化工原理习题解答(华南理工大学化工原理教研组编).doc
化工原理习题解答(华南理工大学化工原理教研组

第五章蒸发5-1、在单效蒸发器内,将10%NaOH水溶液浓缩到25%,分离室绝对压强为15kPa,求溶液的沸点和溶质引起的沸点升高值。
解:查附录:15kPa的饱和蒸气压为53.5℃,汽化热为2370kJ/kg(1)查附录5,常压下25%NaOH溶液的沸点为113℃所以,Δa= 113-100=13℃所以沸点升高值为Δ=fΔa=0.729×13=9.5℃操作条件下的沸点:t=9.5+53.5=63℃(2)用杜林直线求解蒸发室压力为15kPa时,纯水的饱和温度为53.5℃,由该值和浓度25%查图5-7,此条件下溶液的沸点为65℃因此,用杜林直线计算溶液沸点升高值为Δ=63-53.5=9.5℃5-2、习题1中,若NaOH水溶液的液层高度为2m,操作条件下溶液的密度为1230kg•m-3。
计算因液柱引起的溶液沸点变化。
解:液面下的平均压力pm=24.65kPa时,查得水的饱和蒸气温度为:63℃所以液柱高度是沸点增加值为:Δ=63-53.5=9.5℃所以,由于浓度变化和液柱高度变化使得溶液的沸点提高了Δ=9.5+9.5=19℃因此,操作条件下溶液的沸点为:t=53.5+19=72.5℃5-3、在单效蒸发器中用饱和水蒸气加热浓缩溶液,加热蒸气的用量为2100kg•h-1,加热水蒸气的温度为120ºC,其汽化热为2205kJ•kg-1。
已知蒸发器内二次蒸气温度为81ºC,由于溶质和液柱引起的沸点升高值为9ºC,饱和蒸气冷凝的传热膜系数为8000W•m-2k-1,沸腾溶液的传热膜系数为3500 W•m-2k-1。
求蒸发器的传热面积。
忽略换热器管壁和污垢层热阻,蒸发器的热损失忽略不计。
解:热负荷Q=2100×2205×103/3600=1.286×106W溶液温度计t=81+9=90℃蒸汽温度T=120 ℃∵1/K=1/h1+1/h2=1/8000+1/3500∴K=2435W/m2K∴S=Q/[K(T-t)]=1.286×106/[2435×(120-90)]=17.6 m25-4、某效蒸发器每小时将1000kg的25%(质量百分数,下同)NaOH水溶液浓缩到50%。
化工原理课后习题答案第一章流体流动答案

第一章 流体流动习题解答1.解:(1) 1atm=101325 Pa=760 mmHg真空度=大气压力—绝对压力,表压=绝对压力—大气压力 所以出口压差为p =461097.8)10082.0(10132576.00⨯=⨯--⨯N/m 2(2)由真空度、表压、大气压、绝对压之间的关系可知,进出口压差与当地大气压无关,所以出口压力仍为41097.8⨯Pa 2.解: T=470+273=703K ,p=2200kPa混合气体的摩尔质量Mm=28×0.77+32×0.065+28×0.038+44×0.071+18×0.056=28.84 g/mol混合气体在该条件下的密度为:ρm=ρm0×T0T×pp0=28.8422.4×273703×2200101.3=10.858 kg/m33.解:由题意,设高度为H 处的大气压为p ,根据流体静力学基本方程,得 dp=-ρgdH大气的密度根据气体状态方程,得 ρ=pMRT根据题意得,温度随海拔的变化关系为 T=293.15+4.81000H代入上式得ρ=pMR (293.15-4.8×10-3H )=-dpgdh移项整理得dpp=-MgdHR293.15-4.8×10-3H对以上等式两边积分,101325pdpp=-0HMgdHR293.15-4.8×10-3H所以大气压与海拔高度的关系式为 lnp101325=7.13×ln293.15-4.8×10-3H293.15即:lnp=7.13×ln1-1.637×10-5H+11.526(2)已知地平面处的压力为101325 Pa ,则高山顶处的压力为 p 山顶=101325×330763=45431 Pa将p 山顶代入上式ln 45431=7.13×ln1-1.637×10-5H+11.526 解得H =6500 m ,所以此山海拔为6500 m 。
华南理工大学851化工原理计算题汇总.

