高等数学导数的概念教案
高等数学-导数的概念-教案

辽宁省农村信用社招聘:时政考点模拟试题本卷共分为1大题50小题,作答时间为180分钟,总分100分,60分及格。
一、单项选择题(共50题,每题2分。
每题的备选项中,只有一个最符合题意)1.(★★☆☆☆)张某窃得同事一张银行借记卡及身份证,向丈夫何某谎称路上所拾。
张某与何某根据身份证号码试出了借记卡密码,持卡消费5000元。
关于本案,下列哪一说法是正确的__A.张某与何某均构成盗窃罪B.张某与何某均构成信用卡诈骗罪C.张某构成盗窃罪,何某构成信用卡诈骗罪D.张某构成信用卡诈骗罪,何某不构成犯罪2.我国对法律溯及力问题,实行的原则是__。
A.法在任何情况下均溯及既往B.法在任何情况下均不溯及既往C.法在一般情况下溯及既往,但为了更好地保护公民、法人或者其他组织的权利和利益而作的特别规定除外D.法在一般情况下不溯及既往,但为了更好地保护公民、法人或者其他组织的权利和利益而作的特别规定除外3.出席中国共产党第一次全国代表大会的12名党员代表所代表的党员数为__。
A.40多名B.100多名C.70多名D.50多名4.人民群众之所以是历史的创造者,其根本的原因在于__。
A.人民群众是人口的大多数B.人民群众是社会生产力的体现者C.人民群众具有先进思想D.人民群众通晓历史发展规律5. 中国倡导包容性增长,根本目的是__。
A.让所有的人都能参与到经济社会发展过程中B.在可持续发展中实现经济社会协调发展C.消除社会阶层,社会群体之间的隔阂和裂隙D.让经济全球化和经济发展成果惠及所有国家6. 社会主义法治理念是中国特色社会主义理论体系的组成部分,这个理论体系包含邓小平理论。
20世纪70年代末至90年代初,中共中央领导集体的主要代表邓小平曾创造性地提出一系列具体的法律思想。
判断下列哪一项不是邓小平理论法律思想的重要内容__ A.“有法可依、有法必依、执法必严、违法必究”的十六字方针B.一手抓建设和改革,一手抓法制C.用法律措施维护安定团结的政治局面D.明确提出“依法治国,建设社会主义法治国家”的基本方略7. 以下是客观唯心主义的是__。
高等数学导数的概念教学ppt课件.ppt

h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )
有
lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,
高中直播数学导数教案模板

高中直播数学导数教案模板
一、教学内容
1. 导数的概念和性质
2. 导数的计算方法
3. 导数在实际问题中的应用
二、教学目标
1. 理解导数的概念和性质
2. 熟练掌握导数的计算方法
3. 能够运用导数解决实际问题
三、教学重点
1. 导数的概念和性质
2. 导数的计算方法
四、教学难点
1. 导数的应用
五、教学过程
1. 导入:通过举例引入导数的概念,让学生了解导数的作用和意义。
2. 教学核心:讲解导数的定义和性质,以及导数的计算方法,通过实例逐步深入理解。
3. 拓展应用:结合实际问题,引导学生运用导数解决具体的应用问题。
4. 总结归纳:总结导数的相关知识点,强化学生的理解和记忆。
六、作业布置
1. 完成课后练习题,巩固导数的相关知识。
2. 设计一个实际问题,用导数方法求解。
七、教学反思
1. 教学过程中是否引导学生深入思考,掌握导数的本质?
2. 学生对导数的理解和应用是否到位,是否需要加强弱项的练习和指导?
