神经网络与遗传算法
基于遗传算法的神经网络拓扑结构优化

基于遗传算法的神经网络拓扑结构优化随着机器学习和人工智能的迅猛发展,神经网络成为解决复杂问题的重要模型之一。
然而,神经网络的拓扑结构对其性能有着重要影响。
为了提高神经网络的准确性和效率,研究学者们提出了基于遗传算法的神经网络拓扑结构优化方法。
首先,我们来了解一下遗传算法的基本概念和原理。
遗传算法是一种模拟自然界生物进化过程的优化方法。
它通过模拟进化的过程,不断筛选和改进候选解,以求得一个较优解。
遗传算法主要包括选择、交叉、变异等操作,其中选择是根据适应度函数对个体进行筛选;交叉是将两个个体的染色体交换一部分基因;变异则是在个体的染色体中随机改变某些基因。
在神经网络拓扑结构优化中,遗传算法被用于搜索最优的网络结构。
神经网络的拓扑结构通常由神经元的连接方式和层次结构组成。
通过调整神经网络的拓扑结构,我们可以改变神经元之间的连接方式,从而改变网络的学习能力和性能。
具体而言,基于遗传算法的神经网络拓扑结构优化方法可分为以下几步。
首先,我们需要定义一组合适的基因编码方式,用于表示神经网络的拓扑结构。
通常,一种常用的基因编码方式是使用二进制串表示神经网络的连接方式和层次结构。
每个基因位表示一个连接是否存在或神经元是否属于某个特定层次。
接着,我们需要定义适应度函数,用于评估每个网络结构的性能。
适应度函数可以选择网络的准确率、收敛速度、鲁棒性等指标。
然后,我们通过选择、交叉和变异操作来生成新的网络结构。
选择操作根据适应度函数对网络进行筛选,使得性能较好的网络具有较高的生存概率;交叉操作将两个网络的基因串进行交叉,生成新的网络结构;变异操作则在网络的基因串中随机改变部分基因,以增加网络的多样性。
最后,通过不断的迭代优化过程,我们可以在众多网络结构中找到具有较高适应度的网络结构。
使用基于遗传算法的神经网络拓扑结构优化方法可以带来许多好处。
首先,它能够大大提高神经网络的准确性和效率。
通过优化网络结构,我们可以消除冗余的连接和神经元,提高网络的学习能力和泛化性能。
遗传算法与神经网络的结合方法与实例分析

遗传算法与神经网络的结合方法与实例分析遗传算法和神经网络是两种不同的计算模型,它们在解决问题时具有各自的优势和局限性。
然而,通过将这两种方法结合起来,可以充分发挥它们的优点,提高问题解决的效率和准确性。
本文将探讨遗传算法与神经网络的结合方法,并通过实例分析展示其应用价值。
一、遗传算法和神经网络的简介1. 遗传算法遗传算法是一种模拟自然界进化过程的优化算法,通过模拟遗传、变异和选择等过程,逐步优化问题的解。
它适用于复杂的优化问题,具有全局搜索能力和并行处理能力。
2. 神经网络神经网络是一种模拟人脑神经系统的计算模型,通过神经元之间的连接和权重调整,实现对输入数据的模式识别和预测。
它适用于处理非线性问题,具有自适应性和学习能力。
二、遗传算法与神经网络的结合方法1. 遗传算法初始化神经网络权重在神经网络训练之前,通常需要对权重进行初始化。
传统的方法是随机初始化权重,但这种方法可能导致网络陷入局部最优解。
通过遗传算法初始化神经网络的权重,可以提高网络的初始状态,增加全局搜索的能力。
2. 遗传算法优化神经网络结构神经网络的结构包括神经元的数量、层数和连接方式等。
通过遗传算法的优化过程,可以调整神经网络的结构,使其更好地适应问题的特征。
例如,可以通过遗传算法选择合适的神经元数量和层数,以及确定神经元之间的连接方式,从而提高网络的性能。
3. 遗传算法选择神经网络的最优解在神经网络训练过程中,通常需要选择一个最优解作为最终结果。
遗传算法可以通过选择适应度函数来评估神经网络的性能,并选择表现最好的网络作为最优解。
这种方法可以避免由于局部最优解而导致的问题性能下降。
三、遗传算法与神经网络的实例分析以手写数字识别为例,展示遗传算法与神经网络的结合应用。
手写数字识别是一个典型的模式识别问题,神经网络可以通过学习大量的手写数字样本,实现对新样本的准确识别。
但是,神经网络的训练过程需要大量的计算资源和时间,而且容易陷入局部最优解。
神经网络与遗传算法相结合的优化方法

神经网络与遗传算法相结合的优化方法随着科技的不断发展,人工智能技术也越来越成熟,其中神经网络和遗传算法是两种比较常见的优化方法。
神经网络是一种基于人脑神经系统的计算模型,它可以通过输入和输出数据来学习并预测未知的数据。
而遗传算法则是一种基于生物进化的计算优化方法,通过模拟进化过程来寻找最优解。
在实际应用中,单独使用神经网络或遗传算法可能会存在一些问题。
例如,神经网络可能会受到噪声数据的影响,导致训练过程不够稳定;而遗传算法可能会受到局部最优解的限制,从而难以找到全局最优解。