热损失和污垢热阻可以忽略。试求:
(1)
冷却水用量;
(2)
基于内管外侧面积的总传热系数;
Байду номын сангаас(3)
对数平均温差;
(4)
内管外侧传热面积。
3、某板框压滤机共有 10 个框, 框空长、宽各为 500 mm, 在一定压力下恒压
过滤 30min 后, 获得滤液 5m3, 假设滤布阻力可以忽略不计, 试求: (1) 过
1、解:(1)两槽液面的高度差 H
在压力表所在截面 2-2´与高位槽液面 3-3´间列柏努利方程,以贮槽液面为基准水平面,得:
gH 2
u
2 2
2
p2
gH u32 2
p3
h f ,23
其中,
hf ,23 4.9J / kg , u3=0, p3=0,
p2=2.452×105Pa, H2=5m, u2=Vs/A=2.205m/s
为 8000 W/(m2℃),假定管壁热阻、垢层热阻及热损失可忽略不计。试求:
(1)加热空气需要的热量 Q 为多少?
(2)以管子外表面为基准的总传热系数 K 为多少?
(3)此换热器能否完成生产任务?
2、解:(1) Q w2c p2 t2 t1 7200 / 3600 1.005 60 20 80.4 kJ/s
滤常数 K; (2) 如果再过滤 30min, 还能获得多少 m3 滤液?
四、计算题(共 45 分)
解:
(1) 由题意知 900 kg/m3, Pv 26.66 kPa, H 0.2 m,
gh 49 kPa, Pa 101300 48000 53300 Pa
Hg
1 53300 26660 49000 0.2
化工原理——带答案doc)

化工原理——带答案(D O C)文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]第一章流体力学1.表压与大气压、绝对压的正确关系是(A)。
A. 表压=绝对压-大气压B. 表压=大气压-绝对压C. 表压=绝对压+真空度2.压力表上显示的压力,即为被测流体的( B )。
A. 绝对压B. 表压C. 真空度D. 大气压3.压强表上的读数表示被测流体的绝对压强比大气压强高出的数值,称为( B )。
A.真空度B.表压强C.绝对压强D.附加压强4.设备内的真空度愈高,即说明设备内的绝对压强( B )。
A. 愈大B. 愈小C. 愈接近大气压D. 无法确定5.一密闭容器内的真空度为80kPa,则表压为( B )kPa。
A. 80B. -80C. 某设备进、出口测压仪表中的读数分别为p1(表压)=1200mmHg和p2(真空度)=700mmHg,当地大气压为750mmHg,则两处的绝对压强差为(D )mmHg。
7.当水面压强为一个工程大气压,水深20m处的绝对压强为( B )。
A. 1个工程大气压B. 2个工程大气压C. 3个工程大气压D. 4个工程大气压8.某塔高30m,进行水压试验时,离塔底10m高处的压力表的读数为500kpa,(塔外大气压强为100kpa)。
那么塔顶处水的压强(A )。
A.403.8kpa B. 698. 1kpa C. 600kpa D. 100kpa 9.在静止的连续的同一液体中,处于同一水平面上各点的压强(A )A. 均相等B. 不相等C. 不一定相等10.液体的液封高度的确定是根据( C ).A.连续性方程B.物料衡算式C.静力学方程D.牛顿黏性定律11.为使U形压差计的灵敏度较高,选择指示液时,应使指示液和被测流体的密度差(ρ指-ρ)的值(B )。
A. 偏大B. 偏小C. 越大越好12.稳定流动是指流体在流动系统中,任一截面上流体的流速、压强、密度等与流动有关的物理量(A )。
研究生入学考试华理化工原理专业课常见简答50题

研究生入学考试华理化工原理专业课常见简答50题研究生入学考试华理化工原理专业课常见简答50题简答题分值30分(10题),从2010的考题看10题简答全部是前10年考过的,没有问题方式的变化也变不了以下我个人手打总结了96-07 09 的简答题大部分必须知道的问题,08年的试卷没有弄到,不过估计有几题也是一样的1.均匀流段有何特点?流体均匀流过等直径弯管的流动能否视为均匀流段?为什么?答:特点是各流线都是平行的直线,并与截面垂直,固定态流动条件下该截面上的流体没有加速度,势能分布服从静力学原理。