以上是一份高中直播数学导数教案的模板范本,教师可根据实际情况和教学需求进行调整和完善。
高等数学导数的概念教案

1. 让学生理解导数的概念,掌握导数的定义和性质。
2. 培养学生运用导数解决实际问题的能力。
3. 引导学生掌握求导数的基本方法。
二、教学内容1. 导数的定义2. 导数的性质3. 求导数的方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、性质和求导数的方法。
2. 难点:导数的直观理解和求复杂函数的导数。
四、教学过程1. 导入:通过生活中的实例,如速度、加速度等,引导学生思考导数的概念。
2. 讲解:讲解导数的定义,引导学生理解导数的几何意义。
3. 练习:让学生独立完成一些简单函数的导数计算,巩固导数的求法。
4. 应用:结合实际问题,让学生运用导数解决问题,体会导数的应用价值。
5. 总结:对本节课的内容进行总结,强调导数的重要性和求导数的方法。
五、课后作业1. 完成教材上的课后练习题。
2. 找一些实际问题,运用导数解决。
3. 复习本节课的内容,准备下一节课的学习。
1. 评价学生对导数概念的理解程度。
2. 评价学生掌握导数性质和求导数方法的情况。
3. 评价学生在实际问题中运用导数的熟练程度。
七、教学策略1. 采用生动的生活实例引入导数概念,提高学生的学习兴趣。
2. 通过多媒体手段展示导数的几何意义,增强学生的直观感受。
3. 设计具有梯度的练习题,让学生在实践中掌握求导数的方法。
4. 鼓励学生参与课堂讨论,提高学生的思维能力和解决问题的能力。
八、教学资源1. 教材:高等数学导数部分。
2. 多媒体课件:用于展示导数的几何意义和实例分析。
3. 练习题库:用于巩固所学知识和提高解题能力。
4. 网络资源:用于拓展学生视野,了解导数在实际应用中的广泛性。
九、教学反思在教学过程中,要及时关注学生的学习反馈,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,要加强针对性训练,提高学生的理解能力和应用能力。
注重培养学生的数学思维,激发学生学习高等数学的兴趣。
十、教学拓展1. 导数在微积分学中的应用:极限、积分等。
数学高中导数定律教案

数学高中导数定律教案
教学目标:
1.理解导数的定义和意义。
2.掌握导数的基本运算法则。
3.掌握导数的常用定律。
教学重点:
1.导数的定义和基本运算法则。
2.导数的常用定律。
教学难点:
1.对导数的理解和应用。
2.导数的运算法则及定律的灵活运用。
教学准备:
1.教科书、教具、黑板、彩色粉笔。
2.学生练习本。
教学过程:
一、导入(5分钟)
教师引导学生回顾导数的定义和意义,引出导数的运算法则和常用定律。
二、讲解导数的基本运算法则(10分钟)
1.导数的四则运算法则。
2.导数的复合函数法则。
三、讲解导数的常用定律(15分钟)
1.常数函数导数的定理。
2.幂函数导数的定理。
3.指数函数导数的定理。
4.对数函数导数的定理。
四、巩固练习(15分钟)
教师出示几道相关的练习题,让学生运用所学的导数定律进行练习,并进行讲解。
五、课堂小结(5分钟)
教师和学生一起回顾本节课的重点内容,并对导数的定律进行总结。
六、作业布置(5分钟)
布置相关的作业,要求学生运用导数的定律进行求解。
教学反思:
通过本节课的学习,学生能够掌握导数的基本运算法则和常用定律,并能够灵活运用导数
定律解决相关问题。
同时,教师也要引导学生多进行练习,加深对导数定律的理解和掌握。
《高等数学教案》课件

《高等数学教案》PPT课件第一章:导数与微分1.1 导数的概念引入导数的定义解释导数的几何意义举例说明导数的计算方法1.2 基本函数的导数计算常数函数、幂函数、指数函数、对数函数的导数总结常用函数的导数公式1.3 微分的概念与应用引入微分的定义解释微分的几何意义举例说明微分的计算方法介绍微分在实际问题中的应用第二章:积分与微分方程2.1 积分的概念引入积分的定义解释积分的几何意义举例说明积分的计算方法2.2 基本函数的积分计算常数函数、幂函数、指数函数、对数函数的积分总结常用函数的积分公式2.3 微分方程的概念与解法引入微分方程的定义解释微分方程的意义举例说明微分方程的解法介绍微分方程在实际问题中的应用第三章:级数与极限3.1 级数的概念引入级数的定义解释级数的收敛性与发散性举例说明级数的计算方法3.2 