抛物线的标准方程与几何性质

合集下载

抛物线标准方程与几何性质知识要点精析

抛物线标准方程与几何性质知识要点精析

抛物线标准方程与几何性质知识要点精析浙江省诸暨市学勉中学(311811)郭天平一、抛物线定义的理解平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 为抛物线的焦点,定直线l 为抛物线的准线。

注:① 定义可归结为“一动三定”:一个动点设为M ;一定点F (即焦点);一定直线l (即准线);一定值1(即动点M 到定点F 的距离与它到定直线l 的距离之比1)② 定义中的隐含条件:焦点F 不在准线l 上。

若F 在l 上,抛物线退化为过F 且垂直于l 的一条直线③ 圆锥曲线的统一定义:平面内与一定点F 和定直线l 的距离之比为常数e 的点的轨迹,当10<<e 时,表示椭圆;当1>e 时,表示双曲线;当1=e 时,表示抛物线。

④ 抛物线定义建立了抛物线上的点、焦点、准线三者之间的距离关系,在解题中常将抛物线上的动点到焦点距离(称焦半径)与动点到准线距离互化,与抛物线的定义联系起来,通过这种转化使问题简单化。

二、抛物线标准方程1.抛物线标准方程建系特点:以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立直角坐标系,这样使标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用。

2.四种标准方程的联系与区别:由于选取坐标系时,该坐标轴有四种不同的方向,因此抛物线的标准方程有四种不同的形式。

抛物线标准方程的四种形式为:()022>±=p px y ,()022>±=p py x ,其中:① 参数p 的几何意义:焦参数p 是焦点到准线的距离,所以p 恒为正值;p 值越大,张口越大;2p 等于焦点到抛物线顶点的距离。

②标准方程的特点:方程的左边是某变量的平方项,右边是另一变量的一次项,方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向,即对称轴为x 轴时,方程中的一次项变量就是x , 若x 的一次项前符号为正,则开口向右,若x 的一次项前符号为负,则开口向左;若对称轴为y 轴时,方程中的一次项变量就是y , 当y 的一次项前符号为正,则开口向上,若y 的一次项前符号为负,则开口向下。

