人教版初三数学上册尺规作图
人教版数学中考复习课件第七章第一节 尺规作图

尺规作图题常见考查类型 1.直接作图,如作角平分线,线段的垂直平分线,作一个角等于已 知角等,直接利用五种基本的尺规作图来解答. 2.给出作图痕迹或步骤,判断结论正误或进行相关计算,对于此种 类型的题目,平时要对五种基本尺规作图了熟于心,从而判断是哪种基 本作图,再根据作图依据进行结论判断或计算.
5.★(2020·郴州)如图,在矩形 ABCD 中,AD=4,AB=8.分别以点 B,D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点 E 和 F.作直线 EF 分别与 DC,DB,AB 交于点 M,O,N,则 MN= 2 5 .
6.(2020·扬州)如图,在△ABC 中,按以下步骤作图: ①以点 B 为圆心,任意长为半径作弧,分别交 AB,BC 于点 D,E. ②分别以点 D,E 为圆心,大于12DE 的长为半径作弧,两弧交于点 F. ③作射线 BF 交 AC 于点 G. 如果 AB=8,BC=12,△ABG 的面积为 18,则△CBG 的面积为 27 .
∴∠DBA=∠ACD=45°, ∵AC=6,BC=8,∴AB=10, ∴AD=BD=AB·sin 45°=10× 22=5 2.
7.(2020·青海)如图,在 Rt△ABC 中,∠C=90°.
(1)尺规作图:作 Rt△ABC 的外接圆⊙O;作∠ACB 的角平分线交⊙O 于点 D,连接 AD;(不写作法,保留作图痕迹)
解:如图,Rt△ABC 的外接圆⊙O,线段 CD 即为所求.
(2)若 AC=6,BC=8,求 AD 的长. 解:连接 BD, ∵∠C=90°. ∴AB 是⊙O 的直径, ∴∠BDA=90°, ∵CD 平分∠ACB, ∴∠ACD=∠BCD=45°,
命题点:尺规作图及相关的证明与计算(2020 年考查 2 次,2019 年考 查 2 次,2018 年考查 2 次,2017 年考查 1 次)
初三数学复习尺规作图ppt课件

作法:
1.以O为圆心,适当 长为半径作弧,交OA于M, 交OB于N.
2.分别以M,N为
圆心.大于 1 MN的长为 2
半径作弧.两弧在∠AOB
的内部交于C. 3.作射线OC.
A
M C
B
N
则射线OC即为所求.
O
4
作线段的垂直平分线。
已知:线段AB,
A
求作:线段AB的垂直平分线。 作法:(大两1)于弧分—交别12—于以AC点B、的AD、长两B为点为半;圆径心作,弧以,
2、连接AB’、B’C’、C’A。 2、连接A’B’、B’C、CA’。
17
利用位似定义如何将一个图形进行
放大或缩小? A
请把图中的四边
形缩小到原来的二
D
分之一
B
C
18
A
作法一
(1)在边形ABCD外任取一点O
D
(2)过点o分别作射线
B
OA,OB,OC,OD
A.
(3)分别在射线OA, OB,OC,OD上取点A,
A
.
B
.
O
.
.
D
C
21
a
⑶ 以B为圆心,b为半径画弧,交射线CN于点 A; ⑷ 连接AB; (5)△ABC即为所求的直 角三角形
9
已知:不在同一直线上的三点
A、B、C
求作:⊙O,使它经过A、B、C
B
作法:
F A O
1、连结AB,作线段AB的垂
C
直平分线DE,
G
2、连结BC,作线段BC的垂直平
分线FG,交DE于点O,
3、以O为圆心,OB为半径作圆,
. D. B . C
. B,,C,,D,, O
九年级中考数学二轮复习 第8讲-尺规作图课件

交BC于点E,与边AC相切于点F.求证:∠1=∠2;
(2)在图2中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;
③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)
真题演练
10.(2018·常州)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相
交于点F,连接CF.求证:∠AFE=∠CFD.