幂级数的概念与应用引入幂级数的定义解释幂级数的收敛区间与收敛半径举例说明幂级数的计算方法介绍幂级数在实际问题中的应用3.3 极限的概念与性质引入极限的定义解释极限的意义举例说明极限的计算方法介绍极限在实际问题中的应用第四章:向量与矩阵4.1 向量的概念与运算解释向量的几何意义举例说明向量的运算方法4.2 矩阵的概念与运算引入矩阵的定义解释矩阵的意义举例说明矩阵的运算方法4.3 向量空间与线性变换引入向量空间的概念解释线性变换的意义举例说明线性变换的性质介绍向量空间与线性变换在实际问题中的应用第五章:概率与统计5.1 概率的基本概念引入概率的定义解释概率的意义举例说明概率的计算方法5.2 随机变量的概念与分布引入随机变量的定义解释随机变量的意义举例说明随机变量的分布方法5.3 统计的基本概念与方法解释统计的意义举例说明统计的计算方法介绍统计在实际问题中的应用第六章:多变量微积分6.1 多元函数的概念引入多元函数的定义解释多元函数的意义举例说明多元函数的计算方法6.2 偏导数与全微分引入偏导数的定义解释偏导数的意义举例说明偏导数的计算方法介绍全微分的概念与应用6.3 多重积分的概念与应用引入多重积分的定义解释多重积分的意义举例说明多重积分的计算方法介绍多重积分在实际问题中的应用第七章:常微分方程7.1 常微分方程的概念引入常微分方程的定义解释常微分方程的意义举例说明常微分方程的解法7.2 线性微分方程与非线性微分方程引入线性微分方程与非线性微分方程的定义解释线性微分方程与非线性微分方程的区别与联系举例说明线性微分方程与非线性微分方程的解法7.3 常微分方程的应用介绍常微分方程在物理、工程等领域的应用举例说明常微分方程解决实际问题的方法第八章:数值计算方法8.1 数值计算方法的概念引入数值计算方法的定义解释数值计算方法的意义举例说明数值计算方法的计算过程8.2 数值积分与数值微分引入数值积分与数值微分的定义解释数值积分与数值微分的意义举例说明数值积分与数值微分的计算方法8.3 常微分方程的数值解法引入常微分方程的数值解法的定义解释常微分方程的数值解法的意义举例说明常微分方程的数值解法第九章:概率与统计(续)9.1 描述统计与推断统计引入描述统计与推断统计的定义解释描述统计与推断统计的意义举例说明描述统计与推断统计的方法9.2 假设检验与置信区间引入假设检验与置信区间的定义解释假设检验与置信区间的意义举例说明假设检验与置信区间的计算方法9.3 回归分析与相关分析引入回归分析与相关分析的定义解释回归分析与相关分析的意义举例说明回归分析与相关分析的方法第十章:高等数学在实际问题中的应用10.1 高等数学在物理学中的应用介绍高等数学在经典力学、电磁学等物理学领域中的应用举例说明高等数学解决物理学问题的方法10.2 高等数学在工程学中的应用介绍高等数学在土木工程、机械工程等工程领域中的应用举例说明高等数学解决工程学问题的方法10.3 高等数学在经济学、生物学等领域的应用介绍高等数学在经济学、生物学等领域中的应用举例说明高等数学解决经济学、生物学等领域问题的方法重点解析第一章:导数与微分重点:理解导数和微分的定义及其几何意义,掌握基本函数的导数和微分计算。
《高等数学》教案第三章导数与微分

《高等数学》教案第三章导数与微分教案之一:导数的定义和性质一、教学目标1.理解导数的概念和意义;2.学习导数的计算方法;3.掌握导数的基本性质;4.能够应用导数计算函数在其中一点的切线方程及函数的近似值。
二、教学重点和难点1.导数的概念和计算方法;2.导数的性质;3.函数在其中一点的切线方程的计算。
三、教学内容和方法1.导数的概念和计算方法通过解释导数的概念,引出导数的计算方法,并通过示例进行演示和讲解。
方法:讲解、示例演示、问题解答。
2.导数的性质介绍导数的基本性质,如导数为0的函数、导数的四则运算和导数的符号性。
方法:讲解、示例演示、问题解答。
3.函数在其中一点的切线方程的计算通过解释切线的概念,推导出切线方程的计算公式,并通过示例进行演示和讲解。
方法:讲解、示例演示、问题解答。
四、教学过程1.导数的概念和计算方法a.引出导数的概念和意义;b.讲解导数的计算方法,包括使用函数的极限和差商的方法,以及导数的几何意义;c.通过示例演示导数的计算方法。
2.导数的性质a.介绍导数为0的函数及其性质;b.讲解导数的四则运算和导数的符号性;c.通过示例演示导数的性质。
