加热器为饱和蒸汽的换热设备的计算

合集下载

化工原理の传热实验

化工原理の传热实验

化工原理の传热实验一、实验目的1、学习传热系数的测定方法;2、学习传热膜系数及其准数联式的测定方法。

二、实验原理本实验有套管换热器4套,列管式换热器4套,首先介绍套管换热器。

套管换热器管间进饱和蒸汽,冷凝放热以加热管内的空气,实验设备如图2-2-5-1(1)所示。

传热方式为:冷凝—传导—对流 1、传热系数可用下式计算: ]/[2k m W t A qK m⋅∆⋅=(1)图2-2-5-1(1) 套管换热器示意图 式中:q ——传热速率[W] A ——传热面积[m 2] △t m —传热平均温差[K] ○1传热速率q 用下式计算: ])[(12W t t C V q p S -=ρ (2) 式中:3600/h S V V =——空气流量[m 3/s]V h ——空气流量[m 3/h]ρ——空气密度[kg/m 3],以下式计算:]/)[273(4645.031m kg t R p Pa ++=ρ (3)Pa ——大气压[mmHg]Rp ——空气流量计前表压[mmHg] t 1——空气进换热器前的温度[℃]Cp ——空气比热[K kg J ⋅/],查表或用下式计算:]/[04.01009K kg J t C m p ⋅+= (4) t m =(t 1+t 2)/2——空气进出换热器温度的平均值(℃) t 2——空气出口温度[℃]②传热平均面积A :][2m L d A m π= (5)式中:d m =传热管平均直径[m]L —传热管有效长度[m ]③传热平均温度差△t m 用逆流对数平均温差计算:T ←——T t 1——→t 2 )(),(2211t T t t T t -=∆-=∆2121ln t t t t t m ∆∆∆-∆=∆ (6) 式中:T ——蒸汽温度[℃]2、传热膜系数(给热系数)及其关联式空气在圆形直管内作强制湍流时的传热膜系数可用下面准数关联式表示:nr m e P R Nu 0α= (7)式中:N u ——努塞尔特准数R e ——雷诺准数 P r ——普兰特准数αo ——系数,经验值为0.023 m ——指数,经验值为0.8n ——指数,经验值为:流体被加热时n=0.4,流体被冷却n=0.3 为了测定传热膜系数,现对式(7)作进一步的分析:λαdNu =(8) α——空气与管壁间的传热膜系数[W/m 2·k] 本实验可近似取α=K[传热系数],也可用下式计算:)(m W i t t A q -=α (9)A i ——传热管内表面积[m 2] t W ——管壁温[℃]t m ——空气进、出口平均温度[℃] d ——管内径[m]λ——空气的导热系数[W/m ·k],查表或用下式计算:λ=0.0244+7.8×10-5t m (10) μρdu =Re (11)u ——空气在加热管内的流速[m/s]μ——空气定性温度(t m )下的粘度[pa ·s],查表或用下式计算:μ=1.72×10-5+4.8×10-8t m (12)d ,ρ——意义同上。

(新版)公用设备工程师专业案例(给排水)考试题库_全真题库

(新版)公用设备工程师专业案例(给排水)考试题库_全真题库
解析:
9
14.
A、16% B、24% C、31% D、35% 答案:B
10
解析:
15.
A、567L/s B、395L/s C、375L/s D、350L/s 答案:B 解析:总设计流量为各设计流量之和,《室外排水设计规范》3.1.1 条中要求在 地下水位高的地区考虑入渗地下水量,即 Q=250+25+100+20=395L/s。
27.
19
A、3.3% B、10.3% C、20.3% D、30.3% 答案:D 解析:
28.某住宅区拟建化粪池一座,其服务总人数为 1000 人,生活用水量按 200L/(c ap²d)计,生活污水与生活废水合流排出,污水在化粪池内停留时间采用 12 小 时,该化粪池污水部分的容积计算值应为以下何项?() A、 B、 C、 D、 答案:C 解析:
A、 B、 C、 D、 答案:B 解析:
17
24.当污泥的含水率从 99.5%降低至 96.0%时,求污水的体积是原体积的几分之几? () A、2/7 B、1/8 C、7/8 D、1/4 答案:B
解析: 25.
A、30.67L/s
18
B、20.93L/s C、18.73L/s D、32.87L/s 答案:C 解析:2~5 段的初始分配流量是向下的,为负,则在Ⅰ环内看,与 2~5 段的初 始分配流量是削减作用。同样分析,在Ⅱ环内看,为正对 2~5 段的初始分配流 量也是削减作用。所以,25.8-5.97-1.10=18.73L/s。 26.某医院住院部公共盥洗室内设有伸顶通气的铸铁排水立管,其上连接污水盆 2 个,洗手盆 8 个,则该立管的最大设计秒流量 q 和最小管径 DN 应为以下何项? () A、q=0.96L/s,DN50mm B、q=0.96L/s,DN75mm C、q=0.63L/s,DN50mm D、q=0.71L/s,DN75mm 答案:B 解析:

