抛物线及其标准方程优秀PPT课件
合集下载
《抛物线及其标准方程》省公开课获奖课件市赛课比赛一等奖课件

x(p>0)
2
y p 2
y ≤0 x∈R
y轴
特点:
1.抛物线只位于半个坐标平面内; 2.抛物线只有一条对称轴,没有 对称中心; 3.抛物线只有一种顶点、 一种焦点、一条准线; 4.抛物线旳离心率是拟定旳,为1;
y
P(x, y)
o F( p ,0) x
2
补充(1)通径: 经过焦点且垂直对称轴旳直线, 与抛物线相交于两点,连接这 两点旳线段叫做抛物线旳通径。
2
⑵有两个公共点
k 0 △ 16(2k 2 k 1) 0
1 k 0, 或0 k 1 2
⑶没有公共点
k 0 △ 16(2k 2
k
1)
0
k
1,
或k 1 2
综上所述
当k 1,或k 0,或k 1 时,直线与抛物线只有一个公共点; 2
当 1 k 0或0 k 1 时,直线与抛物线有两个公共点; 2
解:因焦点在y轴旳负半轴上,且p=4,故其原则 方程为:x 2= - 8y
练习:
1、根据下列条件,写出抛物线旳原则方程:
(1)焦点是F(3,0);
y2 =12x
(2)准线方程 是x =
1 4
;
y2 =x
(3)焦点到准线旳距离是2。y2 =4x、 y2 = -4x、 x2 =4y 或 x2 = -4y
4
O
x
当焦点在x轴旳负半轴上时,
把A(-3,2)代入y2 = -2px,
2
得p=
∴抛物3线旳原则方程为x2
=
9
y或y2
=
4
x
。
2
3
思索题、M是抛物线y2 = 2px(P>0)上一点,若点
抛物线及其标准方程 课件(共21张PPT)数学人教A版(2019)选择性必修 第一册

p 2
2,
p 4,所以所求抛物线的标准方程是 x2 8 y
讲
课
人
:
邢
启 强
15
例题(讲3评)已知抛物线的准线方程为 x = 1 ,求抛物线的标准方程
yl
Fo
x
x=1
解:因为准线方程是 x = 1,所以 p =2 ,且焦点在 x 轴
的负半轴上,所以所求抛物线的标准方程是 y2 =-4x .
讲
课
讲
课 人 :
我们把这样的一条曲线叫做抛物线.
邢
启 强
6
新知总结 一、抛物线的定义:
在平面内,与一个定点F和一条定直 线l(l不经过点F)的距离相等的点的轨迹 叫抛物线.
· d M
C
H
焦点
·F
点F叫抛物线的焦点, 直线l 叫抛物线的准线
l
准线
e=1
d 为 M 到 l 的距离
即:若 MF 1 ,则点 M 的轨迹是抛物线. d
4.注重数形结合、分类讨论思想的应用
5.注重实际应用
讲
课
人
:
邢
启 强
21
3.3.1抛物线及其标准方程
1.回顾抛物线是如何切出来的。
临 界
2.如何画出抛物线呢? ●第一定义?
第二定义?
复习回顾 我们知道,椭圆、双曲线的有共同的几何特征:
都可以看作是,在平面内与一个定点的距离和一条定直线的距离的比 是常数e的点的轨迹. (其中定点不在定直线上)
(1)当0<e<1时,是椭圆; (2) 当e>1时,是双曲线;
(A)直线
(B)抛物线
(C)双曲线 (D)椭圆
讲
课
抛物线及其标准方程优质课-PPT课件一等奖新名师优质课获奖比赛公开课

代入解得 p 1 故所求方程为 y2 2x 或 x2 2 y
(3)原则方程为
y2
2 px ,由
p1得
24
p1 2
,
所求方程为 y2 x
(4)焦点是直线x+y+1=0与坐标轴旳交点, 故 F (0, 1)
或F ( 1, 0) ,所以
y2 4x
p 2
1,
p
2
,故方程为
x2
4 y
或
例2 一种卫星接收天线的轴 截面如图2.3
的抛物线的标准方程?
y
y
OF x
x
FO
y2=2px
想一想
如右图所示,两抛物线 有关y轴对称,只需在 y2 2 px 中以-x 代换x即可.
M y2 2 px
M' y2=2px
思索
请根据前面求出旳抛物线旳原则方程完毕下表:
图形
• 原则方 程
y2 2 px
p 0
焦点坐标 准线方程
p ,0 2
3 1 所示.卫星波束呈近似平行状 态射入轴
截面为抛物线的接收天 线,经反射聚集到焦
点处 .已知接收天线的口径 直径为 4.8m,深
度为0.5m,求抛物线的标准方程和 焦点坐标 . y A
1
图2.3 3
O
Fx
B
2
y
解 如图2.3 3 2,在接收天
A
线的轴截面所在平面内建立
直角坐标系,使接收天线的顶 O
例3 根据已知条件,求抛物线旳原则方程.
(1)焦点坐标为 F 0,2 (2)经过点(2 , 2)
(3)准线方程为 x 1 (4)焦点在直线x+y+1=0
3.3.1抛物线及其标准方程(PPT)课件(人教版)