因此,将神经网络和遗传算法相结合,可以弥补彼此的不足,提高优化效果。
神经网络和遗传算法相结合的优化方法大致可以分为两种:基于神经网络的遗传算法和基于遗传算法的神经网络优化。
基于神经网络的遗传算法是指将神经网络作为遗传算法中的染色体,通过遗传算法对神经网络的权重和偏置进行优化。
首先,将神经网络的权重和偏置随机生成,并用其计算出目标函数值作为该染色体的适应度。
然后,使用遗传算法的选择、交叉和变异操作对染色体进行进化,直到满足终止条件为止。
最后,选择适应度最高的神经网络作为最优解。
基于遗传算法的神经网络优化是指使用遗传算法来优化神经网络的拓扑结构和参数。
首先,通过遗传算法生成多个随机的神经网络拓扑结构,并计算它们的目标函数值。
然后,使用遗传算法的选择、交叉和变异操作对拓扑结构进行进化,得到新的神经网络结构。
接着,针对每个神经网络进行参数优化,即对权重和偏置进行遗传算法优化。
最后,选择适应度最高的神经网络作为最优解。
这两种方法都是神经网络和遗传算法相结合的优化方法,但具体应用时需要根据实际情况进行选择。
例如,在数据量较小的情况下,基于神经网络的遗传算法可能更加有效,因为神经网络可以更好地拟合数据;而在数据量较大且结构复杂的情况下,基于遗传算法的神经网络优化可能更加适合,因为遗传算法可以更好地处理大规模的优化问题。
综上所述,神经网络和遗传算法相结合的优化方法具有优化效果好、稳定性高等优点,在实际应用中有着广泛的应用前景。
遗传算法与神经网络

2.1 神经网络简介
人工神经网络(artificial neural network,缩写 ANN),简称神经网络(neural network, 缩写 NN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量 的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结 构,是一种自适应系统。现代神经网络是一种非线性统计性数据建模工具,常用来对输入和 输出间复杂的关系进行建模,或用来探索数据的模式。
进化次数限制; (1)计算耗费的资源限制(例如计算时间、计算占用的内存等); (2)一个个体已经满足最优值的条件,即最优值已经找到; (3)适应度已经达到饱和,继续进化不会产生适应度更好的个体; (4)人为干预; (5)以及以上两种或更多种的组合。
3/9
遗传算法与神经网络
一个典型的遗传算法要求: 一个基因表示的求解域, 一个适应度函数来评价解决方案。
经过这一系列的过程(选择、交配和突变),产生的新一代个体不同于初始的一代,并 一代一代向增加整体适应度的方向发展,因为最好的个体总是更多的被选择去产生下一代, 而适应度低的个体逐渐被淘汰掉。这样的过程不断的重复:每个个体被评价,计算出适应度, 两个个体交配,然后突变,产生第三代。周而复始,直到终止条件满足为止。一般终止条件 有以下几种:
基于遗传算法的人工神经网络模型构建与优化研究

基于遗传算法的人工神经网络模型构建与优化研究人工神经网络(Artificial Neural Network,ANN)是一种模仿生物神经网络结构和功能的计算模型,通过模拟神经元之间的连接和信号传递,能够实现机器学习和模式识别任务。
而遗传算法(Genetic Algorithm,GA)是一种基于自然选择和遗传机制的优化算法,通过模拟生物进化过程来寻找最优解。
本文将探讨基于遗传算法的人工神经网络模型的构建与优化研究。
首先,构建人工神经网络模型是研究的首要任务。
人工神经网络由多个神经元和这些神经元之间的连接组成。
每个神经元接收来自其他神经元的输入,并通过激活函数对输入信号进行加权计算,最终输出结果。
遗传算法可以应用于优化神经元的连接权重和调整激活函数的参数,以获得更好的网络性能。
在构建人工神经网络模型时,首先需要确定网络的拓扑结构,包括输入层、隐藏层和输出层的神经元数量,以及它们之间的连接方式。
遗传算法可以通过进化过程搜索最佳的拓扑结构,以提高神经网络的性能。
遗传算法通过定义适应度函数来衡量每个个体的适应度,适应度高的个体将更有可能被选中下一代进化。
通过遗传算法的迭代过程,我们可以找到最佳的拓扑结构。
其次,优化神经元的连接权重是构建人工神经网络模型的关键一步。
连接权重决定了不同神经元之间的信号传递强度。
遗传算法可以通过进化过程调整连接权重,以找到最佳的权重组合。
在遗传算法的优化过程中,通过交叉和变异等操作,通过上一代个体中的优秀基因来生成新的个体,逐步优化连接权重,使神经网络的性能得到提高。
此外,还可以使用遗传算法来优化激活函数的参数。
