2014-2015学年二中八年级(上)第一次月考数学试卷
2014-2015年八年级数学上第一次月考试卷含答案

八年级上册数学第一次月考试卷2014、9 一.选择题(共10小题,每小题3分)1.下列学习用具中,其形状不是轴对称图形的是()A.B.C.D.2.下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,113.在△ABC中,∠B=40°,∠C=80°,则∠A的度数为()A.30°B.40°C.50°D.60°4.在数学课上,同学们在练习画边AC上的高时,有一部分同学画出下列四种图形,请你判断一下,正确的是()A B C D5.下列命题为假命题的是()A.有两条边和一个角对应相等的两个三角形全等;B.对顶角相等C.等腰三角形的两个底角相等; D.两直线平行,内错角相等6.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,在下列结论中,不正确的是()A.∠EAB=∠FAC;B.BC=EF;C.∠BAC=∠CAF;D.∠AFE=∠ACB7.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF8.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13 B.17 C.22 D.17或229.如图,在△ABC中,已知∠B和∠C的平分线相交于点D,过点D作EF∥BC 交AB、AC于点E、F,若△AEF的周长为9,BC=6,则△ABC的周长为()A.18 B.17 C.16 D.1510.小明用19根火柴首尾顺次相接,恰好摆成一个三角形,若要求这个三角形是等腰三角形,则不同的摆法有()A.1种B.4种C.5种D.9种二.填空题(共8小题,每小题3分)11.如图,在△ABC中,∠A=45°,∠B=60°,则外角∠ACD=________度.12.已知△ABC中,AB=AC=2,∠A=60度,则△ABC的周长为_______.13.命题“等腰三角形的两个底角相等.”的逆命题是________________________.14.如图,已知AC=DB,再添加一个适当的条件___________,使△ABC≌△DCB.(只需填写满足要求的一个条件即可).15.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=________度.16.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD 于点O,连结OC,若∠AOC=125°,则∠ABC=_________.17.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为_______.18.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为_________.第11题图第14题图第15题图第16题图11、___________12、__________13、__________14、___________15、___________16、__________17、__________18、___________三、解答题19、(8分)在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF。
2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷(含答案)

2024-2025学年江西省抚州市临川二中高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若直线3x +2y−3=0和直线6x +my +1=0互相平行,则m 的值为( )A. −9B. 32C. −4D. 42.若两个非零向量a ,b 的夹角为θ,且满足|a |=2|b |,(a +3b )⊥a ,则cosθ=( )A. −23B. −13C. 13D. 233.已知直线3x−(a−2)y−2=0与直线x +ay +8=0互相垂直,则a =( )A. 1B. −3C. −1或3D. −3或14.为了得到函数y =sin (5x +π3)的图象,只要将函数y =sin5x 的图象( )A. 向左平移π15个单位长度 B. 向右平移π15个单位长度C. 向左平移π3个单位长度D. 向右平移π3个单位长度5.过点(3,−2)且与椭圆4x 2+9y 2−36=0有相同焦点的椭圆方程是( )A. x 215+y 210=1 B. x 25+y 210=1 C. x 210+y 215=1 D. x 225+y 210=16.已知圆的方程为x 2+y 2−2x =0,M(x,y)为圆上任意一点,则y−2x−1的取值范围是( )A. [− 3,3]B. [−1,1]C. (−∞,− 3]∪[3,+∞)D. [1,+∞)∪(−∞,−1]7.已知圆C :(x−3)2+(y−4)2=1和两点A(−m ,0),B(m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为 ( )A. 7B. 6C. 5D. 48.已知向量a ,b 满足|a |=1,|2a +b |+|b |=4,则|a +b |的取值范围是( )A. [2−3,2]B. [1,3]C. [2− 3,2+3]D. [3,2]二、多选题:本题共3小题,共18分。
江苏省泰州二中附中2023-2024学年八年级下学期第一次月考数学试题

江苏省泰州二中附中2023-2024学年八年级下学期第一次月考数学试题一、单选题1.下面四幅作品分别代表“大雪”、“立春”、芒种”、“白露”四个节气,其中是中心对称图形的是()A.B.C.D.2.去年我区有近5千名考生参加中考,为了了解这些考生的数学成绩,从中抽取500名考生的数学成绩进行统计分析,以下说法正确的是()A.这500名考生是总体的一个样本B.近5千名考生是总体C.每位考生的数学成绩是个体D.500名学生是样本容量3.下列事件:①三条线段能组成一个三角形;②太阳从东方升起;③a是实数,0a<;④购买一张大乐透彩票,中大奖500万.其中必然事件是().A.①B.②C.③D.④4.下列式子从左边至右边变形错误的是()A.422a a=B.33a a-=-C.21x x xxy y--=D.3322aa=5.下列结论中,矩形具有而菱形不一定具有的性质是()A.对边相等B.对角线互相平分C.对角线互相垂直D.对角线相等6.如图,正方形ABCO和正方形DEFO的顶点A,E,O在同一直线l上,且EF=3AB=,点M、N分别是线段BD和AB的中点,则MN的长为()A B .32C D二、填空题 7.要使分式12x -有意义,则x 的取值范围为. 8.如果分式293x x --的值为0,则x =.9.用反证法证明”时,第一步应该假设.10.如表是小明做“抛掷图钉试验”获得的数据,则可估计“钉尖不着地”的概率为.11.如图,ABCD Y 的面积为4,点P 在对角线AC 上,E 、F 分别在AB 、AD 上,且PE BC ∥,PF CD ∥,连接EF ,图中阴影部分的面积为.12.菱形周长是20,对角线长的比为3:4,则菱形的面积为.13.一次数学测试后,某班40名学生的成绩被分成5组,第14-组的频数分别为12、10、6、8,则第5组的频率是.14.如图,矩形ABCD 的对角线交于点O ,点E 在线段OD 上,且AE AB =,若15EAO ∠=︒,则AEO ∠=.15.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,如果图2和图3每个图形中间的正方形面积分别为9和1,则图1中菱形的面积为.16.