专题3.5抛物线的标准方程及简单几何性质(八个重难点突破)(原卷版)-高二数学上学期重难点和易错突破

专题3.5抛物线的标准方程及简单几何性质(八个重难点突破)(原卷版)-高二数学上学期重难点和易错突破

专题3.5抛物线的标准方程及简单几何性质知识点一抛物线的定义我们把平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.注意:①“p ”是抛物线的焦点到准线的距离,所以p 的值永远大于0;②只有顶点在坐标原点,焦点在坐标轴上的抛物线方程才有标准形式.知识点二抛物线的标准方程及简单几何性质标准方程()220y px p =>()220y px p =->()220x py p =>()220x py p =->图象性质范围0x y ≥∈R,0x y ≤∈R ,0x y ∈≥R ,0x y ∈≤R ,对称轴x 轴y 轴顶点()0,0O 焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线2p x =-2p x =2p y =-2p y =离心率1e =知识点三通径与焦半径1.通径过焦点垂直于对称轴的弦称为抛物线的通径,其长为2p .2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点00(),A x y ,则四种标准方程形式下的焦半径公式为标准方程()220y px p =>()220y px p =->()220x py p =>()220x py p =->焦半径AF0||2p AF x =+0||2p AF x =-0||2p AF y =+0||2p AF y =-重难点1抛物线定义及应用1.已知抛物线22(0)y px p =>上任意一点到焦点F 的距离比到y 轴的距离大1,则抛物线的标准方程为()A .2y x=B .22y x=C .24y x=D .28y x=2.若抛物线22x py =(0p >)上一点(),3M m 到焦点的距离是5p ,则p =()A .34B .32C .43D .233.已知抛物线C :()220y px p =>的顶点为O ,经过点()0,2A x ,且F 为抛物线C 的焦点,若3AF OF =,则p =()A .12B .1C D .24.已知抛物线C :22(0)y px p =>的焦点为F ,点A 在y 轴上,线段AF 的延长线交C 于点B ,若||||6AF FB ==,则p =.5.已知抛物线22x py =上一点()0,2A x 到焦点的距离是该点到x 轴距离的2倍,则p =.6.已知抛物线()220y px p =>的焦点为F ,直线4y =与抛物线交于点M ,且4MF =,则p =.重难点2抛物线的标准方程与焦点、准线7.已知抛物线22(0)y px p =>的焦准距(焦点到准线的距离)为2,则抛物线的焦点坐标为()A .()0,1B .()0,2C .()1,0D .()2,08.圆22420x x y y -+-=的圆心在抛物线22y px =上,则该抛物线的焦点坐标为()A .1,08⎛⎫ ⎪⎝⎭B .1,04⎛⎫ ⎪⎝⎭C .1,02⎛⎫ ⎪⎝⎭D .()1,09.在同一坐标系中,方程22221x y a b+=与()200ax by a b +=>>的曲线大致是()A .B .C .D .10.焦点坐标为()1,0-的抛物线的标准方程是()A .22y x=-B .22x y=C .24x y=-D .24y x=-11.已知抛物线的焦点在y 轴上,且焦点到坐标原点的距离为1,则抛物线的标准方程为()A .22x y =B .22x y =或22x y =-C .24x y=D .24x y =或24x y=-12.抛物线21:4C y x =-绕其顶点顺时针旋转90︒后得到抛物线2C ,则2C 的准线方程为.13.已知两抛物线的顶点在原点,而焦点分别为()12,0F ,()20,2F ,求经过它们的交点的直线方程.重难点3根据抛物线的方程求参数14.设第四象限的点(),P m n 为抛物线28y x =上一点,F 为焦点,若6PF =,则n =()A .-4B .-C .-D .-3215.已知O 为坐标原点,P 是焦点为F 的抛物线C :22y px =(0p >)上一点,2PF =,π3PFO ∠=,则p =()A .1B .32C .2D .316.已知点(),2A m 为抛物线()2:20C y px p =>上一点,过点A 作C 准线的垂线,垂足为B .若AOB (O为坐标原点)的面积为2,则p =)A .12B .1C .2D .417.已知抛物线22(0)x py p =>上一点0(,3)A x ,F 为焦点,直线AF 交抛物线的准线于点B ,满足2AB AF =,则0x =()A .3±B .±C .±D .±18.已知抛物线C :22y px =()2p >上一点(,P m 到其焦点F 的距离为3,则p =()A .3B .72C .4D .519.已知抛物线C :28y x =的焦点为F ,曲线()0ky k x=>与C 交于点M ,MF x ⊥轴,则k =.20.顶点在原点,焦点在y 轴上的抛物线上一点(),2P m -到焦点F 的距离等于4,则m =.重难点4抛物线的对称性21.在平面直角坐标系xOy 中,抛物线2:8,C y x P =为x 轴正半轴上一点,线段OP 的垂直平分线l 交C 于,A B 两点,若120OAP ∠=︒,则四边形OAPB 的周长为()A .B .64C .D .8022.已知O 为坐标原点,垂直抛物线()2:20C y px p =>的轴的直线与抛物线C 交于,A B 两点,0OA OB ⋅= ,则AB 4=,则p =()A .4B .3C .2D .123.已知圆221x y +=与抛物线()220y px p =>交于A ,B 两点,与抛物线的准线交于C ,D 两点,若四边形ABCD 是矩形,则p 等于()A B .5C .2D 24.抛物线22(0)x py p =>与椭圆221122x y +=交于A ,B 两点,若AOB (其中O 为坐标原点),则p =()A .2B .3C .4D .625.抛物线22(0)y px p =>上一点到准线和抛物线的对称轴距离分别为10和6,则该点的横坐标是.26.已知点00(,)P x y 关于x 轴的对称点在曲线:C y =上,且过点P 的直线2y x =-与曲线C 相交于点Q ,则PQ =.重难点5抛物线的焦半径公式27.已知ABC 的顶点在抛物线22y x =上,若抛物线的焦点F 恰好是ABC 的重心,则||||||FA FB FC ++的值为()A .3B .4C .5D .628.已知抛物线2:4C y x =的焦点为F ,准线为l ,过C 上一点A 作l 的垂线,垂足为B .