5.填空题-题目

5.填空题-题目

层次:A(1) t05a01009等温面不会相交,因为__________________________________________________。

(2) t05a01011为了减少高温发热体辐射的散失,可采用在发热体之外设置_______________的措施。

(3) t05a01012在多层平壁稳定热传导中,通过各层的热通量________________。

(4) t05a01033在流体与间壁间的换热过程中,计算式d Q = ·d A·Δt中,Δt表示为_______________。

(5) t05a01034努塞尔准数的定义式是_________________________。

(6) t05a01035定性温度是指___________________________________。

(7) t05a01041对流给热过程的特征尺寸是指______________________________。

(8) t05a01054滴状冷凝的给热系数________膜状冷凝给热系数。

(9) t05a01055沸腾传热时,在核状沸腾区壁面与沸腾流体的温差愈大,则α__________。

(10) t05a01063蒸汽冷凝时,当蒸汽流速较大,且蒸汽和液膜流向相同,则使蒸汽冷凝给热系数______________。

(11) t05a01068单一饱和蒸汽冷凝时,热阻由_______________决定。

(12) t05a01076相等(13) t05a01078黑色的表面粗糙的物体热辐射能力__________________。

(14) t05a01079为了增加电器设备的散热能力,可在表面涂上黑度____________的油漆。

(15) t05a01085物体的辐射传热速率与绝对温度的____________成正比。

热辐射是由________________________________________所引起。

蒸汽供热换热站主要参数计算一例

蒸汽供热换热站主要参数计算一例

蒸汽供热换热站主要参数计算一例
首先,计算蒸汽流量。

蒸汽流量的计算通常根据建筑物的供热负荷来确定。

假设建筑物的供热负荷为1000 kW,蒸汽的标准焓为2750 kJ/kg,那么蒸汽流量Q可以通过下式计算得到:
Q = 1000 kW / (2750 kJ/kg) = 0.36 kg/s
接下来,计算换热面积。

换热面积的计算需要知道蒸汽在换热站中的进出口温度差、换热器的传热系数和传热面积。

假设蒸汽的进口温度为200°C,出口温度为150°C,传热器的传热系数为800W/(m²·K),传热面积为1000m²,那么换热面积A可以通过下式计算得到:
A=(Q*1000)/(ΔT*U)=(0.36*1000)/((200-150)*800)=0.09m²
最后,计算温差。

温差的计算需要知道蒸汽的进口温度和出口温度。

假设蒸汽的进口温度为200°C,出口温度为150°C,那么温差ΔT可以通过下式计算得到:
ΔT=200-150=50°C
综上所述,蒸汽供热换热站的主要参数计算结果为:蒸汽流量Q为0.36 kg/s,换热面积A为0.09 m²,温差ΔT为50°C。

这些参数的准确计算对于蒸汽供热换热站的设计和运行非常重要,可以确保供热效果和系统的稳定性。

化工课程设计 水蒸气加热苯列管式换热器的设计.docx

化工课程设计 水蒸气加热苯列管式换热器的设计.docx

学号0120920390131课程设计题目水蒸气加热苯列管式换热器的设计学院化学工程学院专业班级化工0901班姓名指导老师2010年9月课程设计任务书学生姓名:赵蓉专业班级:化工0901班指导教师:张光旭工作单位:化学工程学院题目: 水蒸气加热苯列管式换热器的设计一、工艺条件用150 KPa的饱和水蒸气将20 ℃的苯加热到75 ℃,苯的质量流量为45t/h,试设计一列管式换热器,要求其管程压降小于70 kPa。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、合理的参数选择和结构设计;2、工艺计算,包括传热计算和压降计算等;3、主要设备工艺尺寸设计。

时间安排:设计内容所用时间1、根据换热任务和有关要求确定设计方案;1天2、初步确定换热器的结构和尺寸; 1天3、核算换热器的传热面积和流体阻力;1天4、确定换热器的工艺结构;1天5、写出设计说明书。

1天指导教师签名:年月日系主任(或责任教师)签名:年月日前言在工业生产中,为了实现物料之间热量传递过程中的一种设备,统称为换热器,它是化工炼油,动力,原子能和其它许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工,炼油等工业生产来说,换热器尤为重要,换热器随着使用目的的不同可以把它分为:热交换器,加热器,冷却器,冷凝器,蒸发器和再沸器等。

本设计的主要任务是完成满足某一生产要求的管壳式换热器,它是属于列管式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。