如图,矩形ABCD 中,5AB =,6BC =,点E 在BC 边上,且2BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边EFG V ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为.三、解答题 17.解方程: (1)322x x =- (2)22111xx x +=-+ 18.先化简:22111a aa a a ⎛⎫-+÷⎪+-⎝⎭,再从1-,0,1,2中选一个你认为合适的数作为a 的值代入求值.19.两种品牌方便面销售增长率折线统计图如图:(1)BB 牌方便面的销售量比AA 牌多吗?为什么?你认为要做出这样的推断还需要什么信息?(2)从折线统计图中你能获得哪些信息?20.如图,通过旋转ABC V 可以使其与DEF V 重合(1)仅用无刻度直尺确定旋转中心M (保留作图痕迹),并写出旋转ABC V ,使其与DEF V 重合的过程.(2)若F 、A 的坐标分别为()32-,,()47-,,则旋转中心的坐标为 21.某水果店用3000元购进新品水果销售,由于销售状况良好,超市又调拨9000元资金购进该种水果,但这次的进价比第一次的进价提高了20%,购进水果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分水果售出后,余下的500千克按售价的8折售完.(1)该种水果的第一次进价是每千克多少元? (2)超市销售这种水果共盈利多少元?22.数学来源于生活,生活离不开数学,开水中加入适量的糖冲泡成甜糖水很受一些人的喜爱,人们常用糖水中糖与糖水的比表示糖水的甜度.(1)若在a 克糖水里面含糖b 克()0a b >>,则该糖水的甜度为______;(2)现向(1)中的糖水中再加入适量的糖,充分搅匀后,感觉糖水更甜了.请用所学的数学知识解释这一现象.(提示:我们在判断两个数的大小时,常常会用到作差法,如5320-=>所以53>,同样如果0m n ->,就说明m n >)23.如图1,1A ,1B ,1C ,1D 分别是四边形ABCD 各边的中点,且AC BD ⊥,6AC =,10BD =.(1)试判断四边形1111D C B A 的形状,并证明你的结论;(2)如图2,依次取11A B ,11B C ,11C D ,11D A 的中点2A ,2B ,2C ,2D ,再依次取22A B ,22B C ,22C D ,22D A 的中点3A ,3B ,3C ,3D ……以此类推,取11n n A B --,11n n B C --,11n n C D --,11n n D A --的中点n A ,n B ,n C ,n D ,根据信息填空: ①四边形1111D C B A 的面积是__________; ②若四边形n n n n A B C D 的面积为1516,则n =________; ③试用n 表示四边形n n n n A B C D 的面积___________.24.如图,Rt CEF △中,90C ∠=︒,CEF ∠和CFE ∠的外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,点B ,D 为垂足.(1)求证:四边形ABCD 是正方形;(2)若AB a =(a 为常数),求()()BE a DF a ++的值. 25.对x ,y 定义一种新运算T ,规定:()2ax byT x y x y+=+,(其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:()01010212a b bT ⨯+⨯==+⨯,.(1)已知()5214T =,,()111T -=-,. ①求a ,b 的值;②若()23T m m +=-,,求m 的值;(2)若()()T x y T y x =,,对任意有理数x ,y 都成立(这里()T x y ,和()T y x ,均有意义),则a ,b 应满足怎样的关系式?26.折纸不仅是一项有趣的活动,也是一项益智的数学活动.实践操作:将矩形ABCD 沿对角线AC 翻折,使点D 落ABCD 所在平面内,边BC 和AD '相交于点E 解决问题:(1)如图1,①求证ABE CD E '≌V V ②连接BD ',判断BD '和AC 的位置关系,并说明理由(2)如图2,在矩形ABCD 中,若AB =F 是对角线AC 上一动点,30ACB ∠=︒,连接EF ,作点C 关于直线EF 的对称点P ,直线PE 交AC 于Q ,当AEQ △是直角三角形时,直接写出CF 的长.。
华师大版_2014-2015学年八年级数学(上)第二次月考试卷(附答案)

AB CD E2014-2015(上)华师大版八年级第二次月考数学试卷( 满分:150分;考试时间:120分钟)班级__________ 姓名_____________ 座号 _______成绩_____________一、选择题(每小题3分,共21分).1.9的平方根是( ). A .3 B .3± C .3 D .±3 2.下列运算正确的是( ). A .2232a a -= B .()325aa = C .369a a a ⋅= D .523a a a =+3.已知等腰三角形的顶角为50,则这个等腰三角形的底角为( ). A .50°B .65°C .80°D .50°或65°4.以下列各组数为一个三角形的三边长,不能..构成直角三角形的是( ). A .2,3,4 B .3,4, 5 C . 6,8,10 D .5,12,13 5.若3=+y x 且1xy =,则代数式)1)(1(y x --的值等于( ). A .1- B .0 C .1 D .26.如图,在△ABC 中,,AB AC AD AE ==,则图中共有全等三角形( ). A .2对 B .3对 C .4对 D .5对7.如图1,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b),把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )图1 图2 A .()()2222b ab a b a b a -+=-+ B .()2222b ab a b a ++=+ C .()2222b ab a b a +-=- D .()()b a b a b a -+=-22 二、填空题(每小题4分,共40分). 8.比较大小:32 23.(选填“>”、“<”或“=”) 9.-27的立方根是 .10.命题“对顶角相等”是 命题(选填“真”或“假”). 11.分解因式:x ²-4= .12.计算:(6ab-2a )÷2a= .13.如图,在△ABC 中,AB=AC ,BC=8,AD 平分∠BAC ,则BD=___ ___(第6题图)a aa bbb bb1AECDBABCDC14.如图,已知∠A =90°,BD 平分∠ABC ,AD =3,则点D 到BC 边的距离是____ ____. 15.如图,已知△ABC ≌△ABD ,∠1=35°,∠D =40°,则∠CBE = °.16.若(a+b )²=9,ab=2,则(a-b )²= ____ ___ . 17. 如图,点P 是AOB ∠的角平分线上一点,过点P 作PC ∥OA 交OB 于点C ,OA PD ⊥于点D ,若5=OC , 4=PD ,则(1)、PC=_____(2)、._______=OP (保留根号) 三、解答题(共89分).18.(18分)计算:(1)()232816+-. (2)28422a a a a÷-⋅.19.(9分)因式分解: 321622++m m .20.(9分)先化简,再求值: 2)2()2)(2(---+a a a ,其中2-=a .21.(9分)如图,在△ABC 中,AB =AC ,AD 平分∠BAC求证:△ABD ≌△ACD .22.(9分) 如图,已知AD ⊥CD 于D, AD =3,CD =4,AB =13,BC =12.(第15题图)(第14题图) ABC D第13题(第17题图)A O DPCB(1) 请判断△ABC 是什么特殊三角形,并加以说明; (2)请求出四边形ABCD 的面积.23.