激活函数决定了神经元输出的非线性特性,常用的激活函数包括Sigmoid、ReLU、Tanh等。
通过调整激活函数的参数,我们可以改变神经元的响应特性,从而使网络更好地拟合训练数据。
遗传算法可以在多个激活函数和参数组合中搜索最佳的选择,以提高神经网络的性能。
此外,在进行人工神经网络的训练和优化时,还可以使用遗传算法来选择最优的训练样本和参数初始化方法。
神经网络与遗传算法

10.4 遗传算法
1975年美国Michigan大学J.Holland教授提出。 美国人De.Jong博士将遗传算法应用于函数优化 Goldberg成了遗传算法的框架。
10.4.1遗传算法基本原理
选择适应值高的染色体进行复制,通过 遗传算子:选择、交叉(重组)、变异,来 产生一群新的更适应环境的染色体,形成新 的种群。
遗传算法利用适应值信息,而不需要导数或其它辅助信 息。
遗传算法用适应值评估个体,用遗传算子产生更优后代 ,不需要像神经网络中用梯度公式引导。
隐含并行性:
遗传算法是对N个位串个体进行运算,它隐含 了大量的模式(用通配符#包含的个体)
遗传机器学习
10.5基于遗传算法的分类学习系统
我们研制的遗传分类学习系统GCLS是一种字符串规则 (分类器)的学习系统。
1
总和∑ 平均值 最大值
1754
1.00 4.00
4.0
439
0.25 1.00 1.0
729
0.42 1.66 2.0
选择后的交配 池(下划线部 分交叉)
11001 11011 11011 10000
交叉对象
(随机选 择)
交叉位置
(随机选择 )
新的种群
2
1
11011
1
1
11001
4
3
11000
3
遗传算法是进行群体的搜索。 它对多个个体进行群体搜索,构成一个不断进
化的群体序列,它能找到全局最优解(优于爬 山法)
遗传算法是一种随机搜索方法,三个算子都是 随机操作,利用概率转移规则。
遗传算法的处理对象是问题参变量进行编码的个体,而 不是参变量自身。
参变量编码成位串个体,通过遗传算子进行操作。不是 对参数变量进行直接操作。
毕业设计论文基于遗传算法的BP神经网络的优化问题研究.doc

编号:审定成绩:重庆邮电大学毕业设计(论文)设计(论文)题目:基于遗传算法的BP神经网络的优化问题研究学院名称:学生姓名:专业:班级:学号:指导教师:答辩组负责人:填表时间:2010年06月重庆邮电大学教务处制摘要本文的主要研究工作如下:1、介绍了遗传算法的起源、发展和应用,阐述了遗传算法的基本操作,基本原理和遗传算法的特点。
2、介绍了人工神经网络的发展,基本原理,BP神经网络的结构以及BP算法。
3、利用遗传算法全局搜索能力强的特点与人工神经网络模型学习能力强的特点,把遗传算法用于神经网络初始权重的优化,设计出混合GA-BP算法,可以在一定程度上克服神经网络模型训练中普遍存在的局部极小点问题。
4、对某型导弹测试设备故障诊断建立神经网络,用GA直接训练BP神经网络权值,然后与纯BP算法相比较。
再用改进的GA-BP算法进行神经网络训练和检验,运用Matlab软件进行仿真,结果表明,用改进的GA-BP算法优化神经网络无论从收敛速度、误差及精度都明显高于未进行优化的BP神经网络,将两者结合从而得到比现有学习算法更好的学习效果。
【关键词】神经网络BP算法遗传算法ABSTRACTThe main research work is as follows:1. Describing the origin of the genetic algorithm, development and application, explain the basic operations of genetic algorithm, the basic principles and characteristics of genetic algorithms.2. Describing the development of artificial neural network, the basic principle, BP neural network structure and BP.3. Using the genetic algorithm global search capability of the characteristics and learning ability of artificial neural network model with strong features, the genetic algorithm for neural network initial weights of the optimization, design hybrid GA-BP algorithm, to