3.函数在其中一点的切线方程的计算a.解释切线的概念和意义;b.推导出切线方程的计算公式,包括斜截式和点斜式;c.通过示例演示切线方程的计算方法。
五、教学反思本节课主要介绍了导数的定义和性质,通过讲解、示例演示和问题解答,帮助学生理解了导数的概念和计算方法,掌握了导数的基本性质,以及函数在其中一点的切线方程的计算方法。
在教学中,应重点讲解导数的几何意义和切线的概念,帮助学生理解导数及其应用。
同时,通过举例说明导数性质的应用,激发学生的学习兴趣和思考能力。
在教学过程中,要注意引导学生思考问题,提高其自主学习的能力。
希望通过本次教学,学生能够掌握导数的概念和性质,并能够应用导数计算函数在其中一点的切线方程及函数的近似值。
导数概念说课稿

导数概念说课稿《导数的概念》说课稿一、教材分析《高等数学》是高职院校面向各个专业,各个层次的学生开设的一门公共基础课程,是学习后继专业课的基础。
它对学生后继课程的学习以及抽象概括能力、逻辑思维能力、空间想象能力和自学能力以及分析问题、解决问题能力的培养都起着极其重要的作用。
《高等数学》主要由微分学和积分学两部分组成,而微分学又是积分学的基础。
“导数的概念”是高职高专“十二五”规划教材《高等数学》(西安电子科技大学出版社2012年第1版)第二章第一节的教学内容,包括两个引例、导数的概念、求导举例和函数可导与连续的关系。
考虑到铁道机车专业学生的实际情况,函数可导与连续的关系部分略去不讲。
导数的概念是学习微分学的基础,它为即将学习导数的运算、高阶导数、函数的微分等知识的奠定了基础,更是我们研究函数单调性、极值、最值和解决生活中优化等问题的有力工具,其地位不容忽视。
二、教学目标1、知识目标:通过实例的分析,理解导数的概念;利用导数概念推到求导公式。
2、技能目标:利用极限思想解决问题的能力;运用数学软件进行数学探究活动的能力。
3、情感目标:通过合作交流,让学生感受探索的乐趣和成功的喜悦,体会数学的理性和严谨;培养学生正确认识量变和质变,运动与静止等辩证唯物主义观点,形成正确的数学观。
三、教学重点与难点重点:了解导数概念的形成,理解导数的内涵。
难点:理解导数的思想,在教学中通过实例引入、多媒体演示、背景知识介绍等方式来突破难点。
四、教法学法分析1、教法分析学生在物理中已学过瞬时速度,对圆的切线割线已有了基本认识,因此,学生已经具备了一定的认知基础,于是,在教学设计中,我主要采用“教师适时引导和学生自主探究发现相结合”的教学方式。
课堂教学始终贯彻“以学生为主体,以教师为主导”的教学思想,通过创设问题情景,使学生们都能充分地参与到教学全过程;相互讨论、探究规律,通过师生互动、共同探索,形成概念,并学与致用。
2、学法分析本节课的教学对象是铁道机车专业学生,其特点是数学基础较好,逻辑思维好,动手能力强,学习态度积极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识目标:
1. 理解导数的概念; 2. 理解导数的几何意义; 3. 把握可导与连续的关系。
技能目标:
素养目标:
1. 会用定义求函数在一点处 1.培养学生的数学思维
的导数;
能力与解决问题的能
2. 会求曲线的切线。
力;
2.培养学生严谨、求实
的作风。
教学 重点 难点
重点:导数的定义。 难点:理解导数的几何意义。
线
设曲线方程为 y =f(x)在点 P0(x0,y0)处的附近取一点
P(x0 x, y0 y)
那么割线 P0 P 的斜率为
tan y f (x0 x) f (x0 ) 如果当点 P 沿曲线趋
x
x
向于点 P0 时,割线 P0P 的极限位置存在,即点 P0 处的切线
存在,此刻 x 0, ,割线斜率 tan 趋向切线 P0 T
存
在,则称此极限值为函数 y f (x) 在点 x0 处的导数、记
作: f '(x) 或 y' 或 dy ,即
x x0
dx xx0
f '(x) lim f (x0 x) f (x0 )
x0
x
此时也称函数 f (x) 在点 x0 处可导、 如果上述极
限不存在,则称 f (x) 在 x0 处不可导、
刻 t0 的瞬时速度.且 t 越小,接近的程度就越好.因此,当 t 0 时,如果平均速度 s 的极限存在,那么,就把这个极
t
知识,培养自 学能力
限 称 为 物 体 在 t0 时 刻 的 瞬 时 速 度 ,
即:
v0
lim v
t 0
lim
t 0
s(t0
t) t
s(t0 )
.
