FMEA 失效模式与影响分析

合集下载

FMEA(失效模式与影响分析)简介

FMEA(失效模式与影响分析)简介

没有影响;事件发生的频率要记录特定的失效原因和机理多长时间发生一次以及发生的几率。

如果为10,则表示几乎肯定要发生,工艺能力为0.33或者ppm大于10000。

5.2检测等级是评估所提出的工艺控制检测失效模式的几率,列为10表示不能检测,1表示已经通过目前工艺控制的缺陷检测。

5.3计算风险优先数RPN(riskprioritynumber)。

RPN是事件发生的频率、严重程度和检测等级三者乘积,用来衡量可能的工艺缺陷,以便采取可能的预防措施减少关键的工艺变化,使工艺更加可靠。

对于工艺的矫正首先应集中在那些最受关注和风险程度最高的环节。

RPN最坏的情况是1000,最好的情况是1,确定从何处着手的最好方式是利用RPN的pareto图,筛选那些累积等级远低于80%的项目。

推荐出负责的方案以及完成日期,这些推荐方案的最终目的是降低一个或多个等级。

对一些严重问题要时常考虑拯救方案,如:一个产品的失效模式影响具有风险等级9或10;一个产品失效模式/原因事件发生以及严重程度很高;一个产品具有很高的RPN值等等。

在所有的拯救措施确和实施后,允许有一个稳定时期,然后还应该对修订的事件发生的频率、严重程度和检测等级进行重新考虑和排序。

在设计和制造产品时,通常有三道控制缺陷的防线:避免或消除故障起因、预先确定或检测故障、减少故障的影响和后果。

FMEA正是帮助我们从第一道防线就将缺陷消灭在摇篮之中的有效工具。

FMEA是一种可靠性设计的重要方法。

它实际上是FMA(故障模式分析)和FEA(故障影响分析)的组合。

它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。

及时性是成功实施FMEA的最重要因素之一,它是一个"事前的行为',而不是"事后的行为'。

为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。

FMEA实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。

FMEA失效模式与影响分析培训课程大纲

FMEA失效模式与影响分析培训课程大纲

常用FMEA工具概述
FMEA表格
用于记录失效模式、影响、原因、控制措施等信息,是FMEA分 析的基础工具。
故障树分析(FTA)
通过图形化方式展示系统失效的逻辑关系,帮助识别潜在失效模式 。
因果图(鱼骨图)
用于分析失效原因,从人、机、料、法来自环等方面进行深入挖掘。软件辅助进行FMEA分析优势
高效性
通过减少产品失效,可以降低维修和 保修成本,提高客户满意度。
培训课程目标与内容
• 课程目标:使学员掌握FMEA的基本原理和方法,能够独立完 成FMEA分析,并具备在团队中推广和应用FMEA的能力。
培训课程目标与内容
课程内容 FMEA基本概念和原理
失效模式识别与评估
培训课程目标与内容
影响分析与风险控制
案例二
某石油化工企业对炼油装置进行FMEA分析,识别潜在的设备故障和操作风险,制定相应 的预防措施和应急预案,确保了生产过程的安全稳定运行。
案例三
某电力公司对变电站设备进行FMEA分析,通过识别潜在的电气故障和机械故障模式,优 化设备维护和检修计划,提高了电网运行的稳定性和可靠性。
04
FMEA工具与软件介绍
软件可快速处理大量数 据,提高分析效率。
准确性
软件内置算法可准确计 算风险优先数(RPN)
,避免人为误差。
可视化
软件提供图形化界面, 方便用户直观理解分析
结果。
可追溯性
软件可记录分析过程和 数据,方便后续审查和
改进。
工具软件操作演示
FMEA软件界面介绍
展示软件界面,介绍各功能模块。
数据输入与编辑
演示如何在软件中输入和编辑FMEA 相关数据。
案例分析

