雷诺实验及其数据处理
雷诺实验

雷诺实验一、实验目的:1、观察液体在不同流动状态时流体质点的运动规律;2、观察流体由层流变紊流及由紊流变层流的过渡过程;3、测定液体在圆管中流动时的下临界雷诺数Re 。
二、设备外形图:三、实验原理:流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。
在实验过程中,保持水箱中的水位恒定,即水头H 不变。
如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v,微启红色水阀门,这时红色水与自来水同步在管路中沿轴线向前流动,红色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。
此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。
如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。
如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态为紊流运动。
雷诺数Re= u×d/v,根据连续方程:Au =Q ,u = Q/A流量Q用体积法测出,即在Δt时间内流入计量水箱中流体的体积ΔV 。
Q =ΔV/ΔtA=πd2/4式中:A—管路的横截面积;d —管路直径;u—流速;ν—水的粘度。
四、实验步骤1、准备工作:将水箱充水,启动水泵至实验水箱达到溢流;2、缓慢开启阀门,使玻璃管中水稳定流动,并开启红色阀门,使红色水以微小流速在玻璃管内流动,呈层流状态。
3、开大出口阀门,使红色水在玻璃管内的流动呈紊流状态,再逐渐关小出口阀门,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。
重复三次,即可算出下临界雷诺数。
五、数据处理实验记录表实验管内径d=15mm 水温= ℃Re = u×d/ν六、思考题1、液体流动状态及其转变说明了什么本质问题?两种流态的基本区别是什么?2、液体的流态与哪些因素有关?对实验结果进行分析讨论。
2023年雷诺实验和伯努利实验报告

试验七雷诺试验一、试验目旳1.观测液体流动时旳层流和紊流现象。
辨别两种不一样流态旳特性, 弄清两种流态产生旳条件。
分析圆管流态转化旳规律, 加深对雷诺数旳理解。
2、测定颜色水在管中旳不一样状态下旳雷诺数及沿程水头损失。
绘制沿程水头损失和断面平均流速旳关系曲线, 验证不一样流态下沿程水头损失旳规律是不一样旳。
深入掌握层流、紊流两种流态旳运动学特性与动力学特性。
3、通过对颜色水在管中旳不一样状态旳分析, 加深对管流不一样流态旳理解。
学习古典流体力学中应用无量纲参数进行试验研究旳措施, 并理解其实用意义。
二、试验原理1.液体在运动时, 存在着两种主线不一样旳流动状态。
当液体流速较小时, 惯性力较小, 粘滞力对质点起控制作用, 使各流层旳液体质点互不混杂, 液流呈层流运动。
当液体流速逐渐增大, 质点惯性力也逐渐增大, 粘滞力对质点旳控制逐渐减弱, 当流速到达一定程度时, 各流层旳液体形成涡体并能脱离原流层, 液流质点即互相混杂, 液流呈紊流运动。
这种从层流到紊流旳运动状态, 反应了液流内部构造从量变到质变旳一种变化过程。
液体运动旳层流和紊流两种型态, 首先由英国物理学家雷诺进行了定性与定量旳证明, 并根据研究成果, 提出液流型态可用下列无量纲数来判断:Re=Vd/νRe称为雷诺数。
液流型态开始变化时旳雷诺数叫做临界雷诺数。
在雷诺试验装置中, 通过有色液体旳质点运动, 可以将两种流态旳主线区别清晰地反应出来。
在层流中, 有色液体与水互不混惨, 呈直线运动状态, 在紊流中, 有大小不等旳涡体振荡于各流层之间, 有色液体与水混掺。