则AB=a.
1、尺规作图
②作一个角等于已知角.
作法:作PC=OB,CD=BA,又∵PD=PC=OB=OA,
∴△PDC≌△OAB,∴∠DPC=∠AOB.
1、尺规作图
③作已知线段的垂直平分线.
作法:分别以A、B为圆心,线段r( >
)为半径作圆,交点是C、D,
连接CD.则直线CD即为线段AB的垂直平分线.
答案不唯一)
真题演练
8.(2018·陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连
接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作
法,保留作图痕迹)
真题演练
9.(2019·宿迁)在Rt△ABC中,∠C=90°.
(1)如图1,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,
①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为
圆心,大于 的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于
的长为半径作弧相交于点M,N,作直线MN,交射线AH于点O;③以点O为圆心,线
段OA长为半径作圆.则圆O的半径为( )
A.2 5
(1)请在图1中用无刻度的直尺和圆规作图:作直线l,使l上的各点到B、C
中考数学复习:尺规作图 课件

自主作图
(1)两点确定一条直线; 作图依据
(2)到线段两个端点距离相等的点在这条线段的垂直平分线上
作图5:过一点作已知直线的垂线情 形一:点P在直线l上
已知:直线l和直线l上一点P. 求作:直线l的垂线(根据作法使用直尺和圆规作图) 作法:(1)以点P为圆心,任意长为半径向点P两侧作弧,交直线l于A,B
自主作图 (1)两点确定一条直线;
作图依据 (2)到线段两个端点距离相等的点在这条线段的垂直平分线上
随堂练习
1.如图,已知∠AOB,求作∠CDE,使得∠CDE=∠AOB.根据尺规作 图的痕迹,下列结论不一定正确的是( C )
A. 圆弧MN与圆弧FG是等弧B. 线段ON 与线段DF的长相等C. 圆弧FG与圆弧 QH的半径相等D. 扇形MON与扇形 FDG的面积相等
6. 如图,在△ABC中,AB=AC,∠B=54°,以点C
为圆心,CA长为半径作弧交AB于点D,分别以点A和 点D为圆心,大于 1AD长为半径作弧,两弧相交于点
2 E,作直线CE,交AB于点F,则∠ACF的度数是
_1_8_°__.
第6题图
已知:直线l和直线l外一点P.
求作:直线l的垂线(根据作法使用直尺和圆规作图)
作法:(1)在直线l另一侧取点M;
作图步骤
(2)以点P为圆心,以_P_M___长为半径作弧,交直线l于A,B两点;
(3)分别以点A,B为圆心,以_大__于__1_2_A__B_长为半径作弧,交点M同侧于
点PM; (4)作直线PN,则直线PN即为所求作的垂线
③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图 过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)
初中数学中的尺规作图

尺规作图是一种古老而神奇的工具,能够用简单的工具和技巧绘制出精确的几何图形。
在初中数学中,尺规作图是一个必修的内容,对于学生来说,掌握它是非常重要的。
本文将详细介绍尺规作图的基础知识、步骤和实践技巧。
一、什么是尺规作图?尺规作图,又称欧氏几何作图,是一种利用尺子和圆规进行的几何作图方法。
它的基本原理是:利用尺子测量长度,用圆规画出圆和弧,然后通过将这些线段和圆弧相交、平移、旋转等操作,得到所需的几何图形。
尺规作图是欧几里得几何的基础,也是很多复杂几何问题的解决方法之一。
二、尺规作图的基本步骤1. 给定图形尺规作图的第一步是给定一个几何图形,通常是已知几条线段或者角度的大小关系。
例如,给定一个直角三角形,其中两条直角边的长度分别为3cm和4cm,要求作出这个三角形。
2. 作出基础线段根据给定的条件,用尺子和圆规作出基础线段。
例如,在一个纸上画一条长度为3cm的线段AB,再画一条长度为4cm的线段AC,其中∠BAC为直角。
3. 作出辅助线段根据需要,作出一些辅助线段,以便通过相交、平移、旋转等操作得到所需的图形。
例如,可以在线段AB上取一点D,再以点C为圆心、AC为半径画一个圆,得到一个圆弧,将其与线段AB相交于点E,再连接线段AE和BE,就得到了一个直角三角形ABC。
三、尺规作图的实践技巧1. 细心测量尺规作图需要精确测量线段的长度和角度的大小,因此必须细心认真地进行测量,避免出现误差。
特别是在作大型图形时,必须使用长尺和精密测量工具,以确保准确性。
2. 多加练习尺规作图需要的是手眼协调能力和灵活性,这些技能需要通过不断地练习才能掌握。
建议初学者多做练习题,逐渐提高自己的技巧和速度。
3. 熟练运用尺规尺规作图需要灵活运用圆规和尺子,掌握不同的测量技巧和作图方法。
例如,可以利用圆规的不同刻度测量半径和角度,或者利用尺子的折叠功能作出垂线等。
四、总结归纳尺规作图是一种重要的几何工具,能够在解决复杂几何问题时提供有力的支持。