流段截面上各点的总势能总是相等。
流体均匀流过等直径弯管的流动不能视为均匀流动,因为在其流段截面上各点的总势能不相等。
2.转子流量计的特点是什么?孔板流量计的缺点是什么?设孔板流量计的中心问题是什么?答:转子流量计的特点是恒流速、恒压差。
孔板流量计的缺点是阻力损失大,中心问题是选择合适的面积比m以期兼顾适宜的读数和阻力损失。
3.简述螺旋桨式和涡流式搅拌器的特点答:螺旋桨式搅拌器特点是流量大、压头低的特点,液体在搅拌釜主要做轴向和切向运动,主要适合大尺度和调匀(如釜底有较多颗粒沉降)涡流式搅拌器流量小,压头高的特点,液体在搅拌釜主要做径向和切向运动,对于要求小尺度均匀搅拌的中、低粘度液体较为合适。
4.简述数学模型法的主要步骤答:(1)将复杂的真实过程本身简化成易用数学方程式描述的物理模型(2)对所的到的物理模型进行数学描述即建立数学模型(3)通过实验对数学模型的合理性进行检验并测定模型参数5.过滤常数与哪些因素有关?答:其与悬浮液性质(体积分数)、(滤液黏度)、滤饼特性r及虚拟压强差有关6.颗粒的自由沉降速度是否仅是颗粒与流体的特性?答:不仅与颗粒和流体的特性有关,还与其他因素有关:(1)干扰沉降(2)端效应(3)分子运动(4)非球形(5)液滴或气泡的运动7.在多效蒸发的操作中,各效蒸发器的温度和各效浓度分别取决于什么?答:各效蒸发器温度仅与端点温度有关,在操作中自动形成某种分布,各效浓度仅取决于端点温度和料液的初始温度,在操作中自动形成某种分布。
化工原理课后习题答案第七章吸收习题解答

化工原理课后习题答案第七章吸收习题解答(总18页)-本页仅作为预览文档封面,使用时请删除本页-第七章 吸 收7-1 总压 kPa ,温度25℃时,1000克水中含二氧化硫50克,在此浓度范围内亨利定律适用,通过实验测定其亨利系数E 为 MPa , 试求该溶液上方二氧化硫的平衡分压和相平衡常数m 。
(溶液密度近似取为1000kg/m 3)解:溶质在液相中的摩尔分数:50640.01391000501864x ==+ 二氧化硫的平衡分压:*34.13100.0139kPa=57.41kPa p Ex ==⨯⨯相平衡常数:634.1310Pa40.77101.310PaE m P ⨯===⨯7-2 在逆流喷淋填料塔中用水进行硫化氢气体的吸收,含硫化氢的混合气进口浓度为5%(质量分数),求填料塔出口水溶液中硫化氢的最大浓度。
已知塔内温度为20℃,压强为×105 Pa ,亨利系数E 为。
解:相平衡常数为:6548.910321.711.5210E m P ⨯===⨯ 硫化氢的混合气进口摩尔浓度:15340.04305953429y ==+若填料塔出口水溶液中硫化氢达最大浓度,在出口处气液相达平衡,即:41max 0.0430 1.3410321.71y x m -===⨯7-3 分析下列过程是吸收过程还是解吸过程,计算其推动力的大小,并在x - y 图上表示。
(1)含NO 2 (摩尔分率)的水溶液和含NO 2 (摩尔分率) 的混合气接触,总压为,T=15℃,已知15℃时,NO 2水溶液的亨利系数E =×102 kPa ;(2)气液组成及温度同(1),总压达200kPa (绝对压强)。
解:(1)相平衡常数为:5131 1.6810Pa1.658101.310Pa E m P ⨯===⨯ *1 1.6580.0030.00498y m x ==⨯=由于 *y y >,所以该过程是吸收过程。
化工原理课后习题答案上下册(钟理版)(华南理工大学课本)
第一章 流体流动习题解答1-1 已知甲城市的大气压为760mmHg ,乙城市的大气压为750mmHg 。
某反应器在甲地操作时要求其真空表读数为600mmHg ,若把该反应器放在乙地操作时,要维持与甲地操作相同的绝对压,真空表的读数应为多少,分别用mmHg 和Pa 表示。