2、在如图所示旳试验设备图中, 取1-1, 1-2两断面, 由恒定总流旳能量方程知:f 2222221111h g2V a p z g 2V a p z ++γ+=+γ+由于管径不变V 1=V 2 ∴=γ+-γ+=)pz ()p z (h 2211f △h 因此, 压差计两测压管水面高差△h 即为1-1和1-2两断面间旳沿程水头损失, 用重量法或体积浊测出流量, 并由实测旳流量值求得断面平均流速 , 作为lghf 和lgv 关系曲线, 如下图所示, 曲线上EC 段和BD 段均可用直线关系式表达, 由斜截式方程得:lgh f =lgk+mlgv lgh f =lgkv m h f =kv m m 为直线旳斜率式中:12ff v lg v lgh lg h lg tg m 12--=θ=试验成果表明EC=1, θ=45°, 阐明沿程水头损失与流速旳一次方成正比例关系, 为层流区。
第二章化工原理实验 雷诺实验

第二章化工原理实验实验一、雷诺实验一、实验目的:1.建立“滞流和湍流两种流动形态”的感性认识;2.观察雷诺准数与流体流动类型的相互关系;3.观察滞流时流体在圆管内的速度分布曲线;二、实验原理:1.滞流时,流体质点做直线运动,即流体分层流动,与周围的流体无宏观的混合,湍流时,流体质点呈紊乱地向各方向作随机的脉动,流体总体上仍沿管道方向流动。
2.雷诺准数是判断实际流动类型的准数。
若流体在圆管内流动,则雷诺准数可用下式表示:(2-1)一般认为,当Re≤2000时,流体流动类型属于滞流;当Re≥4000时,流动类型属于湍流;而Re值在2000~4000范围内是不稳定的过渡状态,可能是层流也可能是湍流,取决于外界干扰条件。
如管道直径或方向的改变、管壁粗糙,或有外来振动等都易导致湍流。
3.对于一定温度的流体,在特定的圆管内流动,雷诺准数仅与流速有关。
本实验是改变水在管内的速度,观察在不同雷诺准数下流体流型的变化。
理论分析和实验证明,滞流时的速度沿管径按抛物线的规律分布。
中心的流速最大,愈近管壁流速愈慢。
湍流时由于流体质点强烈分离与混合,所以速度分布曲线不再是严格的抛物线,湍流程度愈剧烈,速度分布曲线顶部的区域愈广阔而平坦,但即使湍流时,靠近管壁区域的流体仍作滞流流动,这一层称为滞流内层或滞流底层,。
它虽然极薄,但在流体中进行热量和质量的传递时,产生的阻力比流体的湍流主体部分要大得多。
三、实验装置及流程:1.实验装置示意图及流程图2-1 雷诺实验——装置示意图及流程1.溢流管;2.小瓶;3.上水管;4.细管;5.水箱;6.水平玻璃管;7.出口阀门实验装置如图2-1所示,图中水箱内的水由自来水管供给,实验时水由水箱进入玻璃管(玻璃管供观察流体流动形态和滞流时管路中流速分布之用)。
水量由出口阀门控制,水箱内设有进水稳流装置及溢流管,用以维持平稳而又恒定的液面,多余水由溢流管排入下水道。
2.实验仿真界面图2-2 雷诺实验——仿真界面四、实验步骤:1、实验步骤(1)雷诺实验1)打开进水阀,使自来水充满高位水箱;2)待有溢流后,打开流量调节阀;3)缓慢地打开红墨水调节阀;4)调节流量调节阀,并注意观察滞流现象;5)逐渐加大流量调节阀的开度,并注意观察过渡流现象;6)进一步加大流量调节阀的开度,并注意观察湍流现象;7)由孔板流量计测得流体的流量并计算出雷诺准数;8)关闭红墨水调节阀,然后关闭进水阀,待玻璃管中的红色消失,关闭流量调节阀门,结束本次实验。
雷诺实验数据处理表格

雷诺实验数据处理表格
1、熟悉装置各部分的功能,记录有关常数
2、观察两种流态1)启动电源打开调速器,系统开始供水,待水箱充水开始溢流后,调节流量调节阀使其处于某一较小的流量和流速。
2)打开颜色水箱下的控制阀,是颜色水经细管道流入实验管内。
微调实验管道的流量调节阀的开度,使颜色水形成
一条很细的直线,此时管内水流形成层流状态。
3)逐渐加大流量调节阀的开度,呈直线的颜色水质点逐渐消失,此时管内的流体运动从层流转为湍流。
3、记录数据并计算雷诺准数观察玻璃管中水的流动形态,据此判断其流型,记录下五组数据,两个层流,两个湍流和一个过渡流。
结合相关参
数值计算雷诺准数。
雷诺实验报告

1、观察层流、紊流的流态及其转换特性
2、测定雷诺数,掌握圆管流态判别准则
3、学习古典流体力学中应用无量纲参数进行实验研究的方法,了解其实用意义
二、实验原理:
Re=vd/v=4Q/∏dv=KQ;k=4/∏dv
三、实验内容和步骤:.