【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
中考数学知识点复习:尺规作图全面版

如何利用尺规作图解决最值问题?
最值问题的求解
最值问题是一类求解最优解的问题,可以利用尺规作图来解决。例如,在几何、代数等领域中,经常需要使用尺规作 图来求解最值问题。
作图方法
利用尺规作图求解最值问题,需要先了解问题的具体内容,然后根据问题内容进行尺规作图。在作图过程中,需要注 意图形绘制的准确性和规范性,以保证求解的准确性。
03
多边形的尺规作图
作已知线段的垂线
01
总结词:通过一个已知点,作 已知线段的垂线,是尺规作图
的基础。
02
详细描述
03
04
1. 分别以线段的两个端点为 圆心,以大于线段的一半为半 径画圆弧,得到两个交点。
2. 连接两个交点,得到的直 线即为已知线段的垂线。
已知二线段平行的垂线段的中垂线
总结词:找到一个已知的平行线段的中垂线,是尺规作 图的进阶技能。
1. 以平行线段的一个端点为圆心,以适当长度为半径画 圆弧,与平行线段相交于两点。
详细描述
2. 连接这两个交点得到的直线即为已知平行线段的中垂 线。
作已知直线的平行线
01
总结词:通过一个已知点,作已知直线的平行线,是尺规作图的基本 技能之一。
02
详细描述
03
1. 以已知点为圆心,以适当长度为半径画圆弧,与直线相交于两点。
04
2. 连接这两个交点得到的直线即为已知直线的平行线。
作已知二线段的中垂线
01 总结词:通过两个已知点,作已知二线段 的中垂线,是尺规作图的高级技能。
02
详细描述
Hale Waihona Puke 031. 以两个已知点为圆心,以适当长度为半 径画圆弧,得到两个交点。
04
初中尺规作图详细讲解含图

初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最着名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺号π(即当圆半径1规作图不能问题.若干着名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个着名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多着名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形==.2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段 2.做一角等于已知角 3.做一角的角平分线4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP ∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点.⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点.⑷ 分别以12M M ,为圆心,以r 为半径作圆.∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为1.,也就是说用这个长度去等分圆周.我们的任务就是做出这个长度..设法构造斜边为1的的长度自然就出来了.【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2.)⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形作法:⑴ 作线段12MD a =; ⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙;⑷ 过D 作DE MN ⊥,交O ⊙于E ,⑸ 以DE 为一边作正方形DEFG .正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M .1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ;⑵ 以AD 为一边作正三角形'ADD ;⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧).⑸ 连接AB 、AC 、BC 得ABC ∆.ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =);⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点. 连接,PD CD (或',''PD C D ).则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上.⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E .⑸ 过G 作''GD G D ∥交BC 于D .则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ;⑵ 过M 作MN AP ∥交AB 于N ;⑶ 过P 、N 作直线l .