1.抛物线 y=41x2 的准线方程是(
)
A.y=-1 B.y=-2
C.x=-1 D.x=-2
A 解析:因为 y=41x2⇔x2=4y,所以抛物线的准线方程是 y=
-1.
2.顶点在原点,焦点是 F(0,3)的抛物线标准方程是( ) A.y2=12x B.x2=12y C.y2=112x D.x2=112y
解: (1)由于点 M(-6,6)在第二象限, 所以过点 M 的抛物线开口向左或开口向上. 若抛物线开口向左,焦点在 x 轴上,设其方程为 y2=-2px(p>0). 将点 M(-6,6)代入,可得 36=-2p×(-6),所以 p=3. 所以抛物线的方程为 y2=-6x.
若抛物线开口向上,焦点在 y 轴上,设其方程为 x2=2py(p>0). 将点 M(-6,6)代入,可得 36=2p×6,所以 p=3, 所以抛物线的方程为 x2=6y. 综上所述,抛物线的标准方程为 y2=-6x 或 x2=6y.
3.已知动点 P(x,y)满足 (x-1)2+(y-2)2=|3x+45y-10|, 则点 P 的轨迹是( )
A.直线 B.圆 C.椭圆 D.抛物线 D 解析:由题意知,动点 P 到定点(1,2)和定直线 3x+4y-10 =0 的距离相等,又点(1,2)不在直线 3x+4y-10=0 上,所以点 P 的轨迹是抛物线.
1.已知抛物线 y2=4x 的焦点是 F,点 P 是抛物线上的动点, 又有点 A(3,4),则|PA|+|PF|的最小值为________.
2 5 解析:由题意可知点 A(3,4)在抛物线的外部. 因为|PA|+|PF|的最小值即为 A,F 两点间的距离,F(1,0), 所以|PA|+|PF|≥|AF|= 42+22=2 5, 即|PA|+|PF|的最小值为 2 5.
抛物线及其标准方程优秀课件

准线位置:根据抛物线 准线的位置,可以分为 准线平行于x轴、准线 平行于y轴和准线不平 行于坐标轴三种。
抛物线的标准方程
抛物线的标准方程推导
抛物线的定义:一个平面曲线,它的所有点都位于一个固定点(焦点)和一条固定直 线(准线)之间。
抛物线的标准方程:y^2 = 4px,其中p是焦点到准线的距离。
抛物线的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。 单击此处添加文本具体内容,简明扼要地阐述您的观点。根据需要可酌情增减文字, 以便观者准确地理解您传达的思想。单击此处添加文本具体内容,简明扼要地阐述您 的观点
抛物线的对称轴为x=-b/2a。 结论:二次函数的对称轴与抛物线的对称轴相同,都为x=-b/2a。
抛物线的准线方程
准线的定义: 抛物线上任意 一点到准线的
距离相等
准线的方程: x=-p(开口方 向为x轴正方向) 或x=p(开口 方向为x轴负方
向)
准线的性质: 准线是与抛物 线对称轴平行 的直线,离抛
物线最近
准线的作用: 利用准线方程 可以求出抛物 线上任意一点
的坐标
抛物线的解析性质
抛物线的导数与切线斜率
抛物线在建筑美学中的应用:古罗 马建筑中的抛物线元素
抛物线在建筑美学中的应用:桥梁、 隧道等交通设施中的抛物线应用
添加标题
添加标题
添加标题
添加标题
抛物线在建筑美学中的应用:现代 建筑中的抛物线设计
抛物线在建筑美学中的应用:室内 设计中的抛物线元素
物理学中的抛物线应用
光学应用:抛物线 镜面可以聚焦光线, 用于制造望远镜、 显微镜等光学仪器。
抛物线的渐近线方程
定义:抛物线与直线y=±x 的交点形成的直线
3.3.1抛物线及其标准方程课件(人教版)