若3AF =,则AFB △的外接圆面积为().A .27π8B .64π27C .9π4D .25π1629.O 为坐标原点,F 为抛物线2:8C y x =的焦点,M 为C 上一点,若||6=MF ,则MOF △的面积为()A .B .C .D .830.已知抛物线2:20C y pxp =>()的焦点为F ,直线l 与抛物线C 交于,A B 两点,AF BF ⊥,线段AB 的中点为M ,过点M 作抛物线C 的准线的垂线,垂足为N ,则AB MN的最小值为()A .1B C .2D .231.(多选)设抛物线28y x =的顶点为O ,焦点为F .点M 是抛物线上异于O 的一动点,直线OM 交抛物线的准线于点N ,下列结论正确的是()A .若4MF =,则OM =B .若4MF =,则O 为线段MN 的中点C .若8MF =,则OM =D .若8MF =,则3OM ON=32.(多选)已知抛物线2:4E y x =的焦点为,F A 为E 上一点,则下列命题或结论正确的是()A .若AF 与x 轴垂直,则2AF =B .若点A 的横坐标为2,则3AF =C .以AF 为直径的圆与y 轴相切D .AF 的最小值为233.如图,M 是抛物线210y x =上的一点,F 是抛物线的焦点,以Fx 为始边、FM 为终边的角π3xFM ∠=,则MF =.重难点6抛物线的轨迹问题34.已知动点(),M x y 的坐标满足方程3412x y =+-,则动点M 的轨迹是()A .椭圆B .双曲线C .抛物线D .以上都不对35.动点(),M x y 满足方程3412x y =++,则点M 的轨迹是()A .圆B .椭圆C .双曲线D .抛物线36.已知点()1,0A ,直线:1l x =-,两个动圆均过A 且与l 相切,若圆心分别为1C 、2C ,则1C 的轨迹方程为;若动点M 满足22122C M C C C A =+,则M 的轨迹方程为.37.若动点(),M x y 到点()4,0F 的距离比它到直线30x +=的距离大1,则M 的轨迹方程是.38.已知直线l 平行于y 轴,且l 与x 轴的交点为(4,0),点A 在直线l 上,动点P 的纵坐标与A 的纵坐标相同,且OA OP ⊥,求P 点的轨迹方程,并说明轨迹方程的形状.39.一圆经过点()0,3F ,且和直线30y +=相切,求圆心的轨迹方程,并画出图形.重难点7抛物线的距离最值问题40.抛物线C 的顶点为原点,焦点为(2,0)F ,则点(5,0)B 到抛物线C 上动点M 的距离最小值为()A .B .C .5D .41.已知抛物线2:8C y x =的焦点为F ,点P 在C 上,若点()6,3Q ,则PQF △周长的最小值为().A .13B .12C .10D .842.设P 是抛物线28y x =上的一个动点,F 为抛物线的焦点,点()3,1B ,则PB PF +的最小值为.43.已知点M 为拋物线22y x =上的动点,点N 为圆22(4)5x y +-=上的动点,则点M 到y 轴的距离与点M 到点N 的距离之和最小值为.44.已知()3,2A ,若点P 是抛物线28y x =上任意一点,点Q 是圆22(2)1x y -+=上任意一点,则PA PQ +的最小值为.45.设动点P 在抛物线214y x =上,点P 在 x 轴上的射影为点 M ,点A 的坐标是()2,0,则PA PM +的最小值是.46.已知点()0,4M ,点P 在抛物线28x y =上运动,点Q 在圆22(2)1x y +-=上运动,则2||PM PQ的最小值.重难点8抛物线的实际应用47.南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm ,则该抛物线的焦点到准线的距离为()A .27cm 4B .9cm2C .27cm 8D .23cm 648.上世纪90年代,南京江宁区和陕西洛南县就建立了深厚的友谊,1993年江宁区出资帮助洛南修建了宁洛桥,增强了两地之间的友谊.如今人行道两侧各加宽6米,建成了“彩虹桥”(图1),非常美丽.桥上一抛物线形的拱桥(图2)跨度30m AB =,拱高5m OP =,在建造时每隔相等长度用一个柱子支撑,则支柱11A B 的长度为m .(精确到0.01m )49.(多选)上甘岭战役是抗美援朝中中国人民志愿军进行的最著名的山地防御战役.在这场战役中,我军使用了反斜面阵地防御战术.反斜面是山地攻防战斗中背向敌方、面向我方的一侧山坡.反斜面阵地的构建,是为了规避敌方重火力输出.某反斜面阵地如图所示,山脚A ,B 两点和敌方阵地D 点在同一条直线上,某炮弹的弹道DCE 是抛物线Γ的一部分,其中E 在直线AB 上,抛物线的顶点C 到直线AB 的距离为100米,DE长为400米,CD CE =,30CAB ∠= ,建立适当的坐标系使得抛物线Γ的方程为()220x py p =->,则()A .200p =B .Γ的准线方程为100y =C .Γ的焦点坐标为()0,50-D .弹道CE 上的点到直线AC 50.一种卫星接收天线的轴截面如图所示.卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处.已知接收天线的口径(直径)为4.8m ,深度为0.5m.(1)试建立适当的坐标系,求抛物线的标准方程和焦点坐标;(2)为了增强卫星波束的接收,拟将接收天线的口径增大为5.2m ,求此时卫星波束反射聚集点的坐标.51.如图,探照灯反射镜由抛物线的一部分绕对称轴旋转而成,光源位于抛物线的焦点处,这样可以保证发出的光线经过反射之后平行射出.已知灯口圆的直径为60cm ,灯的深度为40cm.(1)将反射镜的旋转轴与镜面的交点称为反射镜的顶点.光源应安置在旋转轴上与顶点相距多远的地方?(2)为了使反射的光更亮,增大反射镜的面积,将灯口圆的直径增大到66cm ,并且保持光源与顶点的距离不变.求探照灯的深度.52.某农场为节水推行喷灌技术,喷头装在管柱OA 的顶端A 处,喷出的水流在各个方向上呈抛物线状,如图所示.现要求水流最高点B 离地面5m ,点B 到管柱OA 所在直线的距离为4m ,且水流落在地面上以O 为圆心,以9m 为半径的圆上,求管柱OA 的高度.53.如图,弯曲的河流是近似的抛物线C,公路l恰好是C的准线,C上的点O到l的距离最近,且为0.4km,OP ,现要在河岸边的某处修建一座码头,并修建两条公路,一城镇P位于点O的北偏东30°处,10km条连接城镇,一条垂直连接公路l,以便建立水陆交通网.(1)建立适当的坐标系,求抛物线C的方程;(2)为了降低修路成本,必须使修建的两条公路总长最小,请给出修建方案(作出图形,在图中标出此时码头Q的位置),并求公路总长的最小值(结果精确到0.001km).。