FMEA失效模式及其影响分析

FMEA失效模式及其影响分析

03
FMEA失效影响分析
直接和间接影响
直接影响
指失效模式对产品或系统的性能、安 全性、可靠性和可用性等直接造成的 影响。例如,电池的充电功能失效会 导致设备无法正常工作。
间接影响
指失效模式引发的连锁反应或次生问 题,可能涉及到供应链、生产、销售 和服务等环节。例如,关键零部件的 失效可能导致整条生产线停产。
制中的问题,提高产品的可靠性和安全性。
识别和评估
总结词
在FMEA失效模式分析中,识别和评估是关键步骤,需要全面考虑各种可能的失效模式,并对其影响进行量化评 估。
详细描述
在识别阶段,团队需要充分了解产品或过程的设计、制造和使用环境,找出可能出现的各种失效模式。这些失效 模式可能包括机械、电气、化学、热学等多个方面。在评估阶段,团队需要分析每种失效模式的发生概率、严重 程度以及可检测性,为后续的优先级排序提供依据。
静态性
FMEA通常在产品设计阶段进行,对后续生产和使用的动 态变化考虑不足,可能无法全面反映产品在实际使用中的 失效模式。
高成本
FMEA需要投入大量时间和资源进行数据收集、分析和改 进措施制定,对于小型企业或项目可能存在成本压力。
06
案例研究
案例一:汽车制造业的FMEA应用
总结词
汽车制造业是FMEA应用的重要领域,通过分析失效 模式及其影响,可以优化产品设计、生产和质量控制 。
FMEA失效模式及其影响 分析
• 介绍 • FMEA失效模式分析 • FMEA失效影响分析 • FMEA实施步骤 • FMEA的优点和局限性 • 案例研究
01
介绍
FMEA的定义
• FMEA(Failure Modes and Effects Analysis)即失效模式与影响分析, 是一种预防性的质量工具,用于评估 产品设计或流程中潜在的失效模式及 其对系统性能的影响。它通过识别、 评估和优先处理那些可能对产品或流 程性能产生最大影响的失效模式,帮 助组织减少或消除潜在的问题,提高 产品和流程的可靠性和安全性。

失效模式与影响分析FMEA

失效模式与影响分析FMEA

失效模式与影响分析FMEA失效模式与影响分析(Failure Mode and Effects Analysis, FMEA)是一种常用的质量管理工具,主要用于识别潜在的失效模式及其对系统、产品或流程性能的影响,以便采取相应的预防和纠正措施,提高质量和可靠性。

FMEA的过程通常包括以下几个步骤:1.确定分析范围:确定需要进行FMEA分析的系统、产品或流程,并明确分析的目标。

2.定义失效模式:识别可能的失效模式,即系统、产品或流程可能出现的各种问题、故障或失效,包括设计失效、制造失效、装配失效等。

3.评估失效影响:对每个失效模式进行评估,分析其对系统、产品或流程性能的影响。

评估可以从多个维度进行,如安全性、可靠性、功能性、经济性等。

4.确定失效原因:确定每个失效模式的潜在原因。

可以使用多种工具和方法,如因果图、5W1H、鱼骨图等,来帮助确定失效的根本原因。

5.评估现有控制措施:评估当前已经实施的控制措施对失效模式的效果。

确定哪些失效模式已经通过其他控制措施得到有效控制,哪些失效模式仍然存在较高的风险。

6.制定改进措施:针对高风险的失效模式,制定相应的改进措施。

改进措施可以包括设计改进、工艺改进、培训和教育、检测和监控等。

7.实施并验证改进措施:将改进措施实施到实际生产或运营中,并验证其效果。

跟踪和监控改进措施的实施情况,并对其效果进行评估。

通过进行FMEA分析,可以帮助组织识别和管理潜在的风险,提前采取预防措施,减少系统、产品或流程的失效概率,以实现质量和可靠性的提升。

FMEA分析可以应用于各个领域,如制造业、医疗设备、航空航天、汽车等。

FMEA的应用具有以下几个特点和优势:1.预防导向:FMEA分析主要关注于预防失效模式的发生,通过分析潜在的失效原因和影响,预测可能的失效模式,制定相应的预防措施,从而避免质量问题的发生。

2.多维度评估:FMEA分析不仅关注失效模式的影响对系统、产品或流程的影响,还可以从多个维度进行评估,如安全性、可靠性、功能性、经济性等,以全面了解失效模式的风险。

质量管理中的失效模式与影响分析

质量管理中的失效模式与影响分析

质量管理中的失效模式与影响分析一、前言在现代工业生产中,产品质量是企业永恒的追求,而质量管理是实现高品质产品的有效手段。

失效模式与影响分析(Failure Mode and Effects Analysis,FMEA)是质量管理体系中非常重要的一环,是通过深入分析可能造成产品失效的原因和影响,预防和控制失效事件的发生,从而提升产品质量的一种方法。