5.二次函数 = ( ≠ )的图象是抛物线吗?如果是,请写出它的焦点
坐标、准线方程.
问题1 抛物线的定义
我们把平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨
迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
问题2 当直线l经过点F时,点的轨迹是什么?
过定点F且垂直于定直线l的一条直线.
y
M
H
•
K O
•
F
x
将上式两边平方并化简,得y2=2px(p>0).
① 我们把方程①叫做抛物线的标准方程
p
它表示焦点在 x轴正半轴上,焦点是F ( ,0)
,
2
p
准线是 x 的抛物线.
2
y2 = 2px (p>0)其中p为正常数,表示焦点在x轴正半轴上.y
p
( , 0) ,
2
焦点坐标是:_________
p
x
准线方程为:_______2
向右
开口方向:_____
焦点到准线的距离(焦准距).
p的几何意义是:___________________
问题4 抛物线只有这一种形式吗 ?
M
H
K
•
O
•
F
x
四种不同的建立平面直角坐标系
y
y
M
H
M
y
H
y
•
K O
•
F
x
•
FO
•
K
x
F•
O•
K
K•
O•
F
M
H
x
M
x
H
抛物线方程特点
l
F
坐标、准线方程.
问题1 抛物线的定义
我们把平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨
迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.
问题2 当直线l经过点F时,点的轨迹是什么?
过定点F且垂直于定直线l的一条直线.
y
M
H
•
K O
•
F
x
将上式两边平方并化简,得y2=2px(p>0).
① 我们把方程①叫做抛物线的标准方程
p
它表示焦点在 x轴正半轴上,焦点是F ( ,0)
,
2
p
准线是 x 的抛物线.
2
y2 = 2px (p>0)其中p为正常数,表示焦点在x轴正半轴上.y
p
( , 0) ,
2
焦点坐标是:_________
p
x
准线方程为:_______2
向右
开口方向:_____
焦点到准线的距离(焦准距).
p的几何意义是:___________________
问题4 抛物线只有这一种形式吗 ?
M
H
K
•
O
•
F
x
四种不同的建立平面直角坐标系
y
y
M
H
M
y
H
y
•
K O
•
F
x
•
FO
•
K
x
F•
O•
K
K•
O•
F
M
H
x
M
x
H
抛物线方程特点
l
F
抛物线及其标准方程 课件

解:(1)∵点(-3,2)在第二象限,
∴抛物线的标准方程可设为 y2=-2px(p>0)或 x2=2py(p>0).
把点(-3,2)的坐标分别代入 y2=-2px(p>0)和 x2=2py(p>0),得
4=-2p·(-3)或 9=2p·2,
4
3
9
2
即 2p= 或2p= .
4
3
9
2
故所求抛物线的标准方程为 y2=− 或x2= .
y=ax2+bx+c(a≠0)的图象可由开口向上或向下的标准形式的抛物线
通过平移得到.
求抛物线的标准方程
【例1】 试求满足下列条件的抛物线的标准方程:
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上;
5
(3)焦点到准线的距离为 .
2
分析:对于(1),需要确定 p 的值和开口方向两个条件,因为点(-3,2)
5
2
5
2
(3)由焦点到准线的距离为 , 可知p= ,
即 2p=5.
故所求的抛物线方程为 y2=5x 或 y2=-5x 或 x2=5y 或 x2=-5y.
抛物线的定义及标准方程的应用
【例2】 平面上动点P到定点F(1,0)的距离比到y轴的距离大1,求动
点P的轨迹方程.
分析一:设点 P 的坐标为(x,y),则有 (-1)2 + 2 = || + 1,
在第二象限,所以抛物线的标准方程可设为 y2=-2px(p>0)或
x2=2py(p>0);对于(2),因为抛物线标准方程的焦点在坐标轴上,所以
求出直线 x-2y-4=0 与坐标轴的两个交点(4,0)和(0,-2),即为所求抛物
3.3.1抛物线及其标准方程-课件(共26张PPT)