[590mmHg, 7.86×104Pa]解:P (甲绝对)=760-600=160mmHg 750-160=590mmHg=7.86×104Pa1-2用水银压强计如图测量容器内水面上方压力P 0,测压点位于水面以下0.2m 处,测压点与U 形管内水银界面的垂直距离为0.3m ,水银压强计的读数R =300mm ,试求 (1)容器内压强P 0为多少?(2)若容器内表压增加一倍,压差计的读数R 为多少?习题1-2 附图[(1) 3.51×104N ⋅m -2 (表压); (2)0.554m] 解:1. 根据静压强分布规律 P A =P 0+g ρH P B =ρ,gR因等高面就是等压面,故P A = P B P 0=ρ,gR -ρgH =13600×9.81×0.3-1000×9.81(0.2+0.3)=3.51×104N/㎡ (表压) 2. 设P 0加倍后,压差计的读数增为R ,=R +△R ,容器内水面与水银分界面的垂直距离相应增为H ,=H +2R∆。
同理, ''''''02Rp gR gH gR g R gH gρρρρρρ∆=-=+∆--000p g g p p 0.254m g g 10009.81g g 136009.812R H R ρρρρρρ⨯∆⨯⨯,,,4,,-(-)- 3.5110====---220.30.2540.554m R R R ∆,=+=+=1-3单杯式水银压强计如图的液杯直径D =100mm ,细管直径d =8mm 。
华南理工大学化工原理吸收习题及答案2014
一 填空题:1. 操作中的吸收塔,若适用液气比小于设计时的最小液气比,则其操作结果是吸收效果______; 若吸收剂入塔浓度x 2降低,其它操作条件不变,吸收结果将使吸收率_______,出口气体浓度______________。
2. 低浓度气体的系数中,已知平衡关系y=2x, k xa =0.2 km OL /m3.s, kya=2×10-4 km OL /m 3.s, 则此体系属于( )A 气膜;B 液膜;C 气、液双膜控制,总传质系数近似为Kya =________km OL /m 3.s 。
3. 通常所讨论的吸收操作中,当吸收剂用量趋于最小用量时,( )A 回收率趋于最高 ; B 吸收推动力趋于最大;C 操作最为经济 ; D 填料层高度趋于无穷大。
4. 某操作中的吸收塔,用清水逆流吸收气体混合物中A 组分,若入塔气体浓度y 1下降,L ,G ,P ,T 等不变,则回收率有何变化____________;若L 增加,其余条件不变,则出塔液体浓度x 1有何变化________________。
5. 如图所示,为同一温度下A ,B ,C 三种气体在水中的溶解度曲线,由图可知,它们的溶解度大小顺序为__________________; 因为____________________________.6. 吸收中温度不变,压力增大,可使相平衡常数___________,传质推动力___________。
在气体吸收时,若可溶气体的浓度较大,则总体流动对传质的影响______。
7. 对易溶气体,气相一侧的界面浓度yi 接近于_________________;而液相一侧的界面浓度xi 接近于______________________。
8. 写出吸收操作中对吸收剂的主要要求的四项 。
增加吸收剂用量,操作线的斜率____________, 则操作线_________平衡线的方向偏移,吸收过程推动力(y-y*)________。
化工原理(第二版 华南理工大) 习题
2 2' 1 1'
0.5m
解:在两测压口中心截面1-1'及2-2'间列柏努利式,以2-2'面的中心 线为基准面,取ρH2O=1000kg/m3。
Z1=0 P1= -2.6×104 Pa (表压) (因真空度的负值为表压)
We =待求值 Z2=0.5m P2= 2.6×105 Pa (表压)
解得:
1-5、在如图所示的列管换热器内,管束外的冷溶液与管束内的热
1-8
1-9
1-10 如图所示,某厂计划建一水塔,将20℃水分别送至第一、第二
车间的吸收塔中。第一车间的吸收塔为常压,第二车间的吸收塔内压力为 20kPa(表压)。总管为573.5mm的钢管,管长为(30+z0)m,通向 两吸收塔的支管均为 252.5mm的钢管,管长分别为 28m和 15m(以上 各管长均已包括所有局部阻力的当量长度在内)。喷嘴的阻力损失可以忽 略。钢管的绝对粗糙度可取为=0.2mm。现要求向第一车间的吸收塔供应 1800kg/h的水,向第二车间的吸收塔供应2400kg/h的水,试确定水塔离 地面至少多高才行?