二、失效模式与影响分析的概念1、失效模式所谓失效模式,是指产品或者系统中可能出现的故障模式,其表现为产品或者系统不能够按照设计要求正常工作。

2、影响分析影响分析是指对失效模式及其原因的分析,以及对失效事件可能带来的影响和后果的评估。

影响分析旨在识别存在的潜在问题,并制定一系列预防、纠正和预测措施,以使产品或者系统更加可靠、有效地运行。

3、失效模式与影响分析失效模式与影响分析(FMEA)是预防控制的一种手段,它的核心思想是:在设计、制造、维修、使用产品的各个环节中,识别潜在失效模式、评估其可能影响和后果,并随后采取预防措施,从而提高产品的质量和可靠性。

三、失效模式与影响分析的步骤FMEA是一个基于团队合作的、有序的分析过程,主要分为以下步骤:1、确定需要分析的产品或者系统首先需要确定需要进行FMEA分析的产品或者系统,以及所涉及的物理和功能性方面。

2、制定失效模式制定失效模式是指对所选产品或者系统进行分析,并确定可能存在的失效模式。

在此过程中,需要考虑影响失效模式的所有因素,包括物理变形、设备磨损、操作不当、环境因素等。

3、评估失效模式的严重性在确定了失效模式后,需要评估失效模式的严重性,包括对生产和用户产生的影响等方面进行评估。

4、确定可能的原因在确定失效模式和严重性后,需要确定可能的原因,以及导致失败模式和严重性的根本原因。

5、确定纠正措施在确定了原因后,需要制定出一些纠正措施,以减少或消除可能造成失效事件的原因。

6、制定预防性措施最后,需要制定一系列预防性措施,以防止不良失效模式或原因继续存在。

FMEA失效模式及后果分析手册精选全文

FMEA失效模式及后果分析手册精选全文

可编辑修改精选全文完整版FM E A 失效模式及后果分析手册FMEA (Failue Mode &Effect Analgsis ) Failue :失效、失败、不良 Mode :模式Effect :后果、效应、影响 Analgsis :分析一、FMEA 思维逻辑方法:D ’FMEA —→分析着重点BOM 表的零件及组装件P ’FMEA —→分析着重点OPC/AC 的零件加工及组装的工艺流程PRN 高风险优先系数 重点管理原则控制重点少数,不重要大多数列为次要管理 轻重缓急,事半功倍类比量产品(模块化) 工艺流程 过程参数/工艺条件 质量特性类比量产品 质量不良履历失败经验产品病历卡预设未来新产品投产后可能/潜在的会出现类似的不良事前 分析原因 整改措施(鱼刺图)先期产品质量策划结果控制计划(欧美) QC 工程表(台/日)新产品投产施工的要求监视和测量(首中末件检查)开发新产品例:有20项不良,前3项不良占70%,对策能解决50%的不良,70%*50%=35%后17项不良占30%,对策能解决100%的不良,30%*100%=30%①质量管理AC 柏拉图分析②物料管理MC 物料ABC法避免待料停工目的降低库存量的成本二、在何种情况下应进行FMEA分析:新产品开发阶段1、RP N≥1002、严重度/发生度/难检度(任一项)≥7;3、严重度≥7,发生度≥3;4、发生度≥5,难检度≥4量产阶段秉持持续改善的精神三、FMEA建立与更新时机1、新产品开发时;2、设计变更时(材质变更,BOM变更);3、工程变更;4、检验方法变更(检验设备/项目/频度)5、定期审查更新(建议每季度修订,至少也要每半年)四、FMEA分析表作成说明35%>30%重效果大,轻效果小活性化文件随时更新有效版本的识别(以修订日期)1、增加零件编号与名称:与BOM 表一致(D ’FMEA 分析,着眼在构成零件及组装件);2、增加工序编号与名称:与OPC/AC 表一致(P ’FMEA 分析,着眼在加工与组装工艺流程,D ’FMEA 可省略)3、功能与要求:已含外观、颜色、尺寸及ES TEST 功能质量要求;4、潜在失效模式:类比量产品质量不良履历(历史档)→产量履历→失效分析累积5、潜在失效效应(后果):万一不良时会造成的后果,如影响安全性/功能性/一般性,必须站在广义的客户中思考,包含: ● 下工程● 直接客户:下购销合同者/客户:如代理商 ● 最终客户:user/消费者6、严重度:参照对照表予以评估,复合型≥7;功能性4~6;一般性<4;7、分类(等级)class :与CC/SC 管制特性计划清单一致,包含符号识别,如FORD ▽,通用,依客户指定或本司对等的符合标注。