7
由图可知,当 ⊥ 时,|| + 最小,最小值为2.
7
即|| + ||的最小值为2 ,
此时P点纵坐标为2,代入2 = 2,得 = 2.
∴点P坐标为(2,2).
9.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露
出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
m2
设 P ( , m ) ,则点 M
2p
p
p
,m ,
2
因为焦点 F 2 , 0 , FPM 是等边三角形,
m2 p
6
m2 27
2 p 2
.因此抛物线方程为
所以
,解得
p
3
p
p
( )2 m2 6
2 2
y2 6x .
(2)待定系数法.
若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,
若抛物线的焦点位置不确定,则要分情况讨论,
另外,焦点在 x 轴上的抛物线方程统一设成 y2=ax (a ≠ 0) ,
焦点在 y 轴上的抛物线方程可统一设成 x2=ay (a ≠ 0).
跟踪训练
1.根据下列条件写出抛物线的标准方程:
5.过抛物线 y 2 2 px( p 0) 的焦点作直线交抛物线于 P( x1 ,y1 ) 、Q( x2 ,y2 ) 两点,若 x1 x2 3 p ,
则 PQ 等于( A )
A.4p
B.5p
C.6p
D.8p
6.与圆(x-2)2+y2=1外切,且与直线x+1=0相切的动圆圆心的轨迹方程是
由图可知,当 ⊥ 时,|| + 最小,最小值为2.
7
即|| + ||的最小值为2 ,
此时P点纵坐标为2,代入2 = 2,得 = 2.
∴点P坐标为(2,2).
9.河上有抛物线型拱桥,当水面距拱桥顶5米时,水面宽为8米,一小船宽4米,高2米,载货后船露
出水面上的部分高0.75米,问水面上涨到与抛物线拱顶相距多少米时,小船开始不能通航?
m2
设 P ( , m ) ,则点 M
2p
p
p
,m ,
2
因为焦点 F 2 , 0 , FPM 是等边三角形,
m2 p
6
m2 27
2 p 2
.因此抛物线方程为
所以
,解得
p
3
p
p
( )2 m2 6
2 2
y2 6x .
(2)待定系数法.
若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,
若抛物线的焦点位置不确定,则要分情况讨论,
另外,焦点在 x 轴上的抛物线方程统一设成 y2=ax (a ≠ 0) ,
焦点在 y 轴上的抛物线方程可统一设成 x2=ay (a ≠ 0).
跟踪训练
1.根据下列条件写出抛物线的标准方程:
5.过抛物线 y 2 2 px( p 0) 的焦点作直线交抛物线于 P( x1 ,y1 ) 、Q( x2 ,y2 ) 两点,若 x1 x2 3 p ,
则 PQ 等于( A )
A.4p
B.5p
C.6p
D.8p
6.与圆(x-2)2+y2=1外切,且与直线x+1=0相切的动圆圆心的轨迹方程是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:求抛物线的焦点
一定要先把抛物线化为
(3)2y2 +5x =0 (4)x2 +8y =0
标准形式
焦点坐标
准线方程
(1) (2) (3) (4)
(5,0) (0,—1)
8
(- 5—,0)
8
(0,-2) .
x= -5
y= - —1
8
x= 5—
8
y= 2
11
反思研究
已知抛物线的标准方 程 求其焦点坐标 和准线方程
代入点M坐标得: (x p)2 y2 | x p|
2
2
两边平方,整理得 y2 2px(p0)
这就是所求的轨迹方程.
三.抛物线的标准方程
方程 y2 = 2px(p>0)叫做 抛物线的标准方程.
y
· N M · 其中 p 叫焦参数,它的几何
意义是:焦点到准线的距离. K o F x
抛物线的标准方程
抛物线的标准方 程还有哪些形式?
设点
l
· N M
列式
·F
化简
二、标准y 方程的解推法导:以过F且垂直于 l 的直线
M(x,y) 为x轴,垂足为K.以F,K的中点O
Ko F
为坐标原点建立直角坐标系xoy.
x 设 M( x, y), FK p ,
l
则焦点 F( p , 0) ,准线 l : x p
2
2
由抛物线的定义可知 │MF│=│MN│
抛物线及其标准 方程
.
1
生活中存在着各种形式的抛物线
.
2
抛物线及标准方程
.
3
一.抛物线的定义
抛物线.exe
平面内与一个定点F 和一条定直线l
(F l)的距离相等的点的轨迹叫做
抛物线.
定点 F 叫做抛物线的焦点,
· l M
N
·F
定直线 l 叫做抛物线的准线.
求曲线方
建系
程的基本
步骤是怎
样的?
其它形式的抛物线
想
的焦点与准线呢?
一想Leabharlann ?.8﹒图象 开口方向 y
o x 向右
﹒y o x 向左 ﹒y o x 向上
标准方程 y2 2 px ( p 0)
y2 2 px ( p 0)
x2 2 py ( p 0)
焦点
F ( p , 0) 2
F ( p , 0) 2
F (0, p ) 2
准线
x p 2
x p 2
y p 2
﹒y
o
x
向下
x2 2 py F (0, p )
( p 0)
2
y p 2
焦点位置判断
看指数,谁的指数为1,就在谁那 焦点坐标
一次项系数的1/4 开口方向 由解析式的一次项的系数的正负来 确定
.
10
知识巩固一:
例1:求下列抛物线的焦点坐标和准线方程:
(1)y2 = 20x (2)y=2x2
先定位(焦点位置), 后定量(P的值)
.
12
知识巩固二:
例2:根据下列条件,写出抛物线的标准方程:
(1)焦点是F(3,0)
解:y2 =12x
(2)准线方程 是x =
1 4
(3)焦点到准线的距离是2
解:y2 =x
解:y2 =4x或y2 = -4x 或x2 =4y或x2 = -4y
.
13
归纳小结
1、抛物线的定义
2、抛物线的标准方程及其焦点、准线
3、抛物线的标准方程类型与图象特征的 对应关系及判断方法
4、注重树形结合的思想
5、注重分类讨论的思想
.
14
课堂作业: 教材第74 页1、2、3
题
多谢指导!
.
15