即: =1.0133×105 + 0.02×1000×9.81+1.2×13600×9.81 -(6+1) ×1000×9.81= 193000 Pa PA=PB +△P=193000+63800=256800 Pa
1-4、实验室测定离心泵性能时,采用本题附图所示的定态流动流
程 。 每 小 时 以 45m3 、 20℃ 的 清 水 为工 作 介 质 。泵 的 进 口 管直 径 为 φ85×4mm,出口管直径为φ75×4mm。在泵的进口和出口附近分别装 有真空表及压强表,已测得真空表上读数为 2.6×104Pa 、压强表读数 为 2.6×105Pa ,两测压口中心线间的垂直距离为 0.5m,因其间管路较 短,故流体在两表间的摩擦阻力可以忽略。泵由电动机直接带动,传 动效率可视为1,已测得电动机输出功率为5.5kW,试求泵的效率。
华南理工大学化工原理吸收习题及答案2014
一 填空题:1. 操作中的吸收塔,若适用液气比小于设计时的最小液气比,则其操作结果是吸收效果______; 若吸收剂入塔浓度x 2降低,其它操作条件不变,吸收结果将使吸收率_______,出口气体浓度______________。
2. 低浓度气体的系数中,已知平衡关系y=2x, k xa =0.2 km OL /m3.s, kya=2×10-4 km OL /m 3.s, 则此体系属于( )A 气膜;B 液膜;C 气、液双膜控制,总传质系数近似为Kya =________km OL /m 3.s 。
3. 通常所讨论的吸收操作中,当吸收剂用量趋于最小用量时,( )A 回收率趋于最高 ; B 吸收推动力趋于最大;C 操作最为经济 ; D 填料层高度趋于无穷大。
4. 某操作中的吸收塔,用清水逆流吸收气体混合物中A 组分,若入塔气体浓度y 1下降,L ,G ,P ,T 等不变,则回收率有何变化____________;若L 增加,其余条件不变,则出塔液体浓度x 1有何变化________________。
5. 如图所示,为同一温度下A ,B ,C 三种气体在水中的溶解度曲线,由图可知,它们的溶解度大小顺序为__________________; 因为____________________________.6. 吸收中温度不变,压力增大,可使相平衡常数___________,传质推动力___________。
在气体吸收时,若可溶气体的浓度较大,则总体流动对传质的影响______。
7. 对易溶气体,气相一侧的界面浓度yi 接近于_________________;而液相一侧的界面浓度xi 接近于______________________。
8. 写出吸收操作中对吸收剂的主要要求的四项 。
增加吸收剂用量,操作线的斜率____________, 则操作线_________平衡线的方向偏移,吸收过程推动力(y-y*)________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理习题及解答(华南理工大学化工原理教研组编)2004年6月流体力学与传热第一章 流体流动1.1 解:混合气体的平均分子量Mn 为Mn=M 2co y 2co + M 2o y 2o + M 2N y 2N + M O H 2y O H 2=44×0.085+32×0.075+28×0.76+18×0.08=28.86kg/kmol该混合气体在500℃,1atm 时的密度为ρ=po T p To Mm **4.22**=4.2286.28×273273=0.455kg/m ³ 1.2 解:设备上真空表的绝对压强为绝对压强=大气压―真空度=740―100=640mmHg=640×760100133.15⨯=8.53×104N/m²设备内的表压强为 表压强=―真空度=―100mmHg =―(100×760100133.15⨯)=―1.33×104N/m² 或表压强=―(100×1.33×102)=―1.33×104N/m²1.3 解:设通过孔盖中心的0—0水平面上液体的静压强为p ,则p 便是罐内液体作用于孔盖上的平均压强。
