其修远兮, 吾将上下而求索
三、异方差性的检验(教材P111)
1.检验方法的共同思路 • 既然异方差性就是相对于不同的解释变量观测值,
(注意:其中的2完全可以是1)
第六章 异方差性讲解

例如,相较于没有先进设备的银行,那些拥有先进数据处理设备的 银行,在他们对帐户的每月或每季财务报告中,会出现更少的差错。
三、异方差产生的原因 例6-3
股票价格和消费者价格
30 25
智利
股票价格变化率
考虑如下20个国家在第二 次世界大战后直至1969年间的 股票价格(Y)和消费者价格 (X)的百分比变化的散点图。
第六章
异方差性
◆异方差性及其产生原因
◆ 异方差性的影响
◆ 异方差性的检验 ◆ 异方差性的的修正
第一节
—、异方差性的含义
对于多元线性回归模型
异方差性及其产生原因
Yi 0 1 X1i 2 X 2i
同方差性假设为
k X ki i
i 1, 2,
,n
(6-1)
Var(i ) 2 ,
如果出现
i 1, 2,..., n
Var(i ) i2 ,
i 1, 2,..., n
即对于不同的样本点,随机干扰项的方差不再是常数,而是互不相同 ,则认为出现了异方差性(Heteroskedasticity)。
二、异方差的类型
同方差性假定是指回归模型中不可观察的随机误差项 i 以解释变量X为 条件的方差是一个常数,因此每个i 的条件方差不随X的变化而变化,即有
20 15 10 5 0 0 5 10 15 消费者价格(%) 20 25
以色列 芬兰 墨西哥 奥地利 丹麦 法国印度 日本 澳大利亚 爱尔兰 英国 新瑞典 西兰 意大利荷兰 比利时 加拿大 德国 美国
图中,对智利的观测值Y 和X远大于对其他国家的观测 值,故可视为一个异常值,在 这种情况下,同方差性的假定 就难以维持了。
4.2 异方差性

• 其他检验也是如此。
3、模型的预测失效
一方面,由于上述后果,使得模型不具 有良好的统计性质;
所以,当模型出现异方差性时,参数OLS 估计值的变异程度增大,从而造成对Y的预测 误差变大,降低预测精度,预测功能失效。
四、异方差性的检验 Detection of Heteroscedasticity
OLS估计
ˆ exp( ˆ ˆ1 X i1 ˆ2 X i 2 L ˆk X ik ) ˆi2 ˆi2 f i 0
2、异方差稳健标准误法(Heteroscedasticity-Consistent
Variances and Standard Errors)
应用软件中推荐的一种选择。适合样本容量足 够大的情况。
仍然采用OLS,但对OLS估计量的标准差进行 修正。 与不附加选择的OLS估计比较,参数估计量没 有变化,但是参数估计量的方差和标准差变化 明显。 即使存在异方差、仍然采用OLS估计时,变量 的显著性检验有效,预测有效。
六、案例 —中国农村居民人均消费函数模型
~ y (y i ) 0ls e i i
~2 Var ( i ) E ( i2 ) e i
2、图示法
(1)用X-Y的散点图进行判断
看是否存在明显的散点扩大、缩小或复杂型 趋势(即不在一个固定的带型域中)。
~ 的散点图进行判断 (2)X- e i
2
看是否形成一斜率为零的直线。
~2 e i
wi 1/
f ( X i1 , X i 2 ,L , X ik )
一种具有应用价值的方法
Var(i | X i1,L , X ik ) 2 exp(0 1 X i1 L k X ik )
计量经济学:异方差性

计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。
虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。
本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。
第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。
所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。
通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。
第六章 自相关性

进一步,如果
ut ut 1 t
其中
1,t满足E(t ) 0,Var(t )
2
,
cov(t , s ) 0, (t s)
则称ut是一阶线性自相关。
二、自相关性产生的原因
1、经济变量惯性的作用 2、经济行为的滞后性 3、一些随机偶然因素的干扰或影响 4、模型设定的偏误 5、蛛网现象模型
例如:“真实”的边际成本与产量之间的函数关
系式应为:
Yt
1
2 X t
3 X
2 t
ut
其中Yt表示边际成本,X t表示产量,由于认识上的偏
误可能建立如下模型: Yt 1 2 X t vt
其中vt
3
X
2 t
ut,这时由于vt中包含了带有X
2对边
t
际成本的系统影响,使得vt很有可能出现自相关性。
3、一些随机偶然因素的干扰或影响 通常偶然因素是指战争、自然灾害、政策制定
的错误后果、面对一些现象人们的心理因素等等, 这些因素可能影响若干时期,反映在模型中很容 易形成随机误差序列的自相关。
4、设定偏误:
所谓设定偏误是指所建模型“不真实”或“不正 确”。引起设定偏误的主要原因有:模型函数的形式 不正确或遗漏了主要变量。
1、经济变量惯性的作用 大多数经济时间数据都有一个明显的特点,就是
它的惯性,表现在时间序列数据不同时间的前后关联 上。
例如,绝对收入假设下居民总消费函数模型:
Ct=0+1Yt+t
t=1,2,…,n
由于消费习惯的影响被包含在随机误差项中, 则可能出现序列相关性(往往是正相关 )。
计量经济学第六章异方差性

构建统一的异方差 性处理框架
未来可以构建一个统一的异方 差性处理框架,整合现有的处 理方法和技巧,为实际应用提 供更为全面和系统的指导。同 时,该框架还可以为计量经济 学的教学和研究提供便利。
THANK YOU
感谢聆听
03
异方差性对假设检验 的影响
异方差性可能导致假设检验中的t统计 量和F统计量失效,从而影响假设检 验的结论。
异方差性下的模型选择和评价
异方差性检验
在进行模型选择和评价之前,需要对异方差性进行检验。常用 的异方差性检验方法有怀特检验、布雷施-帕甘检验等。
模型选择
在存在异方差性的情况下,应选择能够处理异方差性的模型, 如加权最小二乘法(WLS)、广义最小二乘法(GLS)等。
性质
异方差性违反了经典线性回归模型的同方差假设,可能导致参数 估计量的无偏性、有效性和一致性受到影响。
产生原因及影响
模型设定误差
模型遗漏了重要变量或函数形式设定错误。
数据采集问题
观测数据的误差或异常值。
产生原因及影响
• 经济现象本身:某些经济变量之间的关系可能随时间和空间的变化而变化,导致异方差性。
等级相关系数法
计算残差绝对值与解释变量之间的等 级相关系数,若显著则表明存在异方 差性。
Goldfeld-Quandt检验法
假设条件
该检验假设异方差性以解释变量的某个值为界,将样本分为两组,且两组的方差不同。
检验步骤
首先根据假设条件将样本分组,然后分别计算两组的残差平方和,最后构造F统计量进行假设检验。
05
异方差性在计量经济学模型中的应用
异方差性对模型设定的影响
01
异方差性可能导致参 数估计量的偏误
当存在异方差性时,普通最小二乘法 (OLS)的参数估计量可能不再具有无 偏性和一致性,从而导致估计结果的偏 误。