(9分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的小正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长x 的值.24.(12分)如图1,已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点. (1)求证:CD BD =(2)如图2,把一块直角三角板的直角顶点放置于D点,使两直角边分别与AC 、CB 边交于E 、F . ①试判断DE 与DF 是否相等,并说明理由;②当23,15BC AE ==时,求BF EF 、的长度.25.(14分)如图,已知Rt △ABC 中,90C ∠=︒,60,3,6A AC cm AB cm ∠=︒==.点图1DBCA图2FE DBCAP在线段AC上以1cm s的速度由点C向点A运动,同时,点Q在线段AB上以2cm st s.由点A向点B运动,设运动时间为()t=时,判断△APQ的形状(可直接写出结论);(1)当1(2)是否存在时刻t,使△APQ与△CQP全等?若存在,请求出t的值,并加以证明;若不存在,请说明理由;(3)若点P、Q以原来的运动速度分别从点C、A出发,都顺时针沿△ABC三边运动,则经过几秒后(结果可带根号),点P与点Q第一次在哪一边上相遇?并求出在这条边的什么位置.华师大版八(上)2014-2015第二次月考试卷答案.一、选择题(每小题3分,共21分)1.D ; 2.C ; 3.B ; 4.A ; 5.A ; 6.B ; 7.D ; 二、填空题(每小题4分,共40分)8.<; 9.-3; 10.真; 11.)2)(2(-+x x ; 12.31b -; 13.4; 14.3; 15.75; 16.1; 17.5,54(或80)..三、解答题(9题,共89分) 18.(1)(本小题9分)解:原式=4-2+2=4 …………………………………(9分) (2)(本小题9分)解:原式=662a a -=6a - …………………………(9分) 19.(本小题9分)解:原式=2(m ²+8m+16)=2)4(2+m20.(本小题9分)解:原式=a 2-4-(a 2-4a+4)……………………………… (4分)=4a-8…………………………………………… (6分) 当a=-2时,原式=4×(-2)-8……………………………………… (8分)=-16……………………………………………… (9分)21.(本小题9分,).AD 平分∠BAC ∠BAD=∠CAD ………………… ( 2分)在△ABD 和△ACD 中,AB=AC ∠BAD=∠CAD AD=AD …………………………………( 6分) ∴△ABD ≌△ACD (SAS ) …………………………………( 9分) 22.(本小题9分)解:(1)直角三角形……………………………………………………………………(1分) ∵AD ⊥CD ∴在Rt △ADC 中 AC=5432222=+=+CD AD ……… (3分)∵1691252222=+=+BC AC ,1691322==AB ………………… (5分) ∴222AB BC AC =+ ∴△ABC 是直角三角形 ………………………… (6分) (2)125214321⨯⨯+⨯⨯=ABCD s 四边形 …………………………………… (8分)=36 …………………………………………………………… (9分)23.(本小题9分)解:(1)24x ab -………………………………………………………………………(4分) (2)由题意得:2244x x ab =-…………………………………………………(6分) 当a =6,b =4时 6×4-24x =24x ………………………………………… (7分) x =3± ∵x >0 ∴x =3……………………………… (9分)A CBQP 24 (本小题12分)解:(1)∵ 90AC BC C ==︒,∠,D 为AB 边的中点,……………………… (1分) ∴,CD AB CD ACB ⊥∠平分…………………………………………… (2分)∴ 45ACD DCB B ∠=∠=∠=︒……………………………………… (3分)∴DC DB =………………………………… (4分)(2)①DE DF =成立,……………………………(5分)理由如下: 法一: ∵90,EDF CDB ∠=∠=︒∴EDC CDF BDF CDF ∠+∠=∠+∠,∴EDC BDF ∠=∠,………………… (6分) 又∠ECD=∠B=45°∴DEC DFB ∆≅∆(A.S.A)∴DE DF =…………………………………………………………… (8分) 法二:过点D 作,DG AC G DH BC H ⊥⊥于于,证明DGE DHF ∆≅∆, 得DE DF =,可参照上面给分. ②∵DEC DFB ∆≅∆∴23158BF EC AC AE ==-=-=………………………………………(9分) 又∵,15AB AC CF AE =∴==……………………………………………… (10分) 在222281517Rt CEF CE CF ∆+=+=中,EF=……………………… (12分)25.(本小题14分) 解:(1)△APQ 是等边三角形……………………………………………………… (3分) (写等腰三角形得2分)(2)存在 1.5t =,使APQ CPQ ∆≅∆.…(4分) 理由如下:∵t=1.5s , ∴AP=CP=1.5cm , ………(5分) ∵AQ=3cm ,∴AQ=AC . 又∵60A ∠=︒,∴△ACQ 是等边三角形∴AQ=CQ …………………………………(6分) 又∵PQ=PQ ,∴△APQ △CPQ ;……………………(8分) (3)在Rt ABC ∆中,22226327BC AB AC =-=-=……………… (9分)由题意得:2t t AB BC -=+,即627t =+………………………………………………………………………(11分)∴点P 运动的路程是(627+)cm ∵36+<627+<3627++∴第一次相遇在BC 边上…………………………………………………………………(12分)又(927+)-(627+)=3∴经过(627+)秒点P 与点Q 第一次在边BC 上距C 点3cm 处相遇.……………(14分)。
万州二中八年级(上)数学第一次月考复习试题

3
6
1 个 0)中,无理数有( )
凡 A.1 个
B.2 个
C.3 个
4.下列图形既是轴对称图形又是中心对称图形的是(
D.4 个 )
教
育
A
B
5、估计 7 + 1的值在( )
整C
D
理 A.1 和 2 之间
B.2 和 3 之间
C.3 和 4 之间
D.4 和 5 之间
6、将一副三角板按如图方式摆放在一起,且∠1 比∠2 大 30° ,则∠1 的度数( )
动。为了进一步强化学生的自制力、组织纪律,活动规定每人自带 3 瓶矿泉水、1 个面
整 包、1 盒牛奶,严禁沿途购买饮料零食。所有师生以班级为单位分成了 18 个小组,呈一路
纵队,以1.6m / s 的速度匀速前进,且每个小组队伍长均为 10 米,小组间距离固定为 5 米。在一段直路上市民甲与队伍同向散步,从队伍第一名学生经过甲的身边到最后一名经
得∠BP=D ∠B −∠D .
整 理
(1) 将点 P 移到 AB 、 CD 内部,如图 b,求∠BPD 、∠B 、∠D 之间的何数量关系; (2) 在图 b 中,将直线 AB 绕点 B 逆时针方向旋转一定角度交直线 CD 于点 Q ,如图 c ,则
求证:∠BPD =∠B +∠D +∠BQD ; (3) 猜想图 d 中∠A +∠B +∠C +∠D +∠E +∠F 的度数,并说明理由.
15、 −82015 × (−0.125)2014 + (−0.25)3 × 26 =___________.
理
16、已知: 9x = 3 , 5y = 4 ,则15x+ y ⋅ 33x− y ÷ 5x = __________.