失效模式与影响分析

失效模式与影响分析

失效模式与影响分析失效模式与影响分析(英文:Failure mode and effects analysis,FMEA),又称为失效模式与后果分析、失效模式与效应分析、故障模式与后果分析或故障模式与效应分析等,是一种操作规程,旨在对系统范围内潜在的失效模式加以分析,以便按照严重程度加以分类,或者确定失效对于该系统的影响。

FMEA广泛应用于制造行业产品生命周期的各个阶段;而且,FMEA在服务行业的应用也在日益增多。

失效原因是指加工处理、设计过程中或项目/物品(英文:item)本身存在的任何错误或缺陷,尤其是那些将会对消费者造成影响的错误或缺陷;失效原因可分为潜在的和实际的。

影响分析指的是对于这些失效之处的调查研究。

基本术语失效模式(又称为故障模式)观察失效时所采取的方式;一般指的是失效的发生方式。

失效影响(又称为失效后果、故障后果)失效对于某物品/项目(英文:item)之操作、功能或功能性,或者状态所造成的直接后果。

约定级别(又称为约定级)代表物品/项目复杂性的一种标识符。

复杂性随级数接近于1而增加。

局部影响仅仅累及所分析物品/项目的失效影响。

上阶影响累及上一约定级别的失效影响。

终末影响累及最高约定级别或整个系统的失效影响。

失效原因(又称为故障原因)作为失效之根本原因的,或者启动导致失效的某一过程的,设计、加工处理、质量或零部件应用方面所存在的缺陷严重程度(又称为严重度)失效的后果。

严重程度考虑的是最终可能出现的损伤程度、财产损失或系统损坏所决定的,失效最为糟糕的潜在后果[1]。

历史从每次的失效/故障之中习得经验和教训,是一件代价高昂而又耗费时间的事情,而FMEA 则是一种用来研究失效/故障的,更为系统的方法。

同样,最好首先进行一些思维实验。

二十世纪40年代后期,美国空军正式采用了FMEA[2]。

后来,航天技术/火箭制造领域将FMEA用于在小样本情况下避免代价高昂的火箭技术发生差错。

其中的一个例子就是阿波罗空间计划。

失效模式与影响分析(FMEA)

失效模式与影响分析(FMEA)

可能给错药 药物名称或外表 厂商制造原 造成病人伤 相似 因 害
1
1
10
10
三、举例
4.分析失效模型和影响因素 表4.3 护士到病人单位给药 失效模式 原因 结果 S 1.护士太 可能给错 护士没有核对 匆忙。2. 药造成病 10 病人身份 病人没有 人伤害 识别手圈 1.无法识 给药途径 药物给药途径 别医嘱。 错误造成 10 错误 2.缺乏相 影响结果 关知识。
护士对药 卡 到备药间 备药 到病人病 房给药
三、举例
4.分析失效模型和影响因素
4.1 护士给药 表4.1护士核对给药纪录单
失效模式 结果 S 没有依照处 1.医嘱遗失。 给药记录单没有 方给药可能 10 2.书写医嘱 更新 影响病人结 时分心 果 1.书写医嘱 时不注意。 没有依照处 2.写后的医 方给药可能 给药时间不正确 嘱没有双重 10 影响病人结 核对。3.没 果 有计算机处 方系统 原因 O 5 D 5 RPN 改善措施 250
O
D RPN 改善措施
1.加强培 训。2.病 10 人佩戴手 圈
1
1
5
5
250
三、举例
5. 评判结果 失效模式 给药记录单没有更新 RPN 250
给药时间不正确 药物不正确 药物名称或外表相似
护士没有核对病人身份
250 250 10
10
药物给药途径错误
250
三、举例
6.根本原因分析 6.1列出最需要改善的失效模式: 给药记录单没有更新、给药时间不正确、药物不 正确、药物给错途径 6.2 对相应失效模式分析原因。
三、举例
3. 分析流程 主题1:病人辨识和输血流程:
制作及佩 戴手圈 采血和 备血 检验科 流程 送血到 病房 核对 病人
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FMEA(失效模式与影响分析)
Failure Mode and Effects Analysis潜在失效模式与后果分析在设计和制造产品时,通常有三道控制缺陷的防线:避免或消除故障起因、预先确定或检测故障、减少故障的影响和后果。