a certain extent, overcome nerves ubiquitous network model training local minimum problem.4. A missile test on the fault diagnosis of neural network, trained with the GA directly to BP neural network weights, and then compared with the pure BP algorithm. Then the improved GA-BP algorithm neural network training and testing, use of Matlab software simulation results show that the improved GA-BP algorithm to optimize neural network in terms of convergence rate, error and accuracy were significantly higher than optimized BP neural network, a combination of both to be better than existing learning algorithm learning.Key words:neural network back-propagation algorithms genetic algorithms目录第一章绪论 (1)1.1 遗传算法的起源 (1)1.2 遗传算法的发展和应用 (1)1.2.1 遗传算法的发展过程 (1)1.2.2 遗传算法的应用领域 (2)1.3 基于遗传算法的BP神经网络 (3)1.4 本章小结 (4)第二章遗传算法 (5)2.1 遗传算法基本操作 (5)2.1.1 选择(Selection) (5)2.1.2 交叉(Crossover) (6)2.1.3 变异(Mutation) (7)2.2 遗传算法基本思想 (8)2.3 遗传算法的特点 (9)2.3.1 常规的寻优算法 (9)2.3.2 遗传算法与常规寻优算法的比较 (10)2.4 本章小结 (11)第三章神经网络 (12)3.1 人工神经网络发展 (12)3.2 神经网络基本原理 (12)3.2.1 神经元模型 (12)3.2.2 神经网络结构及工作方式 (14)3.2.3 神经网络原理概要 (15)3.3 BP神经网络 (15)3.4 本章小结 (21)第四章遗传算法优化BP神经网络 (22)4.1 遗传算法优化神经网络概述 (22)4.1.1 用遗传算法优化神经网络结构 (22)4.1.2 用遗传算法优化神经网络连接权值 (22)4.2 GA-BP优化方案及算法实现 (23)4.3 GA-BP仿真实现 (24)4.3.1 用GA直接训练BP网络的权值算法 (25)4.3.2 纯BP算法 (26)4.3.3 GA训练BP网络的权值与纯BP算法的比较 (28)4.3.4 混合GA-BP算法 (28)4.4 本章小结 (31)结论 (32)致谢 (33)参考文献 (34)附录 (35)1 英文原文 (35)2 英文翻译 (42)3 源程序 (47)第一章绪论1.1 遗传算法的起源从生物学上看,生物个体是由细胞组成的,而细胞则主要由细胞膜、细胞质、和细胞核构成。
人工神经网络与遗传算法结合的研究

参 考 文 献
[ ] 3
An es d r Ohls s on. ha Ne W tS w i Dephi . n l 7 Bora d Sofwa e Co po a i ln t r r r ton,USA ,20 2 0
[ 1]
D lh 7 tdo ep i S i u Hep B r n S f r l. ol d ot e a wa
维普资讯 http://wΒιβλιοθήκη
《 现代 电子 技 术 》 0 2年 第1 期 总第 1 3期 20 2 4
收 稿 日期 :2 0 — 9— 2 0 2 0 1
人工 神经网络 与遗传算 法结合的研 究
St d n Co b n n r i i i lN e r lN e w o ks a e tc Al o ih s u y o m i i g A tfc a u a t r nd G ne i g r t m
合 的可能性 。以网络为例 ,结合 自适应遗传算法 F GA]构造 了基 于遗 传算法的 B A P网络 用于解决 T P问题 ,并取得 了 S
很 好的效果 。