2014-2015年第一次月考八年级数学试题

2014-2015年第一次月考八年级数学试题(时间:120分钟 总分:150分)注意:本卷所有试题答案都要填在答卷相应位置一、选择题(每小题3分,共30分) 1.16的平方根是( )A .4B .±4C .±2D .2 2.下列说法正确的是( )A .负数没有立方根B .如果一个数有立方根,那么它一定有平方根C .一个数有两个立方根D .一个数的立方根与被开方数同号3.如图,数轴上点P 表示的数可能是( )A .7B .7-C .2.3-D .10-4.在实数 121121112272241053.、、、π、、、-中,无理数的个数为( ) A .1个 B .2个 C .3个 D .4个 5.下列运算中, 正确的个数是( ) ①1251144251=;②74322=+;③981±=;④73433-=- A .1个 B .2个 C .3个 D .4个 6.下列各式计算正确的是( )A .()222b a b a -=-B .()0248≠=÷a a a aC .523632a a a =⋅D .()632a a =- 7.下列计算中可采用平方差公式的是( )A .()()z x y x -+B .()()y x y x 22++-C .()()y x y x +--33D .()()a b b a 3232-+8.若一个正数的两个平方根分别是1-a 和3-a ,则a 的值为 ( )A .-2B .2C .1D .4 9.若()M y xy x y x ++-=-22242,则M 为( )A .xyB .-xyC .3xyD .-3xy10.若改动多项式22129y xy x ++中的某一项,使它变成完全平方式,则改动的办法是( )A .只能改动第一项B .只能改动第二项C .只能改动第三项D .可以改动三项中的任意一项二、填空题(每小题3分,共30分) 11.5的相反数为 . 12.比较大小:215- 21(用“>”、“<”“=”填空) 13.无理数105-的整数部分为 . 14.已知233+-+-=x x y ,则xy = .15.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为 .16.若2=m a ,3=n a ,则n m a 2+的值为 .17.若32-x 与321y -互为相反数,则y x 2-的值为 . 18.如果11=-x x ,那么221xx += . 19.已知实数a 满足0332=++a a a ,那么=++-32a a . 20.已知204=x ,205=y ,则xy y x -+2的值为 .2014年秋初2013级第一次月考数学答题卷(时间:120分钟 总分:150分)一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题3分,共30分)11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 三、解答题(共90分) 21.直接写出计算结果(每小题3分,共18分)① ()()()=-÷-⋅-643a a a ②()=-23xy③ =+--)32(32x x x ④()=--22b a⑤()()=-+y x y x 44 ⑥()()=+-56x x22.计算(每小题4分,共24分) (1)()16912823+-+- (2) ()3223xy z x -⋅(3) ()()y x y x 232+- (4) ()()2222x y y x --+(5) ()()1212++-+b a b a (6)⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+8422112112112112123.解方程(每小题4分,共8分)(1) ()01253=--x (2) ()()()45312=-+-+x x x 24.(5分)先化简,再求值:()()()1132+--+a a a ,其中3=a .25.(5分)先化简,再求值:()()()2422223y y x x y x y x +---+,其中201411=-=y x ,.26.(5分)已知03=-++b b a ,求b a -的值.27.(5分)已知12-+y x 的算术平方根是4,1+-y x 的立方根是3,求y 、x 的值.28.(6分)若()()n x x m x +-+32的积中不含32x x 、项,求n m 和的值.29.(6分)如图,大小两个正方形边长分别为a 、b . (1)用含a 、b 的代数式阴影部分的面积S ; (2)如果5,7==+ab b a ,求阴影部分的面积. 30.(8分)图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的正方形边长为 ;(2)观察图②,三个代数式()()mn n m n m ,,22-+之间的等量关系是 ;(3)观察图③,你能得到怎样的代数恒等式呢? ; (4)试画出一个几何图形,使它的面积能表示()()22232n mn m n m n m ++=++.(画在虚线框内)。
八上压轴题(201429)
点评:(1)本题中的 2 倍角的问题,可以转化为∠BDC=∠BAC 然后利用“8”字型即可推导 出来;(2)证明角平分线的问题有两种途径,既可以直接证角相等,也可以转证线段相等。本 题可以利用第二种方法证明;(3)线段的和差问题,可以直接思考“截长补短”法。本题可以 根据经验猜想∠BAC 应该是一个特殊角——60°。
考点: 专题: 分析:
全等三角形的判定与性质;坐标与图形性质;三角形的面积;等腰三角形的性质. 几何综合题.
菁优网版 权所有
(1)根据点 B、C 的坐标判断出 y 轴是 BC 的垂直平分线,再根据线段垂直平分线上的点到线段两端点的距离相 可得 AB=AC, PB=PC, 根据等边对等角可得∠ABC=∠ACB, ∠PBC=∠PCB, 然后利用“角边角”证明△BCF 和△C 全等,根据全等三角形对应边相等可得 BE=CF; (2)连接 OF,先求出△AOB 的面积,再根据等高的三角形的面积的比等于底边的比求出△BOF 和△AOF 的面 再根据三角形的面积列式求出点 F 的横坐标与纵坐标的长度,从而得解; (3)设∠BAC=α,根据三角形的面积求出 BE=BA,根据等边对等角可得∠BEA=∠BAE=α,根据等腰三角形三 合一的性质和直角三角形两锐角互余求出∠ACB,再根据三角形的内角和定理求出α<90°,根据三角形的一个外 大于任何一个与它不相邻的内角可得∠AEB>∠ACB, 然后求出α>60°, 然后分α=60°和 90°时求出 m 的值即可得 (1)证明:∵B(﹣3,0),C(3,0), ∴OB=OC, ∴y 轴是 BC 的垂直平分线, 又∵点 A 在 y 轴正半轴上,点 P 在线段 OA 上, ∴AB=AC,PB=PC, ∴∠ABC=∠ACB,∠PBC=∠PCB,
解答:
(1)证明:∵
华师大版八年级数学上册第一次月考试卷【解析】
2014-2015学年山东省潍坊市高密四中文慧学校八年级(上)第一次月考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列说法中正确的是()A.全等三角形是指形状相同的三角形B.全等三角形的周长和面积分别相等C.所有的等边三角形是全等三角形D.有两个角对应相等的两个三角形全等3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)4.如图,△ABC≌△BAD,如果AB=6cm,BD=4cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定5.如图,已知:在△ABC和△DEF中,如果AB=DE,BC=EF.在下列条件中不能保证△ABC≌△DEF的是()A.∠B=∠DEF B.AC=DF C.AB∥DE D.∠A=∠D6.娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.B.C.D.7.下列图形中成轴对称的是()A.B.C.D.8.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变9.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)10.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD11.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACD B.AF垂直平分EG C.∠B=∠C D.DE=EG12.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙二、填空题(共8个小题,每小题3分,共24分)13.写出一个成轴对称图形的大写英文字母:.14.如图,把两根钢条AC、BD的中点O连在一起,可以做成一个测量工件内槽宽的工具,若测得CD=5cm,则该内槽的宽AB为.15.如图,△ABC与△A′B′C′关于直线l成轴对称,已知∠A=50°,∠C′=30°,则∠B= .16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b= .17.如图,∠1=∠2,BC=EF,需要添加一个条件,才能使△ABC≌△DEF,你添加的条件是(只需添加一个条件即可.)18.如图,在△ABC中,AB=AC,两条高BD、CE相交于点O,则图中全等三角形共有对.19.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.20.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为.三、解答题(共8个小题,共60分)21.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.22.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.23.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)24.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1.25.