FMEA正是帮助我们从第一道防线就将缺陷消灭在摇篮之中的有效工具。

FMEA是一种可靠性设计的重要方法。

它实际上是FMA(故障模式分析)和FEA(故障影响分析)的组合。

它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。

及时性是成功实施FMEA的最重要因素之一,它是一个“事前的行为”,而不是“事后的行为”。

为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。

FMEA实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。

由于产品故障可能与设计、制造过程、使用、承包商/供应商以及服务有关,因此FMEA又细分为设计FMEA、过程FMEA、使用FMEA和服务FMEA四类。

其中设计FMEA和过程FMEA 最为常用。

设计FMEA(也记为d-FMEA)应在一个设计概念形成之时或之前开始,并且在产品开发各阶段中,当设计有变化或得到其他信息时及时不断地修改,并在图样加工完成之前结束。

其评价与分析的对象是最终的产品以及每个与之相关的系统、子系统和零部件。

需要注意的是,d-FMEA在体现设计意图的同时还应保证制造或装配能够实现设计意图。

因此,虽然d-FMEA不是靠过程控制来克服设计中的缺陷,但其可以考虑制造/装配过程中技术的/客观的限制,从而为过程控制提供了良好的基础。

进行d-FMEA有助于:
·设计要求与设计方案的相互权衡;
·制造与装配要求的最初设计;
·提高在设计/开发过程中考虑潜在故障模式及其对系统和产品影响的可能性;
·为制定全面、有效的设计试验计划和开发项目提供更多的信息;
·建立一套改进设计和开发试验的优先控制系统;
·为将来分析研究现场情况、评价设计的更改以及开发更先进的设计提供参考。

过程FMEA(也记为p-FMEA)应在生产工装准备之前、在过程可行性分析阶段或之前开始,而且要考虑从单个零件到总成的所有制造过程。

其评价与分析的对象是所有新的部件/过程、更改过的部件/过程及应用或环境有变化的原有部件/过程。

需要注意的是,虽然p-FMEA 不是靠改变产品设计来克服过程缺陷,但它要考虑与计划的装配过程有关的产品设计特性参数,以便最大限度地保证产品满足用户的要求和期望。

p-FMEA一般包括下述内容:
·确定与产品相关的过程潜在故障模式;
·评价故障对用户的潜在影响;
·确定潜在制造或装配过程的故障起因,确定减少故障发生或找出故障条件的过程控制变量;
·编制潜在故障模式分级表,建立纠正措施的优选体系;
·将制造或装配过程文件化。

FMEA技术的应用发展十分迅速。

50年代初,美国第一次将FMEA思想用于一种战斗机操作系统的设计分析,到了60年代中期,FMEA技术正式用于航天工业(Apollo计划)。

1976年,美国国防部颁布了FMEA的军用标准,但仅限于设计方面。

70年代末,FMEA技术开始进入汽车工业和医疗设备工业。

80年代初,进入微电子工业。

80年代中期,汽车工业开始应用过程FMEA确认其制造过程。

到了1988年,美国联邦航空局发布咨询通报要求所有航空系统的设计及分析都必须使用FMEA。

1991年,ISO-9000推荐使用FMEA提高产品和过程的设计。

1994年,FMEA又成为QS-9000的认证要求。

目前,FMEA已在工程实践中形成了一套科学而完整的分析方法。

FMEA是一种可靠性设计的重要方法
它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。

实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。

故障模式、影响、分析模块
其核心部分是对特定系统进行分析研究,确定怎样修改系统以提高整体可靠性,避免失效。

为了准确计算失效的危害性,在分析时,提供了系统化的处理过程,自动编制任务,包括确定所有可能失效的零部件及其失效模式,确定每一种失效模式的局部影响、下一级别的影响以及对系统的最终影响,确定失效引起的危害性,确定致命失效模式以消除或减少发生的可能性或剧烈程度。

可完成以下功能:
失效模式、影响分析()
危害性分析(Critically Analysis)
功能FMEA(Functional)
破坏模式和影响分析(DMEA)
具有以下特点:
丰富的故障模式数据库
完善的企业规范定制功能
自动由生成原始的FTA(故障树)
故障树分析(Fault Tree Analysis)模块
利用FTA模块,在系统设计过程当中,通过对造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),从而确定系统故障原因的各种可能组合方式及其发生概率以计算系统故障概率,采取相应的纠正措施,以提供系统可靠性的一种分析方法。

它以图形的方式表明了系统中失效事件和其它事件之间的相互影响,是适用于大型复杂系统安全性与可靠性分析的常用的有效方法。

利用FTA,用户可以简单快速地建立故障树,输入有关参数并对系统进行定性分析和定量分析,生成报告,最后打印输出。

相关文档
最新文档