换热器的工艺设计计算有两种类型,即设计计算和校核计算,包括计算换热面积和造型两方面。

设计计算的目的是根据给定的工作条件及热负荷,选择一种适当的换热器类型,确定所需的换热面积,进而确定换热器的具体尺寸。

校核计算的目的则是对已有的换热器校核它是否满足预定要求,这是属于换热器性能计算问题。

无论是设计计算还是校核计算,所需的数据包括结构数据、工艺数据和物性数据三大类。

蒸汽换热器设备选型

蒸汽换热器设备选型

蒸汽换热器设备选型以蒸汽为热源将水加热,在采暖、空调、生活热水选何种换热器是整体设计的一项重要内容。

笔者认为必须满足以下三个条件:1.加热速度快,热效率高。

2.操作简单,少维修,低运行成本。

3.综合造价低,占地小,配套设备少。

用蒸汽作热源加热水基本有两种方法:1.间接加热――蒸汽与水为两个独立系统,通过金属表面热能从高品位向低品位传导。

2.直接加热――蒸汽与水直接混合,将水加热。

间接换热器的特性:间接加热必须具备两个条件才能进行热能的位移。

从传热公式Q=KF△T可以看出:1.传导必须有温差,即△T≠0.不能等温换热,一般情况要求△T≥20℃,否则温差越小,换热面积越大。

2.K值。

一种金属的传热系统K值为恒定值。

如果金属表面生成0.1㎜厚水垢,K值相应减少几倍,换热面也相应减少几倍,在采暖、空调系统中用软水就是这个道理。

因蒸汽与水是两个各自独立的系统,压力相互间不会影响。

蒸汽换热应采用二级换热:第一级为汽-水换热(利用潜热);第二级为水-水换热(利用显热)。

在饱和蒸汽中,因潜热大于显热6-10倍,因工程造价原因,一般采用汽――水一级换热。

间接换热器种类及特点:一、列管式换热器。

采用层流传热,一级换热热效率不超过80%,冷凝水温度高,超过100℃,易汽化,蒸汽压力低于0.2MPa时,易产生蒸汽与水的冲击噪音,且有储存热水功能,水温上热下冷。

份量重,易结垢。

因检修需要一定抽管距离,且占地面积大,价格高,基本为淘汰产品。

二、螺旋板式换热器。

采用层流传热,有两种不同材质:一种为碳钢,一种为不锈钢。

热效率不超过80%,一次性使用无法维修。

比列管式占地相对小,易结垢,造价低,冷凝水温度超过100℃.易汽化,蒸汽压力小于0.2MPa时,冷凝水与蒸汽产生汽水冲击噪声,因价格低廉不普遍被采用。

三、波纹管式换热器。

采用振动和层流混合传热,一级换热热效率不超过80%,占地小,易结垢,冷凝温度超过100℃,易汽化,蒸汽压力小于0.2MPa时,水与蒸汽产生冲击噪声,因占小,90年代初为流行产品。

换热器换热面积选型计算方法

换热器换热面积选型计算方法

二、确定物性数据
1.定性温度
对于粘度低的流体,其定性温度可取流体进出口温度的平 均值。所以, 壳程流体的定性温度为: 管程流体的定性温度为: 2.物性参数
1 4 04 0 T 9 0 C 2
2 04 0 t 3 0 C 2
定性温度下,管程流体(井水)、壳程流体(植物油)有关 物性参数由《主要物性参数表》得出。
换热器课程设计
第三节 换热器计算方法
换热器:在不同温度的流体间传递热能的装置
称为换热器。 在化工、石油、动力、制冷、食品等行业中 广泛使用各种换热器,且它们是上述行业的通用 设备,占有十分重要的地位。
1、热力设计 根据使用单位提出的基本要求,合理地选择运 行参数,并进行传热计算。 计算出总传热系数、传热面积 2、流动设计 计算压降,为换热器的辅助设备提供选择参数 3、结构设计 根据传热面积的大小计算其主要零部件的尺寸 4、强度设计 应力计算。考虑换热器的受力情况,特别是在 高温高压下换热器的受压部件应按照国家压力容 器的标准设计。
一般,设计时冷却水两端温度差可取为5~10℃。
四、管子的规格和排列方法
1.管径
应尽可能使流速高些,但一般不应超过前面 的流速范围
a. 小直径管子单位传热面积的金属消耗量小,传热系数 稍高,但容易结垢,不易清洗,用于较清洁的流体; b. 大直径管子用于粘性大或易结垢的流体。
目前列管式换热器系列标准中管径具有: Φ 25mm × 2.5mm、 Φ 19mm × 2mm
2、计算管程、壳程压强降
根据初定的设备规格,计算管程、壳程流体的流速和压 强降。验算结果是否满足工艺要求。若压强降不符合要求, 要调整流速,再确定管程数或折流板间距,或选择另一规 格的换热器,重新计算压强降直至满足要求。