已知△ABC,利用直尺和圆规,作一个与△ABC全等的△A′B′C′(保留作图痕迹,不要求写作法).26.在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是(填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,并画出草图(只须画出一种)27.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.(1)∠DCA与∠EAB相等吗?说明理由;(2)△ADC与△BEA全等吗?说明理由.28.如图,AB=AC,OB=OC.求证:∠ADC=∠ADB.2014-2015学年山东省潍坊市高密四中文慧学校八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列说法中正确的是()A.全等三角形是指形状相同的三角形B.全等三角形的周长和面积分别相等C.所有的等边三角形是全等三角形D.有两个角对应相等的两个三角形全等考点:全等图形.分析:根据能够完全重合的两个三角形叫做全等三角形,全等三角形的判定方法:AAS、AAS进行分析即可.解答:解:A、全等三角形是指形状相同的三角形,说法错误;B、全等三角形的周长和面积分别相等,说法正确;C、所有的等边三角形是全等三角形,说法错误;D、有两个角对应相等的两个三角形全等,说法错误;故选:B.点评:此题主要考查了全等三角形,关键是掌握全等三角形形状和大小都相等.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)考点:关于x轴、y轴对称的点的坐标.分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解答:解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.如图,△ABC≌△BAD,如果AB=6cm,BD=4cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定考点:全等三角形的性质.分析:根据全等三角形的性质得出BC=AD,代入求出即可.解答:解:∵△ABC≌△BAD,AD=5cm,∴BC=AD=5cm,故选B.点评:本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.5.如图,已知:在△ABC和△DEF中,如果AB=DE,BC=EF.在下列条件中不能保证△ABC≌△DEF的是()A.∠B=∠DEF B.AC=DF C.AB∥DE D.∠A=∠D考点:全等三角形的判定.分析:已知AB=DE,BC=EF,只需再找一个夹角或者一条边相等,即可判定△ABC≌△DEF.解答:解:A、可根据SAS判定△ABC≌△DEF,故本选项错误;B、可根据SSS判定△ABC≌△DEF,故本选项错误;C、根据AB∥DE,可得∠B=∠DEF,可根据SAS判定△ABC≌△DEF,故本选项错误;D、不能根据SSA判定△ABC≌△DEF,故本选项正确.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.B.C.D.考点:轴对称的性质.分析:根据轴对称图形的概念,分别判断出四个图形的对称轴的条数即可.解答:解:A、圆有无数条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误.故选C.点评:本题考查轴对称图形的概念,解题关键是能够根据轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题.7.下列图形中成轴对称的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:根据轴对称图形的概念可得:是轴对称图形的是:B.故选:B.点评:考查了轴对称图形,掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.8.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变考点:轴对称的性质.分析:根据轴对称不改变图形的形状与大小解答.解答:解:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选:A.点评:本题考虑轴对称的性质,是基础题,熟记轴对称变换不改变图形的形状与大小是解题的关键.9.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:A.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.10.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD考点:全等三角形的判定与性质.专题:常规题型.分析:根据题干给出的条件可以证明△ABD≌△CDB,可以求得A、C、D选项正确.解答:解:∵在△ABD和△CDB中,,∴△ABD≌△CDB,∴∠ADB=∠CBD,∠ABD=∠CDB,∠A=∠C∴AD∥BC,AB∥CD,∴A、C、D选项正确.故选B.点评:本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ABD≌△CDB是解题的关键.11.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACD B.AF垂直平分EG C.∠B=∠C D.DE=EG考点:轴对称的性质.分析:认真观察图形,根据轴对称图形的性质得选项A、B、C都是正确的,没有理由能够证明△DEG 是等边三角形.解答:解:A、因为此图形是轴对称图形,正确;B、对称轴垂直平分对应点连线,正确;C、由三角形全等可知,∠B=∠C,正确;D、题目中没有60°条件,不能判断是等边三角形,故不能得到DE=EG错误.故选D.点评:本题考查了轴对称的性质;解决此题要注意,不要受图形误导,要找准各选项正误的具体原因是正确解答本题的关键.12.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.解答:解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.二、填空题(共8个小题,每小题3分,共24分)13.写出一个成轴对称图形的大写英文字母:A、B、D、E中的任一个均可.考点:轴对称图形.分析:根据轴对称图形的概念,分析得出可以看成轴对称图形的字母.解答:解:大写字母是轴对称的有:A、B、D、E等.故答案可为:A、B、D、E中的任一个均可.点评:此题考查了轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,难度一般.14.如图,把两根钢条AC、BD的中点O连在一起,可以做成一个测量工件内槽宽的工具,若测得CD=5cm,则该内槽的宽AB为5cm .考点:全等三角形的应用.分析:本题让我们了解测量两点之间的距离,只要符合全等三角形全等的条件之一SAS,得出CD=AB 即可得出答案.解答:解:连接AB,CD,如图,∵点O分别是AC、BD的中点,∴OA=OC,OB=OD.在△AOB和△COD中,∵∴△AOB≌△COD(SAS).∴CD=AB=5cm.故答案为:5cm.点评:本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.15.如图,△ABC与△A′B′C′关于直线l成轴对称,已知∠A=50°,∠C′=30°,则∠B= 100°.考点:轴对称的性质.分析:由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.解答:解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故答案为:100°.点评:主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°这一条件,得到∠C=∠C′=35°是正确解答本题的关键.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b= 6 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a与b的值.解答:解:∵点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),∴a=2,b=4,∴a+b=2+4=6,故答案为:6.点评:此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.17.如图,∠1=∠2,BC=EF,需要添加一个条件,才能使△ABC≌△DEF,你添加的条件是AC=FD (只需添加一个条件即可.)考点:全等三角形的判定.专题:开放型.分析:添加条件:AC=FD,可利用SAS定理判定△ABC≌△DEF.解答:解:添加条件:AC=FD,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故答案为:AC=FD.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图,在△ABC中,AB=AC,两条高BD、CE相交于点O,则图中全等三角形共有 3 对.考点:全等三角形的判定.分析:首先证明△ACE≌△ABD可得AD=AE,EC=BD,根据等式的性质可得AB﹣AE=AC﹣AD,即EB=DC;再证明△EBC≌△DCB,△EOB≌△DOC即可.解答:解:△ACE≌△ABD,△EBC≌△DCB,△EOB≌△DOC,∵BD、CE为高,∴∠ADB=∠AEC=,90°,在△AEC和△ADB中,,∴△ACE≌△ABD(ASA);∴AD=AE,EC=BD,∴AB﹣AE=AC﹣AD,即EB=DC,在△EBC和△DCB中,,∴△EBC≌△DCB(SSS),在△EOB和△DOC中,,∴△EOB≌△DOC(AAS).故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 4 个.考点:作图—复杂作图.分析:能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个解答:解:如图,可以作出这样的三角形4个.