抛物线的几何性质

抛物线的几何性质
( | PF | | PQ | )min 4 (2) 6 .
思考:当| |PF|-|PQ| |为最大时,点P的坐标是_______.
例3. 过抛物线y2=2px的焦点的一条直线与它交于两点A(x1,y1),
B求(x证2,:yy21)y,2=通-p过2,点A和抛x1物x2线顶p4点2 ;的直线交准线于点C,
p2
(3)
SAOB
;
2 sin
(4) | AF | p ,| BF | p ;
1 cos
1 cos
(5)
|
1 AF
|
|
1 BF
|
2 p
;
(6) 以AB为直径的圆与抛物线的准线相切;
(7) 以CD为直径的圆与弦AB相切于焦点F.
课后作业
1. 教材73页 习题2.4 A组5—8 2. 《乐学》 2.4.2 (一)
另解:由已知 | AB | | AF | | BF | | AA'| | BB'|
( x1 1) ( x2 1) x1 x2 2 6 2 8 .
焦点弦
过抛物线的焦点且与抛物线相交的直线,
被抛物线截取的线段叫抛物线的焦点弦.
抛物线 y2 2 px p 0 的焦点弦长公式:
以抛物线的标准方程:y2 2 px p 0来研究它的几何性质.
(1)范围: 因为p>0,由方程可知 x≥0,所以抛物线在y轴的
右侧,当x的值增大时,|y|也增大,这说明抛物线向右 上方和右下方无限延伸.
y2 2 pxp 0
(2)对称性
以 y 代 y ,方程不变,所以抛物线关于x 轴对
称.我们把抛物线的对称轴叫做抛物线的轴.
思考:抛物线中过焦点的弦有最小值吗?如果有, 在何处取得?

抛物线 标准方程、几何性质、经典大题归纳总结

抛物线 标准方程、几何性质、经典大题归纳总结

一、 第一讲: 抛物线标准方程 二、 考点、热点回顾一、定义: 在平面内,及一个定点F 和一条定直线l(l 不经过点F)的距离相等的点的轨迹叫抛物线.即:的轨迹是抛物线。

则点若M MNMF,1 三、 (定点F 叫做抛物线的焦点, 定直线l 叫做抛物线的准线。

)标准方程:设定点F 到定直线l 的距离为p(p 为已知数且大于0).取过焦点F 且垂直于准线l 的直线为x 轴, x 轴及l 交于K, 以线段KF 的垂直平分线为y 轴, 建立直角坐标系抛物线上的点M(x, y)到l的距离为d, 抛物线是集合p={M||MF|=d}.化简后得: y2=2px(p>0).由于焦点和准线在坐标系下的不同分布情况, 抛物线的标准方程有四种情形(列表如下):二、典型例题(2)例1.(1)已知抛物线的标准方程是y2=6x, 求它的焦点坐标和准线方程;已知抛物线的焦点坐标是F(0, -2), 求它的标准方程.方程是x2=-8y.例2.根据下列所给条件, 写出抛物线的标准方程:(1)焦点是F(3, 0);(3)焦点到准线的距离是2.答案是:(1)y2=12x;(2)y2=-x;(3)y2=4x, y2=-4x, x2=4y, x2=-4y.三、课堂练习1.抛物线y2=4x的焦点到准线的距离是________答案:2解析: 解析: 抛物线y2=4x的焦点F(1,0), 准线x=-1.∴焦点到准线的距离为2.2.分别求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x-2y-4=0上.答案:解析: 解: (1)设抛物线方程为y2=-2px或x2=2py(p>0), 则将点(-3,2)代入方程得2p=或2p=, 故抛物线方程为y2=-x或x2=y.(2)①令x=0, 由方程x-2y-4=0, 得y=-2.∴抛物线的焦点为F(0, -2).设抛物线方程为x2=-2py(p>0), 则由=2, 得2p=8. ∴所求抛物线方程为x2=-8y.②令y=0,由方程x-2y-4=0,得x=4.∴抛物线的焦点为F(4,0).设抛物线方程为y2=2px(p>0), 则由=4, 得2p=16.∴所求抛物线方程为y2=16x.综上, 所求抛物线方程为y2=16x或x2=-8y.3.已知抛物线的顶点在原点, 对称轴是x轴, 抛物线上的点M(-3, m)到焦点的距离等于5, 求抛物线的方程和m的值解法一: 由焦半径关系, 设抛物线方程为y2=-2px(p>0), 则准线方因为抛物线上的点M(-3, m)到焦点的距离|MF|及到准线的距离得p=4.因此, 所求抛物线方程为y2=-8x.又点M(-3, m)在此抛物线上, 故m2=-8(-3).解法二: 由题设列两个方程, 可求得p和m. 由学生演板. 由题意在抛物线上且|MF|=5, 故四、课后作业1.分别求适合下列条件的抛物线的标准方程:(1)过点(-3,2);(2)焦点在直线x-2y-4=0上.答案:解析: (1)设抛物线方程为y2=-2px或x2=2py(p>0), 则将点(-3,2)代入方程得2p=或2p=, 故抛物线方程为y2=-x或x2=y.(2)①令x=0, 由方程x-2y-4=0, 得y=-2.∴抛物线的焦点为F(0, -2).设抛物线方程为x2=-2py(p>0), 则由=2, 得2p=8. ∴所求抛物线方程为x2=-8y.②令y=0,由方程x-2y-4=0,得x=4.∴抛物线的焦点为F(4,0).设抛物线方程为y2=2px(p>0), 则由=4, 得2p=16.∴所求抛物线方程为y2=16x.综上, 所求抛物线方程为y2=16x或x2=-8y.2.若抛物线y2=-2px(p>0)上有一点M, 其横坐标为-9, 它到焦点的距离为10, 求抛物线方程和M点的坐标.解析: 解: 由抛物线的定义, 设焦点F(-, 0). 则准线为x=.设M到准线的距离为|MN|,则|MN|=|MF|=10, 即-(-9)=10, ∴p=2. 故抛物线方程为y2=-4x.将M(-9,y),代入抛物线方程得y=±6. 故M(-9,6)或M(-9,-6).3.已知抛物线C的焦点F在x轴的正半轴上, 点A(2, )在抛物线内. 若抛物线上一动点P到A.F两点距离之和的最小值为4, 求抛物线C的方程.解析: 解: 设抛物线方程为y2=2px(p>0), 其准线为x=-, 过P点作抛物线准线的垂线, 垂足为H(图略), 由定义知, |PH|=|PF|.∴|PA|+|PF|=|PA|+|PH|, 故当H、P、A三点共线时, |PA|+|PF|最小. ∴|PA|+|PF|的最小值为+2=4, p=4, 即抛物线C的方程为y2=8x.4.动圆M经过点A(3,0)且及直线l: x=-3相切, 求动圆圆心M的轨迹方程.解:设圆M及直线l相切于点N. ∵|MA|=|MN|, ∴圆心M到定点A(3,0)和定直线x=-3的距离相等.根据抛物线的定义, M在以A为焦点, l为准线的抛物线上.∵=3,∴p=6. ∴圆心M的轨迹方程为y2=12x.第二讲: 抛物线简单几何性质一、考点、热点回顾定义: 在平面内,及一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫抛物线.补充:1.通径: 通过焦点且垂直对称轴的直线, 及抛物线相交于两点, 连接这两点的线段叫做抛物线的通径。