根据流体静力学基本方程知p=p a +ρg h作用在孔盖外侧的是大气压强p a ,故孔盖内外两侧所受压强差为Δp =p ―p a = p a +ρgh ―=a p ρghΔp=960×9.81(9.6―0.8)=8.29×104N/m²作用在孔盖上的静压力为 =p Δp ×24d π=8.29×104241076.376.04⨯=⨯⨯πN每个螺钉能承受的力为N 321004.6014.04807.9400⨯=⨯⨯⨯π螺钉的个数=3.76×10341004.6⨯=6.23个1.4 解:U 管压差计连接管中是气体。
若以Hg O H g ρρρ,,2分别表示气体,水和水银的密度,因为gρ《Hg ρ,故由气体高度所产生 的压强差可以忽略。
由此可认为DB c A p p p p ≈≈及 由静力学基本方程式知c A p p ≈=222gR gR Hg O H ρρ+=1000×9.81×0.05+13600×9.81×0.05=7161N/m²1gR p p p Hg A D B ρ+=≈=7161+13600×9.81×0.4=6.05×104N/m(表压)1.5 解:1)1,2,3三处压强不相等,因为这三处虽在静止流体的同一水平面上,但不是连通着的 同一种流体。
2)4,5,6三处压强相等,因为这三处是静止的,连通这的同一种流体内,并在同一水平面上。
3)54p p =即 112222)(gh h h g p gh p p Hg O H B O H A ρρ+-+=+ 12)(gh p p O H Hg A B ρρ--=∴=101330―(13600―1000)×9.81×0.1=88970N/m² 或 B p =12360N/m ²(真空度)又由于64p p =即 222gh p gh p Hg C O H A ρρ+=+所以=c p 22)(gh p O H Hg A ρρ--=101330―(13600―1000)×9.81×0.2=76610N/m ²或=c p 24720N/m ²(真空度)1.6 解:在串联U 管的界面上选2,3,4为基准面,利用流体静力学基本原理从基准面2开始,写出各基准面压强的计算式,将所得的各式联解,即可求出锅炉上方水蒸气的压强0p 。
)(2122h h g p p p Hg a -+='=ρ 或 )(212h h g p p Hg a -=-ρ)(23233h h g p p p O H a --='=ρ 或 )(23223h h g p p O H --=-ρ)(4344h h g p p p Hg a -+='=ρ或 )(4334h h g p p Hg -=-ρ )(45240h h g p p O H --=ρ 或 )(45240h h g p p o H --=-ρ将以上右式各式相加,并整理得)]()[()]()[(4523243210h h h h g h h h h g p p O H Hg a -+---+-+=ρρ将已知值代入上式得7607450=p ×101330+13600×9.81[(2.3―1.2)+(2.5―1.4)] ―1000×9.81[(2.5―1.2)+(3―1.4)]=364400N/m ²或0p =364400/9.807×104=3.72kgf/cm ²1.7 解:当管路内气体压强等于大气压强时,两扩大室的液面平齐。
则两扩大室液面差Δh 与微差压差计读数R 的关系为R d h D 2244ππ=∆当压差计读数R=300mm 时,两扩大室液面差为Δh=R m D d 003.0)606(3.0)(22== 以21,ρρ分别表示水与油的密度,根据流体静力学基本原理推导出h g gR p p a ∆+-=-221)(ρρρ即管路中气体中的表压强p 为p=(998―920)×9.81×0.3+920×9.81×0.003=257N/m ²(表压)1.8 解:1)空气的质量流量从本教材附录三查得标准状况下空气的密度为1.293kg/m ³。
操作压强5451095.210807.92100133.1760740⨯=⨯⨯+⨯⨯=p N/m ² 操作条件下空气的密度为ρ=ρ'=''p T p T 1.293×355/18.3100133.1)50273(1095.2273m kg =⨯+⨯⨯空气的质量流量为 s kg uA w s /09.118.302.0412192=⨯⨯⨯⨯==πρ2)操作条件下空气的体积流量]s m w V s s /343.018.3/09.1/3===ρ3)标准状况下空气的体积流量为 s m w V s s /843.0293.1/09.1/3=='='ρ1.9 解:以下标1表示压强为1atm 的情况,下标2表示压强为5atm 的情况。