点评:本题考查了学生利用基本作图来做三角形的能力.20.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为20°.考点:翻折变换(折叠问题);平行线的性质;矩形的性质.分析:由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC ′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE中求得.解答:解:由折叠的性质知,∠BEF=∠DEF,∠EBC′=∠D=90°,∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=125°,∴∠BEF=∠DEF=55°,在Rt△ABE中,可求得∠ABE=90°﹣∠AEB=20°.故答案为20°.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应角相等.三、解答题(共8个小题,共60分)21.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.考点:全等三角形的判定.专题:证明题.分析:首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.解答:证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:可通过证△ABF≌△DCE,来得出∠A=∠D的结论.解答:证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.点评:此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.23.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)考点:利用轴对称设计图案.专题:作图题.分析:可分别选择不同的直线当对称轴,得到相关图形即可.解答:解:点评:考查利用轴对称设计图案;选择不同的直线当对称轴是解决本题的突破点.24.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).考点:作图-轴对称变换;点的坐标.专题:作图题.分析:(1)利用轴对称性质,作出A、B、C关于y轴的对称点A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1;(2)根据点关于y轴对称的性质,纵坐标相同,横坐标互为相反数,即可求出A1、B1、C1各点的坐标.解答:解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).点评:本题主要考查了轴对称变换作图,难度不大,注意作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.25.已知△ABC,利用直尺和圆规,作一个与△ABC全等的△A′B′C′(保留作图痕迹,不要求写作法).考点:作图—复杂作图;全等三角形的判定.分析:利用圆规作B′C′=BC,A′B′=AB,A′C′=AC即可.解答:解:如图所示:.点评:此题主要考查了复杂作图,关键是掌握三边对应相等的两个三角形全等.26.在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是BC (填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,并画出草图(只须画出一种)考点:利用轴对称设计图案.专题:常规题型.分析:(1)找到沿某条直线折叠,直线两旁的部分能够互相重合的图形即可;(2)由(1)得到的两个轴对称图形让对称轴重合组合即可.解答:解:(1)B,C.(2)所设计如下:点评:本题考查了轴对称的知识,用到的知识点为:沿某条直线折叠,直线两旁的部分能够互相重合的图形叫轴对称图形;两个图形组成轴对称图形,对称轴需重合.27.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.(1)∠DCA与∠EAB相等吗?说明理由;(2)△ADC与△BEA全等吗?说明理由.考点:全等三角形的判定与性质.专题:常规题型.分析:(1)根据AB⊥AC和CD⊥DE可以求得∠DCA=∠EAB;(2)根据(1)中的∠DCA=∠EAB和AB=AC可以求证△ADC≌△BEA.解答:解:(1)∵AB⊥AC CD⊥DE∴∠BAE+∠CAD=90°,∠CAD+∠DCA=90°,∴∠DCA=∠EAB;(2)∵CD⊥DE,BE⊥DE,∴在△ADC和△BEA中,,∴△ADC≌△BEA.(AAS)点评:本题考查了全等三角形的判定,熟练运用AAS方法求证三角形全等是解题的关键.28.如图,AB=AC,OB=OC.求证:∠ADC=∠ADB.考点:全等三角形的判定与性质.专题:证明题.分析:易证△OAC≌△OAB,可得∠OAC=∠OAB,可证明△ACD≌△ABD,可得∠ADC=∠ADB.解答:解:∵在△ACD和△ABD中,,∴△OAC≌△OAB,(SSS)∴∠OAC=∠OAB,∵在△ACD和△ABD中,,∴△ACD≌△ABD(SAS),∴∠ADC=∠ADB.点评:本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ACD≌△ABD是解题的关键.初中数学试卷金戈铁骑制作。
山东德州宁津二中14-15学年八年级上第一次月考试题--语文
山东省德州市宁津二中2014-2015学年八年级语文上学期第一次月考试题一、积累运用(23分)。
1.给下面加点的字注音,根据拼音写出汉字并改正句中的错别字。
(3分)一个人须立志,才能走得远;同样,一个民族也必须心存高远志向,才能具有远见和持久而坚韧.()的力量之源。
对于一个民族而言,梦想是认同感的基础,是nínɡ()聚力、向心力、软实力的来原。
分享共同的梦想,才能使所有民族成员走到一起。
2、下面语段有两处语病,请在原句中改正。
(2分)为杜绝“中国式过马路”现象不再发生,德州市交警部门集中组织开展市区交通秋序联合整治行动。
4月27日,记者在湖滨大道路口看到,执勤民警正在劝导闯红灯的非机动车辆和行人。
3、下面句子中加点的成语使用正确的一项是()(2分)A、这些伪劣药品造成的危害骇人听闻....,药品市场非整顿不可。
B、大家认为他提出的这条建议很有价值,都随声附和....表示赞成。
C、最近几年,各种各样的电脑学习班越来越多,简直到了汗牛充栋....的程度。
D、在学习上就应该不耻下问....,有不懂得问题就主动问老师。
4、请你仿照画线句的句式,补写一个句式相同、语意连贯的句子。
(2分)善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;,。
5、默写填空。
(14分)(1)、新闻结构的五部分部分是__________、____________、__________、、。
(2)、新闻最基本的特点是______________________。
(3)、《核舟记》一文中雕刻品“核舟”的主题是____________________。
文中最能体现王叔远构思巧妙,技艺精湛的一句话是______________________________。
作者对核舟技艺发出赞叹之情的语句是______________________________。
(4)出自《桃花源记》的成语故事是______________,在这个虚构的故事里寄托了作者的社会理想。
2014-2015学年八年级数学月考测试卷
⊙ 班 级: 姓 名: 学 号: 考 场: ⊙⊙……………⊙……………装…⊙……………订……⊙………线………⊙……………装…⊙……………订……⊙………线…………⊙……………⊙许昌县实验中学2014-2015学年第一学期月考八年级数学试卷(满分100分,完卷时间70分钟)一、选择题(每题3分,共30分)则∠E 是( )A. 25°B. 27°C. 30°D. 45°3、如图所示,在△ABC 中,∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数为( ).A .30°B .36°C .45°D .72° 4、下面四个图形中,线段BE 是△ABC 的高的图是( )5、下列对应相等条件中,能作出唯一三角形的是( ) A .已知两边 B .已知两角 C .已知两边一角 D .已知两角和一边7、三角形内角的度数之比为2:3:7,它一定是()三角形A.直角 B.等腰 C.锐角D.钝角8、在△ABC中,∠B=∠C,若与△ABC全等的三角形中有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A. ∠AB. ∠BC. ∠CD. ∠B或∠C9、如图所示,学生多多作业本上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA,为折痕,10、将一张长方形纸片按如图所示的方式折叠,BC BD则CBD∠的度数为()二.填空题(每小题3分,共15分.)1、要使五边形木架不变形,则至少要钉上_______根木条.2、三角形的三边长分别为5,1+2x,8,则x的取值范围是________.3、若△ABC ≌△DEF,且△ABC的周长为12,AB = 3,EF = 4,则AC = .4、如图所示,∠A+∠B+∠C+∠D+∠E=________.5、如图所示:从点A出发,沿直线前进10米后向左转40°,再沿直线前进10米,再向左转40°,照这样走下去,他第一次回到出发地A时,一共走了_______米.三.解答题(共55分.)1、已知:AB、CD相交于O,AO=BO,AC∥DB求证:△AOC≌△BOD.(10分)2、如图所示,在△ABC中,∠A=50°,O是△ABC内一点,且∠ABO=20°,∠ACO=30°,求:∠BOC的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年二中八年级(上)第一次月考数学试卷一、选择题1.下列长度的三条线段能组成三角形的是()A. 3,4,8 B. 5,6,11 C. 1,2,3 D. 5,6,102.下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形3.