人教版高数选修2第5讲:抛物线的标准方程与性质(教师版)

人教版高数选修2第5讲:抛物线的标准方程与性质(教师版)

抛物线的标准方程与性质____________________________________________________________________________________________________________________________________________________________________1. 了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2. 掌握抛物线的定义、几何图形、标准方程及简单几何性质.1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:|MF |=d (其中d 为点M 到准线的距离). 2.抛物线的标准方程与几何性质类型一 抛物线的定义及应用例1:过点(0,-2)的直线与抛物线y 2=8x 交于A 、B 两点,若线段AB 中点的横坐标为2,则|AB|等于( )A .217B .17C .215D .15【解析】设直线方程为y =kx -2,A(x 1,y 1)、B(x 2,y 2).由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,得k 2x 2-4(k +2)x +4=0.∵直线与抛物线交于A 、B 两点, ∴Δ=16(k +2)2-16k 2>0,即k>-1. 又x 1+x 22=2k +2k2=2,∴k =2或k =-1(舍去). ∴|AB|=1+k 2|x 1-x 2|=1+22·x 1+x 22-4x 1x 2=542-4=215.【答案】C练习1:已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3C. 5D.92【答案】A练习2:F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=6,则线段AB 的中点到y 轴的距离为________.【答案】52类型二 抛物线的标准方程和几何性质例2:已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A .45B .35C .-35D .-45【解析】由⎩⎪⎨⎪⎧y 2=4x ,y =2x -4得x 2-5x +4=0,∴x =1或x =4.不妨设A(4,4),B(1,-2),则|FA →|=5,|FB →|=2,FA →·FB →=(3,4)·(0,-2)=-8,∴cos ∠AFB =FA →·FB →|FA →|·|FB →|=-85×2=-45.故选D .【答案】D练习1:已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12【答案】C练习2:(2014·湖南卷)如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.【答案】1类型三 抛物线焦点弦的性质例3:已知直线y =k(x +2)(k>0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|FA|=2|FB|,则k 等于( )A .13B .23C .23D .223【解析】设A(x 1,y 1),B(x 2,y 2),易知x 1>0,x 2>0,由⎩⎪⎨⎪⎧y =k x +2y 2=8x 得k 2x 2+(4k 2-8)x +4k 2=0,∴x 1x 2=4,① 根据抛物线的定义得,|FA|=x 1+p2=x 1+2,|FB|=x 2+2,∵|FA|=2|FB|,∴x 1=2x 2+2,② 由①②得x 2=1,∴B(1,22),代入y =k(x +2)得k =223,选D .【答案】D练习1:过抛物线y 2=2px(p>0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.【解析】直线y =x -p 2,故⎩⎪⎨⎪⎧y =x -p 2y 2=2px ,∴x 2-3px +p24=0,|AB|=8=x 1+x 2+p ,∴4p =8,p =2. 【答案】2类型四 直线与抛物线的位置关系 例4:如图所示,O 为坐标原点,过点P(2,0),且斜率为k 的直线l 交抛物线y 2=2x 于M(x 1,y 1),N(x 2,y 2)两点.(1)写出直线l 的方程; (2)求x 1x 2与y 1y 2的值; (3)求证:OM ⊥ON.【解析】(1)直线l 的方程为y =k(x -2)(k ≠0).①(2)由①及y 2=2x ,消去y 可得 k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1与x 2是②的两个根, 由韦达定理,得x 1x 2=4k2k2=4.由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16, 由图可知y 1y 2<0,所以y 1y 2=-4.(3)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2.由(2)知,y 1y 2=-4,x 1x 2=4, ∴k 1k 2=y 1y 2x 1x 2=-1.∴OM ⊥ON.【答案】(1)直线l 的方程为y =k(x -2)(k ≠0).①(2)由①及y 2=2x ,消去y 可得 k 2x 2-2(2k 2+1)x +4k 2=0.②点M ,N 的横坐标x 1与x 2是②的两个根, 由韦达定理,得x 1x 2=4k2k2=4.由y 21=2x 1,y 22=2x 2,得(y 1y 2)2=4x 1x 2=4×4=16, 由图可知y 1y 2<0,所以y 1y 2=-4.(3)证明:设OM ,ON 的斜率分别为k 1,k 2, 则k 1=y 1x 1,k 2=y 2x 2.由(2)知,y 1y 2=-4,x 1x 2=4, ∴k 1k 2=y 1y 2x 1x 2=-1.∴OM ⊥ON.练习1【2015高考四川,理10】设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A.()13, B .()14, C .()23, D .()24,【答案】D练习2:抛物线C :x 2=8y 与直线y =2x -2相交于A ,B 两点,点P 是抛物线C 上异于A ,B 的一点,若直线PA ,PB 分别与直线y =2相交于点Q ,R ,O 为坐标原点,则OP →·OQ →=________.【答案】201.【2015高考天津,理6】已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为( )A.2212128x y -= B.2212821x y -= C.22134x y -= D.22143x y -= 【答案】D2.【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++【答案】A.3.(2014·辽宁卷)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.43【答案】D4.【2015高考上海,理5】抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p =_________【答案】p=25.(2014·广东卷)曲线y =e-5x+2在点(0,3)处的切线方程为________.【答案】y =-5x +36.已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)是否存在正数m ,对于过点M(m,0)且与曲线C 有两个交点A 、B 的任一直线,都有FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由.【答案】(1)由已知得:曲线C 上的点到点F(1,0)与到x =-1的距离相等,∴曲线C 是以F(1,0)为焦点的抛物线,设y 2=2px(p>0),∵p 2=1,∴p =2,∴方程为:y 2=4x(x>0). (2)假设存在M(m,0)(m>0). 当直线l 斜率不存在时,l :x =m , 设交点A(m,2m),B(m ,-2m),FA →=(m -1,2m),FB →=(m -1,-2m), ∴FA →·FB →=m 2-6m +1<0, ∴3-22<m<3+2 2.当直线l 斜率存在时,l :y =k(x -m)(k ≠0),设A(x 1,y 1),B(x 2,y 2),⎩⎪⎨⎪⎧y 2=4xy =k x -m∴ky 2-4y -4km =0,∴Δ=16+16k 2m>0恒成立, y 1+y 2=4k,y 1y 2=-4m ,又y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+8m ,∵FA →·FB →=(y 214-1)·(y 224-1)+y 1y 2=y 1y 2216-14(y 21+y 22)+y 1y 2+12 =m 2-14(16k 2+8m)-4m +12=m 2-6m +1-4k2<0,即:4k 2>m 2-6m +1对∀k ≠0恒成立,又4k 2>0,∴m 2-6m +1<0恒成立, ∴3-22<m<3+22,综上,m 的取值范围是:3-22<m<3+2 2._________________________________________________________________________________ _________________________________________________________________________________基础巩固(1)1.抛物线x 2=12y 的焦点坐标为( )A.⎝ ⎛⎭⎪⎫12,0 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫18,0 D.⎝ ⎛⎭⎪⎫0,18【答案】D2.已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-4x -5=0相切,则p 的值为( ) A .2 B .1C.12D.14【答案】A3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =112x 2或y =-136x2【答案】D4.已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为( )A .2 2B .3C .2 3D .4【答案】B5.已知P 是抛物线y 2=2x 上动点,A ⎝ ⎛⎭⎪⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是( )A .4 B.92C .5D.112【答案】B6.(2014·新课标全国卷Ⅰ] 已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点.若FP →=4FQ →,则|QF |=( )A.72 B .3C.52D .2【答案】B7.(2014·新课标全国卷Ⅱ] 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332 D.94【答案】D能力提升(2)8.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的左顶点,则p =________. 【答案】29.已知一条过点P (2,1)的直线与抛物线y 2=2x 交于A ,B 两点,且P 是弦AB 的中点,则直线AB 的方程为________.【答案】x-y-1=010.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k BC +1k CA=________.【答案】011.(2014·湖南卷)如图1­4,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.图1­4【答案】12.已知动点P(x ,y)(y ≥0)到定点F(0,1)的距离和它到直线y =-1的距离相等,记点P 的轨迹为曲线C.(1)求曲线C 的方程;(2)设圆M 过点A(0,2),且圆心M(a ,b)在曲线C 上,若圆M 与x 轴的交点分别为E(x 1,0)、G(x 2,0),求线段EG 的长度.【答案】(1)依题意知,曲线C 是以F(0,1)为焦点,y =-1为准线的抛物线. ∵焦点到准线的距离p =2, ∴曲线C 方程是x 2=4y.(2)∵圆M ∴其方程为(x -a)2+(y -b)2=a 2+(b -2)2令y=0得:x2-2ax+4b-4=0.则x1+x2=2a,x1·x2=4b-4.∴(x1-x2)2=(x1+x2)2-4x1·x2=(2a)2-4(4b-4)=4a2-16b+16.又∵点M(a,b)在抛物线x2=4y上,∴a2=4b,∴(x1-x2)2=16,即|x1-x2|=4.∴线段EG的长度是4.课程顾问签字: 教学主管签字:。