直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积;⑵ 这样的直线有多少条?请你用语言描述出这样的直线.【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S S S S =,那么称直线l 为该图形的黄金分割线. ⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由.⑷ 如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点. 【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下: 设ABC △的边AB 上的高为h . 12ADC S AD h=△,12BDC S BD h =△,12ABC S AB h =△, ∴ADC ABC S AD S AB =△△,BDC ADC S BD S AD=△△. 又∵点D 为边AB 的黄金分割点,∴AD BD AB AD =.∴ADC BDC ABC ADC S S S S =△△△△.∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分,此时1212S S S ==,即121S S S S ≠, ∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DEC FCE S S =△△.A CB 图1 ADB 图2C AD B 图3 C FE 图4设直线EF 与CD 交于点G ,∴DGE FGC S S =△△. ∴ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形. 又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEF S S S S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法; 画法一:如答图1,取EF 中点G ,再过点G 作一直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M ,连接MN ,则直线MN 就是ABCD 的黄金分割线.E M (答案图1)E M (答案图2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习1 如图,AB∥CD,以点A为圆心,小于AC长
为半径作圆弧,分别交AB,AC于E,F两点,再分 1
别以E、F为圆心,大于 2 EF的长 为半径画弧,两弧交于点P,作射
线AP,交CD于点M.若∠ACD= 120°,则∠MAB的度数为_3_0_°___. 练习1题图
【解析】∵AB∥CD,∴∠ACD+∠CAB=180°,又 ∵∠ACD=120°,∴∠CAB=60°,由作法知,AM是 ∠CAB的平分线,∴∠MAB= ∠CA12 B=30°.
例题图
CD于点E,作DF⊥AE于点F,已知∠ADF=50°,
∠C的度数为__8_0_°___.
【解析】∵DF⊥AE于点 F,∠ADF=50°, ∴∠DAE=40°,由作图可知,AE平分∠BAD, ∴∠BAD = 40°×2=80°,∵四边形ABCD是平行四边 形,∴∠C=∠BAD=80°.
【答案】80°
画弧,分别交OA、OB于N、M;
1 2.分别以点M、N为圆心,大于2 MN 的长为半径画弧,两弧相交于点P; 3.画射线OP,OP即为所求角平分线
作线段的 垂直平分 线(已知 线段AB)
作一个角 等于已知 角(已知 ∠α)
步骤:1.分别以点A、B为圆心,以大 于 1 AB的长为半径,在AB两侧作弧;
【答案】 10
练习3 如图,已知线段AB,分别 以点A,B为圆心,大于线段AB长 度一半的长为半径画弧,相交于 点C,D,作直线CD,连接AC,BC, BD,DA,其中AB=4,CD=5,则四 边形ADBC的面积为___1_0绝对名师93页2题
【解析】由作图知AB与CD互相垂直平分,则四边
2
2.连接两弧交点所成直线即为所求线 段的垂直平分线
步骤:1.在∠α上以点O为圆心、以适 当的长为半径作弧,交∠α的两边于点 P、Q;2.作射线O′A;3.以O′为圆 心,OP长为半径作弧,交O′A于点M;4. 以点M为圆心,PQ长为半径作弧,交前
弧于点N;5.过点N作射线O′B,则
∠BO′A即为所求角
13
则BF=______6_.
【解析】如解图,设PQ与BD相交于点M,由题意可得PQ
为BD的垂直平分线,∴EF⊥BD,∵AC=4,BC=3, ∠C=
90°,点D是AC的中点,∴CD=2,BD= CD2 BC2= 1 3 ,
∴ BM= 1 3 ,∵cos∠DBC= B C
13 2
BD
BM
=
BF
, 即3 13
13
=2 ,
BF
∴BF= 6 .
练习4题解图
• 1. (2014河南11题3分)如图,在△ABC中, 按以下步骤作图:①分别以点B、C为圆心, 以大于BC的长为半径作弧,两弧相交于M、 N两点;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=25°,则∠ACB的度数 为________.