过多边形的一个顶点可以引出6条对角线,则多边形的边数是()A. 7 B. 8 C. 9 D. 104.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去5.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A. 95° B. 120° C. 135° D.无法确定6.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A. 1个 B. 2个 C. 3个 D. 4个7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20° B. 30° C. 35° D. 40°8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A. 30° B. 20° C. 15° D. 14°二、填空题9.三角形的两条边为2cm和4cm,第三边长是一个偶数,第三边的长是.10.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.11.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是.12.如图,已知AB=AD,需要条件(用图中的字母表示)可得△ABC≌△ADC,根据是.13.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有处.14.如图,AE=AD,∠B=∠C,BE=6,AD=4,则AC= .15.如图,已知△ABC的∠ABC和∠ACB的角平分线交于P,∠A=50°,则∠P= .16.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.三、解答题17.用一条长为18cm细绳围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4cm的等腰三角形吗?为什么?18.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.19.如图,AB=AC,BD=CD.求证:∠B=∠C.20.如图,AD=AE,∠EAB=∠DAC,∠B=∠C.求证:AB=AC.四、解答题21.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,AB=DE.求证:FB=CE.22.如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB、DF⊥AC,垂足为E、F,求证:EB=FC.23.如图,△ABC中,AD⊥BC于D,BF=AC,FD=CD.求证:AC⊥BE.五、解答题24.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且BD=CD.求证:(1)BE=CF;(2)∠ABD+∠ACD=180°.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.26.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?2014-2015学年辽宁省大连市庄河二中八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题1.下列长度的三条线段能组成三角形的是()A. 3,4,8 B. 5,6,11 C. 1,2,3 D. 5,6,10考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,3+4=7<8,不能组成三角形;B中,5+6=11,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,5+6=11>10,能组成三角形.故选D.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.下列图形中有稳定性的是()A.正方形 B.长方形 C.直角三角形 D.平行四边形考点:三角形的稳定性.分析:稳定性是三角形的特性.解答:解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.点评:稳定性是三角形的特性,这一点需要记忆.3.过多边形的一个顶点可以引出6条对角线,则多边形的边数是()A. 7 B. 8 C. 9 D. 10考点:多边形的对角线.分析:设多边形的边数是x,根据n边形从一个顶点出发可引出(n﹣3)条对角线可得x ﹣3=6,再解方程即可.解答:解:设多边形的边数是x,由题意得:x﹣3=6,解得:x=9,故选:C.点评:此题主要考查了多边形的对角线,关键是掌握n边形从一个顶点出发可引出(n﹣3)条对角线.4.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去 B.带②去 C.带③去 D.带①和②去考点:全等三角形的应用.专题:应用题.分析:此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.解答:解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.点评:主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.5.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC等于()A. 95° B. 120° C. 135° D.无法确定考点:三角形内角和定理.专题:探究型.分析:先根据三角形内角和定理求出∠OBC+∠OCB的度数,再根据∠BOC+(∠OBC+∠OCB)=180°即可得出结论.解答:解:∵∠A=80°,∠1=15°,∠2=40°,∴∠OBC+∠OCB=180°﹣∠A﹣∠1﹣∠2=180°﹣80°﹣15°﹣40°=45°,∵∠BOC+(∠OBC+∠OCB)=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°.故选C.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.6.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A. 1个 B. 2个 C. 3个 D. 4个考点:直角三角形全等的判定;全等三角形的性质.分析:先运用SAS证明△ABD≌△ACD,再得(1)△ABD≌△ACD正确;(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD(4)AD是△ABC的角平分线.即可找到答案.解答:解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选D.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,及全等三角形性质的运用.7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A. 20° B. 30° C. 35° D. 40°考点:全等三角形的性质.专题:计算题.分析:本题根据全等三角形的性质并找清全等三角形的对应角即可.解答:解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.点评:本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A. 30° B. 20° C. 15° D. 14°考点:平行线的性质.分析:延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:如图,∠2=30°,∠1=∠3﹣∠2=45°﹣30°=15°.故选C.点评:本题考查了平行线的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.二、填空题9.三角形的两条边为2cm和4cm,第三边长是一个偶数,第三边的长是4cm .考点:三角形三边关系.分析:根据三角形的三边关系先确定第三边的范围,进而就可以求出第三边的长.解答:解:设第三边为acm,根据三角形的三边关系可得:4﹣2<a<4+2.即:2<a<6,由于第三边的长为偶数,则a可以为4cm.故答案为:4cm.点评:此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.10.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 6 .考点:多边形内角与外角.专题:计算题.分析:利用多边形的外角和以及多边形的内角和定理即可解决问题.解答:解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.点评:本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.11.如图点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是 3 .考点:角平分线的性质.专题:计算题.分析:根据角平分线的性质可得,点P到AB的距离=PE=3.解答:解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=3,∴点P到AB的距离=PE=3.故答案为:3.点评:此题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.12.如图,已知AB=AD,需要条件(用图中的字母表示)BC=DC 可得△ABC≌△ADC,根据是SSS .考点:全等三角形的判定.分析:添加条件BC=DC,可直接利用SSS定理判定△ABC≌△ADC.解答:解:添加条件BC=DC,∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),故答案为:BC=DC;SSS.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有 4 处.