抛物线及其标准方程

抛物线及其标准方程

抛物线1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.其数学表达式:|MF |=d (其中d 为点M 到准线的距离).2.抛物线的标准方程与几何性质1(1)定点不在定直线上.(2)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线.2.抛物线的方程特点方程y =ax 2(a ≠0)可化为x 2=1ay ,是焦点在y 轴上的抛物线.3.结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则:(1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AF |=p 1-cos α,|BF |=p 1+cos α,弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角),S △OAB =p 22sin α;(3)1|FA |+1|FB |=2p;(4)以弦AB 为直径的圆与准线相切;(5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.(7)过抛物线y 2=2px (p >0)的顶点O (0,0)作互相垂直的两条射线且都与抛物线相交,交点为A ,B (如图).则直线AB 过定点M (2p,0);反之,若过点M (2p,0)的直线l 与抛物线y 2=2px (p >0),交于两点A ,B ,则必有OA ⊥OB .1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.()(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.()(3)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎪⎭⎫⎝⎛0,4a,准线方程是x =-a 4.()(4)抛物线既是中心对称图形,又是轴对称图形.()2.抛物线y =14x 2的准线方程是()A .y =-1B .y =-2C .x =-1D .x =-23.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =()A .2B .3C .4D .84.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.如果x 1+x 2=6,那么|AB |=()A .6B .8C .9D .105.已知抛物线C 1:x 2=2py (p >0)的准线与抛物线C 2:x 2=-2py (p >0)交于A ,B 两点,C 1的焦点为F ,若△FAB 的面积等于1,则C 1的方程是()A .x 2=2y B .x 2=2y C .x 2=yD .x 2=22y 6.(教材改编)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.7.焦点在直线2x +y +2=0上的抛物线的标准方程为_______________抛物线的定义及应用例:1.动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是()A .直线B .椭圆C .双曲线D .抛物线(2)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(3)若点P 到点F(0,2)的距离比它到直线y +4=0的距离小2,则P 的轨迹方程为()A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y(4)在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是()A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)(5).已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.(6).已知椭圆x 24+y 23=1的右焦点F 为抛物线y 2=2px (p >0)的焦点,点P 的坐标为(3,2).若点M 为该抛物线上的动点,则|MP |+|MF |的最小值为__________.(7).若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为()A .(0,0)B .⎪⎭⎫⎝⎛121C .(1,2)D .(2,2)(8).已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是___________.(9).已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是()A .3B .5C .2D .5-1(10).已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=______.抛物线的标准方程例:(1)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(2)(2021·山西吕梁二模)如图,过抛物线x 2=2py (p >0)的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C ,若|BC |=2|BF |,且|AF |=2,则p =()A .1 B.2C .2D .2-2(3).顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是()A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8y(4).如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x(5).已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线的方程为()A .x 2=32yB .x 2=6yC .x 2=-3yD .x 2=3y(6).抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为()A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x(7).抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为__________.抛物线的几何性质例:(1)(2020·全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A .⎪⎭⎫⎝⎛041,B .⎪⎭⎫⎝⎛021,C .(1,0)D .(2,0)(2)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为()A .x =1B .x =2C .x =-1D .x =-2(3)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为______________.(4).若双曲线C :2x 2-y 2=m (m >0)与抛物线y 2=16x 的准线交于A ,B 两点,且|AB |=43,则m 的值是____________.(5).在平面直角坐标系xOy 中有一定点A (4,2),若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是_____________(6).已知抛物线y 2=4x 的焦点F ,准线l 与x 轴的交点为K ,P 是抛物线上一点,若|PF |=5,则△PKF 的面积为()A .4B .5C .8D .10(7)(2021·新高考Ⅰ卷)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为__________________.(8).过抛物线:y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,若直线l 与抛物线在第一象限的交点为A ,并且点A 也在双曲线:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线上,则双曲线的离心率为()A.213B.13C.233D.5(9).如图,已知抛物线y 2=4x 的焦点为F ,过点F 且斜率为1的直线依次交抛物线及圆(x -1)2+y 2=14于A ,B ,C ,D 四点,则|AB |+|CD |的值是()A .6B .7C .8D .9直观想象、数学运算——抛物线中最值问题的求解方法与抛物线有关的最值问题是历年高考的一个热点,由于所涉及的知识面广,题目多变,一般需要通过数形结合或利用函数思想来求最值,因此相当一部分同学对这类问题感到束手无策.下面就抛物线最值问题的求法作一归纳.1.定义转换法【典例1】(2021·上海虹口区一模)已知点M(20,40),抛物线y2=2px(p>0)的焦点为F.若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于________.2.平移直线法【典例2】抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是________.[切入点]解法一:求出与已知直线平行且与抛物线相切的直线方程,从而求两平行线间的距离.解法二:求出与已知直线平行且与抛物线相切的直线与抛物线的切点坐标,从而求切点到已知直线的距离.3.函数法【典例3】若点P在抛物线y2=x上,点Q在圆(x-3)2+y2=1上,则|PQ|的最小值为________.[切入点]P、Q都是动点,转化为圆心与点P的最值.1.(2021·东北三省四市二模)若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.12C.14D.182.(2021·云南省高三统一检测)设P,Q分别为圆x2+y2-8x+15=0和抛物线y2=4x上的点,则P,Q两点间的最小距离是________.直线与抛物线的位置关系1.直线与抛物线的位置关系2=2px,=kx+m,得k2x2+2(mk-p)x+m2=0.(1)相切:k2≠0,Δ=0.(2)相交:k2≠0,Δ>0.(3)相离:k2≠0,Δ<0.2.焦点弦的重要结论抛物线y2=2px(p>0)的焦点为F,过F的焦点弦AB的倾斜角为θ,则有下列性质:(1)y1y2=-p2,x1x2=p24.(2)|AF|=x1+p2=p1-cosθ;|BF|=x2+p2=p1+cosθ;|AB|=x1+x2+p=2psin2θ.(3)抛物线的通径长为2p,通径是最短的焦点弦.(4)S△AOB=p22sinθ.(5)1|AF|+1|BF|为定值2p.(6)以AB为直径的圆与抛物线的准线相切.(7)以AF(或BF)为直径的圆与y轴相切.(8)过焦点弦的端点的切线互相垂直且交点在准线上.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线与抛物线有且仅有1个公共点,则它们相切.()(2)所有的焦点弦中,以通径的长为最短.()(3)直线l过(2p,0),与抛物线y2=2px交于A、B两点,O为原点,则OA⊥OB.()(4)过准线上一点P作抛物线的切线,A、B为切点,则直线AB过抛物线焦点.() 2.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有() A.1条B.2条C.3条D.4条3.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=()A .9B .8C .7D .64.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为__________.直线与抛物线的位置关系【例1】(1)过点(0,3)的直线l 与抛物线y 2=4x 只有一个公共点,则直线l 的方程为__________.(2)已知抛物线C :x 2=2py ,直线l :y =-p2,M 是l 上任意一点,过M 作C 的两条切线l 1,l 2,其斜率为k 1,k 2,则k 1k 2=________.焦点弦问题【例2】(1)(2021·石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于()A .1∶2B .1∶3C .1∶2D .1∶3(2)(2021·湖南五市十校摸底)过抛物线C :y 2=2px (p >0)的焦点F 的直线l 与抛物线交于M 、N 两点(其中M 点在第一象限),若MN →=3FN →,则直线l 的斜率为________.(3)过抛物线y 2=4x 焦点F 的直线交抛物线于A 、B 两点,交其准线于点C ,且A 、C 位于x 轴同侧,若|AC |=2|AF |,则|BF |等于()A .2B .3C .4D .5(2020·山东卷)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.直线与抛物线的综合问题例题1:已知以F 为焦点的抛物线C :y 2=2px (p >0)过点P (1,-2),直线l 与C 交于A ,B 两点,M 为AB 的中点,O 为坐标原点,且OM →+OP →=λOF →.(1)当λ=3,求点M 的坐标;(2)当OA →·OB →=12时,求直线l 的方程.例题2:设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .例题3:已知抛物线P :y 2=2px (p >0)上的点⎪⎭⎫ ⎝⎛a ,43到其焦点的距离为1.(1)求p 和a 的值;(2)求直线l :y =x +m 交抛物线P 于A ,B 两点,线段AB 的垂直平分线交抛物线P 于C ,D 两点,求证:A ,B ,C ,D 四点共圆.例题4.如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程;(2)若线段|AB |=20,求直线l 的方程.例题5:已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎪⎭⎫ ⎝⎛250,为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.。