过一 点作 已知 直线 的垂 线(已 知点 P和直 线l)
过直线 外一点 作已知 直线的 垂线
过直线 上一点 作已知 直线的 垂线
步骤:1.在直线l另一侧取点M; 2.以P为圆心,以PM为半径画弧,交直 线 l 于A、B两点; 3.分别以A、B为圆心,以大于AB长为 半径画弧,交M同侧于点N; 4.连接PN,则直线PN即为所求垂线
尺规作图
学----展----用
中招考点清单 考点1 尺规作图(2015.7,2014.11,2012.10) 1. 五种基本尺规作图
作一条线 段等于已 知线段(已 知线段a)
作已知角 的平分线 (已知 ∠AOB)
步骤:1.作射线OP; 2.在OP上截取OA=a,OA即为所 求线段
步骤:1.以点O为圆心,任意长为半径
形ADBC为菱形,∴四边形ADBC的面积为
×CD=
1 2
×4×5=10.
1 2
×AB
【答案】10
练习4 如图,在Rt△ABC 中,
∠C=90°,AC=4,BC=3,点
D是AC的中点,连接BD,按
以下步骤作图:①分别以点
B、D为圆心,以大于 BD的
长为半径作弧 ,两弧相交于
练习4题图
点P和点Q;②作直线PQ交AB于点E,交BC于点F,
常考类型剖析 类型 与尺规作图有关的计算
【命题解读】近9年考查3次,主要在填空题中考查, ①考查内容有:作已知角的平分线;作线段的垂直 平分线;②考查形式有求线段长度和求角度两种.
例 如图,在平行四边形ABCD中,以
A点为圆心,任意长为半径作弧,分
别交AD、AB于M、N两点,再分别以 1
M、N为圆心,大于2 MN的长为半径 作弧,两弧交于点P,作射线AP,交
步骤:1.过圆心O作任意一条⊙O的直径,
记为AC;2.作AC的垂直平分线(作法同基 本尺规作图的类型三),分别交⊙O于点 B,D; 3.连接AB,BC,CD,DA,则四边形 ABCD即为所求作的正方形
3、2017年中考数学增加的一些内容 尺规作图: 过一点作已知直线的垂线; 已知一直角边和斜边作直角三角形; 作三角形的外接圆、内切圆; 作圆的内接正方形和正六边形
• (2012河南10题3分)如图,在△ABC中, ∠C=90°,∠CAB=50°.按以下步骤作 图:①以点A为圆心,小于AC的长为半径 画弧,分别交AB、AC于点E、F;②分别 以点E、F为圆心,大于EF的长为半径画弧, 两弧相交于点G;③作射线AG交BC边于点 D.则∠ADC的度数为________.
步骤:1.以点P为圆心,任意长为半径向
点P两侧作弧,交直线l于A、B两点;
2.分别以点A、B为圆心,以大于
1 2
AB
长为半径向直线l两侧作弧,交点分别
为M、N;
3.连接MN,则MN即为所求垂线
2. 其他作图
作三角形 的内切圆
作圆的内 接正方形 (2011版 课标新增 内容)
步骤:1.作∠B、∠C的角平分线(作法同 基本尺规作图的类型二),两条角平分线交 于一点O;2.作点O到边AB的垂线(作法同 基本尺规作图的类型五),交边AB于点F;3. 以O为圆心,OF长为半径作圆;4.则⊙O即 为△ABC的内切圆
【答案】 30°
练习2 (2016长春)如图,在
△ABC中,AB>AC.按以下步
骤作图:分别以点B和点C为
圆心、大于BC一半的长为半 径作圆弧,两弧相交于点M
练习2题图
和点N;作直线MN交AB于点D;连接CD;若AB=6,
AC=4,则△ACD的周长为__1_0___.
【解析】由作图知,直线MN是BC的中垂线,∴BD= CD,∵AB=6 , AC=4,∴C△ACD=AC+AD+CD=AC +AD+BD=AC+AB=10.