在两种情况下 s s s w w w ==21T T T ==21u u u ==21 由于 222111ρρA u A u w s ==21122124P T p T d A ρρπ==所以2121212)(p p d d ==ρρ 即 mm p p d d 0313.05107.02112=== 1.10 解:以高位槽液面为上游截面1—1’,连接管出口内侧为下游截面2—2’,并以截面1—1’为基准水平面。
在两截面间列柏努利方程式,即∑+++=++f h p u gZ p u gZ ρρ2222121122 式中 01=Z s m A V u p u s /62.1033.0436005/(002211=⨯⨯==≈≈π表压)表压)(/980710807.91.0242m N p =⨯⨯=kg J h f /30=∑将上列数值代入柏努利方程式,并解得m Z 37.481.9/)308509807262.1(22-=++-= 高位槽内的液面应比塔的进料口高4.37m 。
1.11 解:1)A ——A’截面处水的流速以高位槽液面为上游截面1——1’,管路出口内侧为下游截面2——2’,并以地面为基准面。
在两截面间列柏努利方程式,即∑+++=++f h p u gZ p u gZ ρρ2222121122 式中 m Z 81= m Z 22=2222115.65.60u u h p p u f ===≈∑将上列数值代入柏努利方程式,并解得s m u /9.27/681.92=⨯=由于输水管的直径相同,且水的密度可视为常数,所以A ——A ’截面处的流速s m u A /9.2=2)水的流量 23360036000.1 2.982/4h V Au m h π==⨯⨯⨯=1.12 解:上游截面A ——A ’,下游截面B ——B ’,通过管子中心线作基准水平面。
在两接间列柏努利方程式,即 ∑+++=++AB f B B B A A A h p u gZ p u gZ ,2222ρρ 式中 ∑====kg J hs m u Z Z AB f A B A /5.1/5.20,根据连续性方程式,对于不可压缩流体,则 2244B B A A d u d u ππ= 所以s m d d u u B AA B /23.1)4733(5.2)(22===两截面的压强差为ρ)2(,22∑--=-AB f B A A B h u u p p=(222/5.8681000)5.1223.15.2m N =⨯-- 即A B p p -=868.5/9.798=88.6mmH2O 两截面玻璃管的水面差为88.6mm 。
由于 A B p p +=6.88所以 A B p p >B 处玻璃管的水面比A 处玻璃管的水面高。
1.13 解:水在管内流速与流量贮槽水面为截面1——1’,真空表连接处为截面2——2’,并以截面1——1’为基准水平面。
在两截面间列柏努利方程,即∑+++=++1,2222121122f h p u gZ p u gZ ρρ 式中01=Z m Z 5.12=2(0221,1≈==∑u u h p f 表压)表压)(/1047.2100133.17601852452m N p ⨯-=⨯⨯-= 将上列数值代入柏努利方程式,并解得水在管内的流速为s m u /25.2)5.181.910001047.2(4=⨯-⨯= 水的流量为s kg uA w s /92.71000071.0422=⨯⨯⨯==πρ2)泵的有效功率贮槽水面为上游截面1——1’,排水管与喷头连接处为下游截面3——3’,仍以截面1——1’为基准水平面。
在两截面间列柏努利方程,即∑∑++++=+++2,1,2222121122f f e h h p u gZ W p u gZ ρρ 式中(表压)00111=≈=p u Z 表压)(/10807.9/21424222m N p s m u m Z ⨯===2222,1,12102u u u h h f f =+=+∑∑将上列数值代入柏努利方程式,并解得kg J W e /4.28525.12100010807.91481.924=⨯+⨯+⨯= 泵的有效功率为kW W w W N s e e 26.2226092.74.285==⨯==2.14解:本题属于不稳定流动,槽内液面下降1m 时所需要的时间,可通过微分时间内的物料衡式与瞬间柏努利方程式求解。