考点:三角形的内切圆与内心;直线与圆的位置关系.专题:应用题.分析:由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.解答:解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故填4.点评:此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.14.如图,AE=AD,∠B=∠C,BE=6,AD=4,则AC= 10 .考点:全等三角形的判定.分析:先根据已知证得△ABD≌△ACE,得出AB=AC.进而推出BE=DC,那么就可以求得AC=10.解答:解:∵AE=AD,∠B=∠C,∠A=∠A∴△ABD≌△ACE∴AB=AC∵AE=AD∴BE=DC∴AC=AD+BE=10.故填10.点评:此题主要考查全等三角形的判定,常用的判定有SAS,AAS,SSS,HL等.做题时要结合图形得到答案.15.如图,已知△ABC的∠ABC和∠ACB的角平分线交于P,∠A=50°,则∠P= 115°.考点:三角形内角和定理.分析:根据三角形内角和定理求出∠ABC+∠ACB=180°﹣∠A=130°,根据角平分线定义得出∠PBC=∠ABC,∠PCB=∠ACB,求出∠PBC+∠PCB=65°,代入∠P=180°﹣(∠PBC+∠PCB)求出即可.解答:解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=130°,∵∠ABC和∠ACB的角平分线交于P,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=×130°=65°,∴∠P=180°﹣(∠PBC+∠PCB)=115°,故答案为:115°.点评:本题考查了三角形的内角和定理和角平分线定义的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.16.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.考点:三角形内角和定理;翻折变换(折叠问题).分析:根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.解答:解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.点评:本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.三、解答题17.用一条长为18cm细绳围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4cm的等腰三角形吗?为什么?考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:(1)设底边长为xcm,则腰长为2xcm,根据周长公式列一元一次方程,解方程即可求得各边的长;(2)题中没有指明4cm所在边是底还是腰,故应该分情况进行分析,注意利用三角形三边关系进行检验.解答:解:(1)设底边长为xcm,∵腰长是底边的2倍,∴腰长为2xcm,∴2x+2x+x=18,解得,x=cm,∴2x=2×=cm,∴各边长为:cm,cm,cm.(2)①当4cm为底时,腰长==7cm;当4cm为腰时,底边=18﹣4﹣4=10cm,∵4+4<10,∴不能构成三角形,故舍去;∴能构成有一边长为4cm的等腰三角形,另两边长为7cm,7cm.点评:本题考查的是等腰三角形的性质及三角形的三边关系,在解答此类题目时要注意分类讨论,不要漏解.18.如图,已知在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.考点:三角形内角和定理.专题:数形结合.分析:根据三角形的内角和定理与∠C=∠ABC=2∠A,即可求得△ABC三个内角的度数,再根据直角三角形的两个锐角互余求得∠DBC的度数.解答:解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.点评:此题主要是三角形内角和定理的运用.三角形的内角和是180°.19.如图,AB=AC,BD=CD.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:连接AD,根据SSS推出△ADC≌△ADB,根据全等三角形的性质得出即可.解答:证明:连接AD,∵在△ADC和△ADB中∴△ADC≌△ADB(SSS),∴∠B=∠C.点评:本题考查了全等三角形的性质和判定的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.20.如图,AD=AE,∠EAB=∠DAC,∠B=∠C.求证:AB=AC.考点:全等三角形的判定与性质.专题:证明题.分析:求出∠EAC=∠DAB,根据AAS推出△EAC≌△DAB,根据全等三角形的性质推出即可.解答:证明:∵∠EAB=∠DAC,∴∠EAB+∠BAC=∠DAC+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中∴△EAC≌△DAB(AAS),∴AB=AC.点评:本题考查了全等三角形的性质和判定的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.四、解答题21.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,AB=DE.求证:FB=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质求出∠B=∠E,∠ACB=∠DFE,根据AAS证出△BAC≌△EDF,推出BC=EF即可.解答:证明:∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,在△BAC和△EDF中∴△BAC≌△EDF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,∴FB=CE.点评:本题考查了全等三角形的性质和判定,平行线的性质的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.22.如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB、DF⊥AC,垂足为E、F,求证:EB=FC.考点:角平分线的性质;全等三角形的判定与性质.专题:证明题.分析:首先由角平分线的性质可得DE=DF,又有BD=CD,可证Rt△BED≌Rt△DFC(HL),即可得出EB=FC.解答:证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.点评:此题主要考查角平分线的性质和全等三角形的判定和性质,难度不大.23.如图,△ABC中,AD⊥BC于D,BF=AC,FD=CD.求证:AC⊥BE.考点:全等三角形的判定与性质.专题:证明题.分析:根据HL证Rt△BDF≌Rt△ADC,推出∠FBD=∠DAC,根据∠BDF=90°求出∠DBF+∠BFD=90°,推出∠DAC+∠AFE=90°,求出∠AEF=90°即可.解答:证明:∵AD⊥BC,∴∠BDF=∠ADC=90°,在Rt△BDF和Rt△ADC中∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC,∵∠BDF=90°,∴∠DBF+∠BFD=90°,∵∠BFD=∠AFE,∴∠DAC+∠AFE=90°,∴∠AEF=180°﹣90°=90°,∴AC⊥BE.点评:本题考查了全等三角形的性质和判定,三角形内角和定理的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.五、解答题24.如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,且BD=CD.求证:(1)BE=CF;(2)∠ABD+∠ACD=180°.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:(1)根据角平分线性质可得DE=DF,可证△BDE≌△CDF,可得BE=CF;(2)由△BDE≌△CDF可得∠ACD=∠DBE,即可求得∠ABD+∠ACD=180°.解答:解:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在RT△BDE和RT△CDF中,,∴RT△BDE≌RT△CDF(HL),∴BE=CF;(2)∵RT△BDE≌RT△CDF,∴∠ACD=∠DBE,∵∠DBE+∠ABD=180°,∴∠ABD+∠ACD=180°.点评:本题考查了直角三角形全等的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证RT△BDE≌RT△CDF是解题的关键.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.考点:旋转的性质;全等三角形的判定与性质.专题:探究型.分析:(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB=90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.解答:(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.点评:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.26.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?考点:全等三角形的判定与性质;一元一次方程的应用.专题:几何图形问题.分析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.解答:解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.点评:此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。