3.换热器的设计计算

3.换热器的设计计算

传热负荷生产上对物料加热(冷却)时所需提供(移除)的热量设Q —传热速率,W ;W1、W2 —热、冷流体的质量流率,kg/s ;Cp1、Cp2 —热、冷流体的比热,J/(kg·K);T1、T2 —热流体的进、出口温度,℃;t1、t2 —冷流体的进、出口温度,℃;r —流体的汽化或冷凝潜热,kJ/kg 。

无相变:()1211p Q W C T T =−()2221p Q W C t t =−()21p Q W r C t t =+−⎡⎤⎣⎦有相变:()()12112221p p Q W C W C t t T T =−=−若忽略热损失,则热流体放出的热量等于冷流体吸收的热量)()22112121212lnln t T t t t t T t t T −−Δ−Δ=−Δ−Δ()()12121122lnmt t T T t t T t T −−−Δ==−−温差修正曲线¾ψ<1(Δtm <Δtm,逆)是由于复杂流动中同时存在并流和逆流;¾换热器设计时ψ值不应小于0.8,否则不经济;¾可改用多壳程来增大ψ,即将几台换热器串联使用。

Hextran使用最大的管长作为初始值进行计算,如果不满足管程压降和管速限制的话就会减少一个增加值再进行计算。

标准指定选择方法。

设计压力会TEMA类型:前管箱(A、B、C、N、D)TEMA类型:壳程(E,F,G,H,J,K,X)TEMA类型:后管箱或后端结构(L,M,N,P,S,T,U,W)翅片的设计(Fins 选项页)¾翅片效率:对于翅片管外膜传热系数的计算,以光管外表面为基准,其关系式如下:hf0—以光管外表面积为基准的翅片管外膜传热系数hf—翅片管表面膜传热系数At—翅片管的光管部分的面积Af—翅片管的翅片部分的面积A0—光管的外表面积Ω—翅片效率⎟⎟⎠⎞⎜⎜⎝⎛Ω+=o f t f fo A A A h h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加热器为饱和蒸汽的换热设备的计算加热器是一种常见的换热设备,用于将饱和蒸汽的热量传递给工艺流体或者其他用途(如发电),以实现热能的利用。

加热器的设计和计算需要考虑多个因素,包括进出口温度、流量、压力等参数。

下面将详细介绍饱和蒸汽加热器的计算过程。

首先,我们需要明确加热器的工作原理。

加热器通过将热量从高温的饱和蒸汽传递给工艺流体,使其升温。

在加热器内部,饱和蒸汽经过换热管或换热器壳管(也称为蒸汽升温器),通过直接接触、对流或辐射的方式将热量传递给流过管内的工艺流体。

加热器的计算需要先确定进出口温度差ΔT和进出口流量。

ΔT可以通过工艺要求或实际操作确定。

进出口流量可以通过质量流率或体积流率来衡量,可以根据实际情况计算或测量得到。

然后,我们需要了解饱和蒸汽的性质。

饱和蒸汽是指在一定压力下和一定温度下共存的液态水和蒸汽,可以通过蒸汽表或热力学性质表查找相关参数。

重要的参数包括饱和蒸汽的压力、温度、焓值和熵值等。

在进行加热器的计算时,可以采用一维热传导的模型。

可以通过质量守恒和能量守恒方程求解加热器的换热量、传热系数等参数。

首先,根据质量守恒方程,可以得到进出口流体质量流率的关系:m₁+m₂=m₃+m₄
其中m₁和m₃分别表示饱和蒸汽的进口和出口质量流率,m₂和m₄分别表示工艺流体的进口和出口质量流率。

然后,根据能量守恒方程,可以得到加热器传热量的关系:
m₁h₁+m₂h₂=m₃h₃+m₄h₄
其中h₁、h₂、h₃和h₄分别表示饱和蒸汽和工艺流体在相应温度下的焓值。

在加热器的计算中,传热系数是一个重要的参数。

传热系数可以通过经验公式、实验测定或数值模拟得到。

常用的换热方法包括对流、传导和辐射。

传热系数与流体流速、管道材料、流体性质、管道壁面条件等因素有关。

计算完以上参数后,可以得到加热器的换热面积。

换热面积可以通过以下公式计算:
A=Q/(U×ΔTm)
其中Q表示加热器的换热量,U表示传热系数,ΔTm表示平均温差。

最后,可以根据所要求的温度升高和换热面积,选择合适的换热器类型和尺寸。

一般来说,需要考虑到压降、流体速度、焓差和加热器结构等因素。

综上所述,饱和蒸汽加热器的计算是一个较为复杂的工程问题,它需要考虑多种参数和因素。

准确的计算和合理的设计可以提高换热效率,确保加热器的正常运行。

因此,在实际中,需要充分了解材料、流体性质、工艺要求等相关信息,并结合经验和实验数据进行合理的计算和设计。

相关文档
最新文档