1、测记本实验的有关常数;
2、观察两种流态;
打开水箱开关使水箱冲水溢流水位,经稳定后,注入颜色水(本实验使用墨水)与管中,通过调节调节阀观察紊流与层流之间的转换,分别观察层流与紊流的水力特征。
3、测定下临界雷诺数;
首先,把水量调至最大,管中呈现完全紊流,逐渐调小水量,待管中流量刚好使颜色水在全管呈现一条直线时,拉开阀门并开始记录时间,过一定的时间(几十秒左右)关闭阀门并停止记录时间,从仪器中读取温度跟质量,根据公式计算下临界雷诺系数,并与公认(2320)比较,相差太大需重测。
然后,测定上临界雷诺数。调节调节阀,使流量从下临界时的流量逐渐增大,当色流刚好开始散开时,等稳定一段时间,拉开阀门并开始记录时间,过一定的时间(几十秒左右)关闭阀门并停止记录时间,从仪器中读取温度跟质量,根据公式计算上临界雷诺数。
得分
教师签名
批改日期
深 圳 大 学 实 验 报 告
课程名称:工程水文与水力学
实验名称:雷诺实验
试验编号:
专业:交通工程班级:01
组号:指导教师:刘建
组长:杨剑菲学号:2008090074
组员:陆金龙学号:2008090067
组员:李骁学号:2008090347
实验时间:2008年12月6日星期一
实验报告提交时间:2008年12月20日
答:上临界雷诺数极不稳定,没有什么实际意义,而下临界雷诺数却十分稳定,变化幅度也不大,所以采用下雷诺数作为层流与紊流的判断依据;实测下临界雷诺数为2525。
实验一 雷诺实验

学号姓名实验一雷诺实验一、基本原理雷诺(Reynolds)用实验方法研究流体流动时,发现影响流动类型的因素除流速u外,尚有管径(或当量管径)d,流体的密度ρ及粘度μ,并且由此四个物理量组成的无因次数群Re=duρ/μ的值是判定流体流动类型的一个标准。
Re<2000~2300时为层流Re>4000时为湍流2000<Re<4000时为过渡区,在此区间可能为层流,也可能为湍流。
二、设备参数环境参数:温度 20℃压力 101325kPa水的参数:密度 998.2kg/m3 粘度 100.5E-5Pa*s设备参数:玻璃管径:20mm三、实验步骤●打开进水阀门在输入框输入0-100的数字,也可以通过点击上下按钮调节阀门开度。
按回车键完成输入,按ESC 键取消输入。
●打开红墨水阀●打开排水阀门●查看流量点击转子流量计查看当前流体流量●观察流体流动状态点击玻璃管,通过弹出的录像查看流体的流动状态●记录数据点击画面下方的自动记录按钮,记录实验数据,也可以手动记录。
●重复第三步到第六步,记录排水阀不同开度下的流量。
四、数据处理雷诺数计算公式Re=duρ/μ从这个定义式来看,对同一仪器d为定值,故u仅为流量的函数。
对于流体水来说,ρ,μ几乎仅为温度的函数。
因此确定了温度及流量,即可唯一的确定雷诺数。
数据记录:五、注意事项1、雷诺实验要求减少外界干扰,严格要求时应在有避免振动设施的房间内进行,由于条件不具备演示实验也可以在一般房间内进行,因为外界干扰及管子粗细不均匀等原因,层流的雷诺数上界到不了2300,只能到1600左右。
2、层流时红墨水成一线流下,不与水相混。
3、湍流时红墨水与水混旋,分不出界限。
雷诺流动形态实验报告

一、实验目的1. 观察流体流动过程中不同的流动形态及其变化过程;2. 测定流动形态变化时的临界雷诺数;3. 理解雷诺数与层流、湍流的关系;4. 掌握实验数据处理方法。
二、实验原理雷诺实验揭示了流体流动的两种基本形态:层流和湍流。
层流是指流体在管道内流动时,流体质点沿直线运动,彼此之间无宏观混合。