2、曲线切线的斜率
定义 设点 P0 就是曲线 L 上的一个定点,点 P 就是曲 线 L 上的动点,当点 P 沿曲线 L 趋向于点 P0 时,如果割线 PP0 的极限位置 P0T 存在,则称直线 P0T 为曲线 L 在点 P0 处的切
瞬时速度,首先在时刻 t0 任给时间一个增量 t ,考虑质点由 t0 知识结构,明
到 t0
t 这段时间的平均速度: v s(t0 t) s(t0 ) t
确本节的重 点,对重点内 容进行复习
与提高。
当时间间隔 t 很小时,其平均速度就可以近似地瞧作时 巩 固 所 学 的
高等数学导数的概念教案
6mins
板书(或 PPT 展
B、板书课题,明确学习目标及主要学习内容 (略。详见教案首页)
示)课题 明确本次课的 内容重点及目
简介 辅以 PPT 展示
2mins
标
C、讲授新知
引入导数概念
总结概括导数 导数与微分就是微积分的基本概念,要更好地理解导
定义 数的概念,应从解决实际问题的背景出发,在解决问题的过 会 用 定 义 求 函
方法
质点在时刻 t0 的瞬时速度为 v0
v
s(t0 t) s(t0 ) t
讲解 理解左导数与
讲解 右导数的概念
讲解
8mins 8mins 7mins
在匀速直线运动中,这个比值就是常数,但就是如果质点 理 解 可 导 与
2mins
作变速直线运动,它的运行速度时刻都在发生变化,为了计算 连续的关系
建立系统的
教学
教材、例子(幻灯片)、课件。
资源
教学后记
对培养方案、大纲修改意见 对授课计划修改意见 对本教案修改意见 需增加资源 其她
教研室主任:
系主任:
教务处:
高等数学导数的概念教案
教学活动流程 教学步骤与内容
教学目标
教学方法 时间
A、复习内容
1.极限的定义 2、极限的计算方法
对前面的知 识进行复习 与巩固,并 为新知识与 简述 新技能的学 习奠定必要 的基础。
例 1、求函数 f (x) = x2 在 x0 = 1 处的导数,即 f / (1)、 解:第一步求 y : y f (1 x) f (1) (1 x)2 12 2x (x)2
高等数学导数的概念教案
第二步求
y
y
:
2x (x)2
2 x
(x 0).
x x
x
第三步求极限: lim y lim (2 x) 2 所 x0 x x0
以, f '(1) 2
三、导数的几何意义
函数 y = f (x) 在点 x0 处的导数的几何意义就就是 曲线 y = f (x) 在点 (x0 ,f (x0))处的切线的斜率,
即: tan f '(x0 ) ,图 P46
由此可知曲线 y = f (x)上点 P0 处的切线方程
为: y y0 f '(x0 )( x x0 )
程中自然抽象出导数的概念。导数与微分在理论上与实践 数 在 一 点 处 的
中都有非常广泛的应用。
导数 理解导数的几
一、瞬时速度、曲线的切线斜率
何意义
讲解
20mins
1. 变速直线运动的瞬时速度
会求曲线的切 辅以 PPT 展示 5mins
线
设一质点作变速直线运动,质点的运行路程 s 与时间 t 的了 解 导 数 的 物 讲解
法线方程为: y y0
f
1 ( x0
)
(
x
x0
)
其中 y0 = f ( x0)、
( f (x0 ) 0) ,
例 2 求曲线 y = x2 在点 (1, 1) 处的切线与法线方程、
解:从例 1 知 (x2 )' 2 即点 (1, 1) 处的切线斜率 x1
7mins讲解源自10mins关系为 s s(t) ,求质点在 t0 时刻的瞬时速度.
理意义
讲解
7mins
理解导函数的
分析:如果质点做匀速直线运动,给时间一个增量 t ,那定义
讲练结合 3mins
么质点在时刻 t0 与时刻 t0 t 间隔内的平均速度也就就是导 函 数 的 计 算
简单介绍 讲解
5mins 10mins
高等数学导数的概念教案
教学 对象
合班 1: 合班 2: 合班 3:
专业 专业 专业
班 合计 人 班 合计 人 班 合计 人
授课 日期 地点
教学 内容
(课题)
第二章 导数与微分 第一节 导数的概念
计划
2
学时
教学 目的
通过学习,学生能够:
1. 理解导数概念,会用定义求函数在一点处的导数; 2. 理解导数的几何意义,会求曲线的切线; 3. 理解可导与连续的关系。
的斜率 tan a,即, tan lim f (x0 x) f (x0 ) .
x0
x
二、导数的定义
定义: 设函数 y f (x) 在点 x0 的一个邻域内有定
义。在 x0 处给 x 以增量 x ( x 仍在上述邻域内),函数 y
相应地有增量 y
f (x0
x)
f
(
x0
)
,如果
lim
x0
y x