抛物线的几何性质

抛物线的几何性质

P O
(2b 4)2 4b2 16b 16 0, b 1.
x
∴切线方程为: y x 1.
y2 4 x x 1, , 得 解方程组 y x 1 y 2.
所以切点为P(1,2).
【2】直线 x+y-3=0 和抛物线 y2=4x 交于 A、 B 两点.在抛物线 AOB 上求一点C,使 △ABC 的 y 面积最大.
(3)以点Q为圆心,QS为半径作圆Q,则线段ST即为圆Q与圆M 的公共弦. 设点Q(-1,t),则QS2=QM2-4=t2+5,所以圆Q的方程为(x +1)2+(y-t)2=t2+5. 从而直线QS的方程为3x-ty-2=0.(*) 2 x= , 因为 3 y=0
一定是方程(*)的解,所以直线QS恒过一个定
【1】在抛物线 y2=4x 上求一点 P,使点 P 到直线 抛物线的最值问题 y=x+3 的距离最小.
抛物线上到直线l距离最短的点,是和此直线平行的切线的切点.
解:易知直线与抛物线相离, 设与y=x+3平行且与 y2=4x 相切的直线方程为y=x+b.
y
y2 4 x 由 , 化简得 x 2 (2b 4) x b 2 0 y xb
物线的定义知|AA1|+|BB1|=|AF|+|BF|=3,则AB的中点到y轴 1 1 5 的距离为2(|AA1|+|BB1|)-4=4. 答案 5 4
涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利 用抛物线的定义转化为点到准线(焦点)的距离问题求解.
【训练2】 已知F为抛物线x2=2py(p>0)的焦点,M为其上一 点,且MF=2p,则直线MF的斜率为________. 解析

1、抛物线的定义、标准方程、几何性质

1、抛物线的定义、标准方程、几何性质

1、抛物线的定义、几何性质学习目标:理解掌握抛物线的定义、几何性质,并能解决有关问题 重点: 抛物线的定义、几何性质难点:利用抛物线的定义、几何性质解决有关问题 知识梳理:抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线(点F 不在直线l 上). 注意:点F 在直线l 上时,轨迹是过点F 且垂直于直线l 的一条直线 2.抛物线四种标准方程的几何性质:轴)轴轴)轴3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧,当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦半径:抛物线 )0(22>-=p px y 上一点),(00y x P 到焦点(,0)2p F 的距离2||||0px PF += 抛物线 )0(22>±=p py x 上一点),(00y x P 到焦点(,0)2p F 的距离 2||||0py PF +=(5) 焦点弦长:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||.4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B , 焦点(,0)2p F (1)以抛物线的焦点弦为直径的圆和抛物线的准线相切(2) 221p y y -=,4221p x x =(3)pBF AF 211=+ (4)通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.抛物线的通径长:2p . 5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则221212()()AB x x y y =-+-||11||1212212y y kx x k -+=-+= 分类例析: 一、 抛物线的定义、几何性质及应用 例1(1)过抛物线x y 82=的焦点F 作倾斜角是π43的直线,交抛物线于A,B 两点,则||AB = A .8B .28C .216D .16(2)(2020新课标1理4)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9(3)经过抛物线)0(22>=p px y 的焦点作一直线l 交抛物线 于),(11y x A ,),(22y x B ,则2121x x y y 的值为__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
分析: 分析:如图可知原条件等 价于M点到F(4,0)和到 x=-4距离相等,由抛物 线的定义,点M的轨迹是 以F(4,0)为焦点,x= -4为准线的抛物线.因为 p/2=4,所以p=8,所求方程是 y2=16x.
M (x , y)
-5
-4
F(4,0) x
练习3 练习
1、M是抛物线 2 = 2px(P>0)上一点, 、 是抛物线 是抛物线y ( > )上一点, 若点M 的横坐标为X0,则点M到焦点的 若点 的横坐标为 则点 到焦点的 p 距离是—————— X0 + —
练习1 练习
1、根据下列条件,写出抛物线的标准方程: 、根据下列条件,写出抛物线的标准方程:
(1)焦点是 (3,0); )焦点是F( , );
y2 =12x
1 (2)准线方程 是 x = − ; ) 4
y2 =x
(3)焦点到准线的距离是 。 )焦点到准线的距离是2。
y2 =4x、 y2 = -4x、 、 、 x2 =4y 或 x2 = -4y
4 9 ∴抛物线的标准方程为x2 = y或y2 = − x 3 2
得p=
2 3

练习2 练习
已知抛物线经过点P(4,-2), 已知抛物线经过点P(4,-2),求抛物线的标 P(4, 准方程。 准方程。
提示:注意到 为第四象限的点 为第四象限的点, 提示:注意到P为第四象限的点,所以可以设抛物线 的标准方程为y2=2px或x2=-2py 的标准方程为 或
方程y2 = 2px(p>0)表示抛物线的焦点 ( > )
p 焦点: ( 焦点:F( 2
在 X轴的正半轴上
p ),准线 ,0),准线 :x = - 2 ),准线L:
构建数学
一条抛物线, 一条抛物线,由于它在坐标平面 内的位置不同,方程也不同, 内的位置不同,方程也不同,所以抛 物线的标准方程还有其它形式. 标准方程还有其它形式 物线的标准方程还有其它形式
x1+x2=6 系数关系可以得 |AB|=6+2=8 于是 说明:解法二由于灵活运用了抛物线的定义, 说明:解法二由于灵活运用了抛物线的定义,所以减 少了运算量,提高了解题效率. 少了运算量,提高了解题效率
到准线的距离是 p a- 横坐标是
2
a .
, 点 M的 的
3、
2 抛物线y 抛物线
=12x上与焦点的距离 上与焦点的距离 .
等于9的点的坐标是 等于 的点的坐标是 (6,±6 2)
数学应用
例4. 斜率为 的直线经过抛物线 2 =4x 斜率为1的直线经过抛物线 的直线经过抛物线y 的焦点,与抛物线相交于两点A、B, 求线 的焦点,与抛物线相交于两点 段AB的长. 的长. 的长
.
x
轴对称,对称轴 (2)对称性 关于 轴对称 对称轴 对称性 关于x轴对称 又叫抛物线的轴. 又叫抛物线的轴 (3)顶点 顶点 抛物线和它的轴的交点. 抛物线和它的轴的交点
y
(4)离心率 离心率 (5)焦半径 焦半径 (6)通径 通径
e=1 |PF|=x0+p/2
O
P
F
x
通过焦点且垂直对称轴的直线,与抛物线相 通过焦点且垂直对称轴的直线, 交于两点, 交于两点,连接这两点的线段叫做抛物线的 通径。 通径。 通径的长度: 通径的长度:2P
标准方程中的 = ±2 px是我们以前没学过的 y
2
抛物线, 但它不是 的二次函数 x 。
y
类比椭圆、 类比椭圆、双曲线如何探索 抛物线的几何性质? 抛物线的几何性质?
o
F
结合抛物线y 的标准方程和图形,探索 结合抛物线 2=2px(p>0)的标准方程和图形 探索 的标准方程和图形 其的几何性质: 其的几何性质 (1)范围 (1)范围 x≥0,y∈R ∈
· ·F
M
o
x
思考: 抛物 思考:
线是一个怎样 的对称图形? 的对称图形?
回忆一下,看看上面的方程哪一种简单, 回忆一下,看看上面的方程哪一种简单, 为什么会简单?启发我们怎样建立坐标系 建立坐标系? 为什么会简单?启发我们怎样建立坐标系?
1、标准方程的推导
取过焦点F且垂直于准线l的直线为 取过焦点F且垂直于准线l 线段KF KF的中垂线 x轴,线段KF的中垂线 为y轴 设︱KF︱= p ︱ p p 则F( 2 ,0), :x = ( ),l: ), 2 设点M的坐标为 x,y), 的坐标为( 设点M的坐标为(x,y), 由定义可知, 由定义可知, l y N K o
方程
y2 = 2px (p>0) > ) y
y2 = -2px (p>0) > ) y l
x F O x
x2 = 2py (p>0) > ) y
F O l x
x2 = -2py (p>0) > ) y
O