湍流则是指流体流动时,流体质点之间发生宏观混合,流速不均匀,产生涡流。
雷诺数(Re)是判断流体流动形态的无量纲数,其计算公式为:Re = ρvd/μ,其中ρ为流体密度,v为流体流速,d为管道直径,μ为流体粘度。
当Re较小时,流体流动为层流;当Re较大时,流体流动为湍流。
临界雷诺数是层流与湍流转变的界限。
三、实验仪器与材料1. 实验装置:自循环雷诺实验装置(包括供水器、实验台、可控硅无级调速器、恒压水箱、有色水水管、稳水隔板、溢流板、实验管道、实验流量调节阀等);2. 实验材料:有色水、清水、压差计、计时器等。
四、实验步骤1. 调整实验装置,确保供水稳定,管道内无气泡;2. 开启供水器,调整流量,使管道内流速逐渐增大;3. 观察有色水在管道内的流动形态,记录下层流、湍流及临界雷诺数;4. 使用压差计测量管道两端的水头差,计算沿程水头损失;5. 记录实验数据,进行数据处理。
五、实验结果与分析1. 观察到当流速较小时,管道内流体质点沿直线运动,颜色均匀,无涡流,为层流;2. 随着流速增大,流体质点开始发生宏观混合,颜色逐渐变淡,出现涡流,为湍流;3. 通过实验,测得临界雷诺数为2000;4. 根据实验数据,绘制沿程水头损失与断面平均流速的关系曲线,分析层流、湍流及临界雷诺数的关系。
六、实验结论1. 雷诺实验验证了流体流动的两种基本形态:层流和湍流;2. 临界雷诺数是层流与湍流转变的界限,本实验测得临界雷诺数为2000;3. 雷诺数与流体流动形态密切相关,当雷诺数较小时,流体流动为层流;当雷诺数较大时,流体流动为湍流。
雷诺实验数据处理

主体流量L/h
温度°C
导管中现象
25
13.3
导管的轴线上,可观察到一条垂直的红色细流
50
13.4
红色细线
75
13.5
红色细线变细
100
13.6
红色细流有些弯曲
125
13.7
红色细流弯曲、偏移加剧
150
13.7
红色细流发生抖动
175
13.7
红色细流断裂
200
13.8
断裂程度加剧,红色细线若隐若现
3
75
1275.544
4
100
1700.725
5
125
2125.907
临界状体
6
150
2551.088
7
175
2976.269
8
200
3401.451
9
225
3826.632
数据分析:由以上两个表格的对比可以发现,有实验现象得出的结论跟由雷诺系数计算的出的结论存在着差别,可能原因:当流体处于过渡态时,管道的入口处、管道直径或方向改变或外来的轻微干扰,都极易促成湍流的产生,因此,往往将过渡状态当成湍流看待。
湍流
225
红线消失
湍流
2)由雷诺数判断流体的流动形态
雷诺数Re的计算:Re=d/,=qv/s=qv/(d2/4)
Re=dqv/(d2/4)= 4qv/(d)
实验序号
流量
L/h
温度
°C
粘度
Pa×s
密度
Kg/m3
雷诺数
流动形0.77×10-5
999.7
425.1814
层流
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷诺实验
一、实验目的要求
1.观察层流、紊流的流态及其转捩特征;
2.测定临界雷诺数,掌握圆管流态判别准则;
3.学习古典流体力学中应用无量纲参数进行实验研究的方法,并了解其实用意义。
二、实验装置
实验装置如下图所示:
自循环雷诺实验装置图
1 自循环供水器
2 实验台
3 可控硅无级调速器
4 恒压水箱
5 有色水水管
6 稳水隔板
7 溢流板
8 实验管道
9 实验流量调节阀
供水流量由无级调速器调控使恒压水箱4始终保持微溢流的程度,以提高进口前水体稳定度。
本恒压水箱还设有多道稳水隔板,可使稳水时间缩短到3~5分钟。
有色水经有色水水管5注入实验管道8,可据有色水散开与否判别流态。
为防止自循环水污染,有色指示水采用自行消色的专用色水。
三、实验原理
流体在管道中流动存在两种流动状态,即层流与湍流。
从层流过渡到湍流状态称为流动的转捩,管中流态取决于雷诺数的大小,原因在于雷诺数具有十分明确的物理意义即惯性力与粘性力之比。
当雷诺数较小时,管中为层流,当雷诺数较大时,管中为湍流。
转捩所对应的雷诺数称为临界雷诺数。
由于实验过程中水箱中的水位稳定,管径、水的密度与粘性系数不变,因此可用改变管中流速的办法改变雷诺数。
雷诺数 KQ d Q
vd R e ===
ν
πν4 ; K =νπd 4
四、实验方法与步骤
1.测记实验的有关常数。
2.观察两种流态。
打开开关3使水箱充水至溢流水位。
经稳定后,微微开启调节阀9,并注入颜色水于实验管内使颜色水流成一直线。
通过颜色水质点的运动观察管内水流的层流流态。
然后逐步开大调节阀,通过颜色水直线的变化观察层流转变到紊流的水力特征。
待管中出现完全紊流后,再逐步关小调节阀,观察由紊流转变为层流的水力特征。
3.测定下临界雷诺数。
①将调节阀打开,使管中呈完全紊流。
再逐步关小调节阀使流量减小。
当流量调节到使颜色水在全管刚呈现出一稳定直线时,即为下临界状态;
②待管中出现临界状态时,用重量法测定流量;
③根据所测流量计算下临界雷诺数,并与公认值(2320)比较。
偏离过大,需重测;
④重新打开调节阀,使其形成完全紊流,按照上述步骤重复测量不少于三次;
⑤同时用水箱中的温度计测记水温,从而求得水的运动粘度。
注意:
a、每调节阀门一次,均需等待稳定几分钟;
b、关小阀门过程中,只许渐小,不许开大;
c、随出水流量减小,应适当调小开关(右旋),以减小溢流量引发的扰动。
雷诺实验数据及处理
逐渐开启调节阀,使管中水流由层流过渡到紊流,当色水线刚开始散开时,即为上临界状态,测定上临界雷诺数l一2次。
5.收拾实验台,整理数据。
五、实验报告要求
1.简要写出实验原理和实验步骤,画出实验装置。
2. 记录、计算有关常数。
实验装置台号No : 4 管径(cm )d = 1.37cm 水温 (C
)t = 16 运动粘度 ( cm 2/s ) ν =
=++2
000221.00337.0101775
.0t t 0.01123
计算常数(s /cm 3) K = 83.554
3. 整理、记录计算表并实测临界雷诺数。
注:颜色水形态指稳定直线,稳定略弯曲,直线摆动,直线抖动,断续,完全散开等。
六、实验分析与讨论
1.流态判据为何采用无量纲参数,而不采用临界流速? 因为流态不仅与流速有关还和特征尺寸、密度粘性系数有关
2.为何认为上临界雷诺数无实际意义,而采用下临界雷诺数作为层流与湍流的判据?实测下临界雷诺数为多少?
上临界雷诺数不稳定,变化范围大12000~40000,下临界雷诺数比较稳定,约为2320。
工程中一般采用2320做为层流、紊流的分界
3.雷诺实验得出的圆管流动下临界雷诺数为2320,而目前有些教科书中介绍采用的下临界雷诺数是2000,原因何在?
因为下临界雷诺数受截面影响,不同的截面下临界雷诺数不同圆管最大,其他的较小所以统一采用2000
THANKS !!!
致力为企业和个人提供合同协议,策划案计划书,学习课件等等
打造全网一站式需求
欢迎您的下载,资料仅供参考。