l O F
l x
形 范围 x≥0 y∈R ∈ x≤0 y∈R ∈
F
x∈R y≥0 ∈
x∈R y≤0 ∈
关于y轴对称 关于 轴对称
对称性 关于 轴对称 关于 轴对称 关于 轴对称 关于x轴对称 关于x轴对称 关于y轴对称
顶点
焦半径 焦点弦 的长度
(0,0) )
p + x0 2
(0,0) )
p − x0 2
p − ( x1 + x2 )
(0,0) )
p + y0 2
p + y1 + y2
(0,0) )
p − y0 2
l y A
O B
F
X
分析1:直线与抛物线相交问题, 分析 :直线与抛物线相交问题,可联立方程组求交点 坐标,由距离公式求;或不求交点,直接用弦长公式 弦长公式求 坐标,由距离公式求;或不求交点,直接用弦长公式求。 解法一:如图 解法一:如图8—22,由抛物线的标准方程可知,抛 ,由抛物线的标准方程可知, 物线焦点的坐标为F( , ),所以直线AB的方程为 ),所以直线 物线焦点的坐标为 (1,0),所以直线 的方程为 y=x-1. - ① 将方程①代入抛物线方程y2=4x,得 将方程①代入抛物线方程 得 化简得x (x-1)2=4x . 化简得 2-6x+1=0 - ) + 设A(x1,y1),B(x2,y2)得:
p F(- ,0) 2 p x= 2
y轴的 轴的 正半轴上 x2=2py
p F(0, ) 2 p y =2
y轴的 轴的 负半轴上 x2=-2py
p F(0, - ) 2 p y= 2
标准方程
ห้องสมุดไป่ตู้焦点坐标
准线方程
想一想: 想一想:
1、 根据上表中抛物线的标准方程 的不同形式与图形、焦点坐标、 的不同形式与图形、焦点坐标、准线
抛物线的标准方程还有 几种不同的形式 不同的形式?它们是 几种不同的形式 它们是 如何建系的? 如何建系的
三. 四种抛物线及其它们的标准方程
y
y
y
y l O

F
x
F
O
F
O
x
x
F O l

l
x
l
焦点位置
x轴的 轴的 正半轴上 y2=2px
p F( ,0) 2 p x =2
x轴的 轴的 负半轴上 y2=-2px
解: 点P(4,−2)位于第四象限 Q ,设所求 方程为 y2 = 2 p1x或x2 = −2 p2 y,将x = 4, y = −2代入, 1 可得p1 = , p2 = 4, 2 ∴所求为 2 = x或x2 = −8y y
数学应用
与点F( , ) 例3、点M与点 (4,0)的距离比它到直线 与点 l:x+5=0的距离小 ,求点 的轨迹方程. : + = 的距离小 的距离小1,求点M的轨迹方程 的轨迹方程.
方程的应关系? 方程的应关系?
2、如何判断抛物线的焦点位置,开口方向? 如何判断抛物线的焦点位置,开口方向?
第一: 一次项的变量如为 X 第一 : 一次项的变量如为X (或Y) 则X轴(或Y轴)为抛 物线的对称轴, 物线的对称轴,焦点就在对称轴 上。 第二: 第二:一次的系数的正负决 定了开口方向
x1+x2=6 , x1x2=1 将x1+x2,x1x2的值分别代入弦长公式 的值分别代入弦长公式
∴ AB |= (x1 + x2 ) − 4x1x2 1+ k |
2 2
= 36 − 4 2 = 8
分析2:直线恰好过焦点, 分析 :直线恰好过焦点,可与抛物线定义发生 联系,利用抛物线定义将AB转化成 转化成A、 联系,利用抛物线定义将 转化成 、B间的焦点弦 两个焦半径的和),从而达到求解目的. ),从而达到求解目的 (两个焦半径的和),从而达到求解目的 解法二:在图 解法二:在图8—22中,由抛物线的定义可知, 中 由抛物线的定义可知, p |AF|= AA′ ,而| AA′ |= x1 + = x1 +1. 2 BF = BB′ = x2 +1, 同理 于是得|AB|=|AF|+|BF|=x1+x2+2. 于是得 由方程x2- + 由方程 -6x+1=0,根据根与 ,
3、我们以前学习的抛物线和现在学习的
抛物线的标准方程有什么联系? 抛物线的标准方程有什么联系?
二 函 y = ax + bx + c的 象 是 物 , 次 数 图 都 抛 线
2
其 的 部 y = ax2是 或 化 ) 物 中 一 分 ( 可 为 抛 线 的 准 程 2 = ±2 py。 标 方 x
抛物线标准方程 及几何性质
问题情境
抛物线的生活实例
抛球运动
一、定义
定点F与定直线 的 定点 与定直线l的 与定直线 位置关系是怎样的? 位置关系是怎样的? l
相关文档
最新文档