关 键 词 :人 工神 经 网络 ;遗 传 算 法 ( A) 自适 应 遗 传 算 法 ( A) G ; AG
人 工 神经 网络 的兴起 源 自于人 类 对 自身 的模 仿 。1 4 9 3年 首先 提 出神 经元 的数 学模 型 ,随 后提 出学 习算 法 兴
杨 朋林
( 四川 大 学 成都
贺
新
YANG e g i HE Xi P nl n, n
60 6) 1 0 4
( i u n Un v r i Sc a ie st h y・ Ch n d . 6 0 6 . C ia egu 10 4 hn )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4 神经网络与遗传算法简介在本节中,我们将着重讲述一些在网络设计、优化、性能分析、通信路由优化、选择、神经网络控制优化中有重要应用的常用的算法,包括神经网络算法、遗传算法、模拟退火算法等方法。
用这些算法可以较容易地解决一些很复杂的,常规算法很难解决的问题。
这些算法都有着很深的理论背景,本节不准备详细地讨论这些算法的理论,只对算法的原理和方法作简要的讨论。
5.4.1 神经网络1. 神经网络的简单原理人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。
人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。
所以说, 人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作出状态相应而进行信息处理。
它是根据人的认识过程而开发出的一种算法。
假如我们现在只有一些输入和相应的输出,而对如何由输入得到输出的机理并不清楚,那么我们可以把输入与输出之间的未知过程看成是一个“网络”,通过不断地给这个网络输入和相应的输出来“训练”这个网络,网络根据输入和输出不断地调节自己的各节点之间的权值来满足输入和输出。
这样,当训练结束后,我们给定一个输入,网络便会根据自己已调节好的权值计算出一个输出。
这就是神经网络的简单原理。
2. 神经元和神经网络的结构如上所述,神经网络的基本结构如图5.35所示:隐层隐层21图5.35神经网络一般都有多层,分为输入层,输出层和隐含层,层数越多,计算结果越精确,但所需的时间也就越长,所以实际应用中要根据要求设计网络层数。
神经网络中每一个节点叫做一个人工神经元,他对应于人脑中的神经元。
人脑神经元由细胞体、树突和轴突三部分组成,是一种根须状蔓延物。
神经元的中心有一闭点,称为细胞体,它能对接受到的信息进行处理,细胞体周围的纤维有两类,轴突是较长的神经纤维,是发出信息的。
树突的神经纤维较短,而分支众多,是接收信息的。
一个神经元的轴突末端与另一神经元的树突之间密切接触,传递神经元冲动的地方称为突触。
经过突触的信息传递是有方向性的,不同的突触进行的冲动传递效果不一样,有的使后一神经元发生兴奋,有的使其发生抑制。
由人脑神经元的工作机理,人们构造了人工神经元的数学模型,它是人脑的模拟和简化,如图5.36所示。
2x nx y树突突触细胞体轴突图5.36 McCulloch-Pitts 网络在图中,i w 是表示神经元对信息i x 的感知能力,称为关联权,()f z 称为输出函数或激活函数,采用激活函数的人工神经网络也称阈网络。
McCulloch-Pitts 输出函数定义为()1sgn(),ni i i y fz w x θ===-∑其中,sgn()⋅为符号函数,θ称为阈值。
一般来说,一个人工神经元有多个输入和一个输出,另外有一个激活函数,不同的激发函数对应了不同的网络,也决定了网络的用途。
从方程可以看出,当 i w 确定时,任给一组输入1,,i x i n ∙∙∙=,,也就很容易得到输出。
而现在我们的想法是:对给定的输入,确定权数i w ,使得通过方程计算出来的输出尽可能与实际值吻合,这即是学习的过程。
学习也称为训练,指的是通过神经网络所在环境的刺激作用调整神经网络的权数i w ,使得神经网络对外部环境以一种新的方式作出反应。
学习分为有指导学习和无监督学习:在有正确输入输出数据条件下调整和确定权数i w 的方法称为有指导学习;而在只知输入数据不知输出结果的前提下确定权数的方法称为无监督学习。
人工神经网络的主要工作就是通过学习,建立模型和确定i w 的值。
神经网络按照网络结构和激发函数的不同可分为许多种,我们在此只对感知器、BP 网络及Hopfield 神经网络进行简介。
3.感知机首先介绍单层前向神经网络。
单层前向神经网络的模型结构如图5.37所示。
或用矩阵表示为()TY f W X θ=-其中,()ij m n W w ⨯=为权系数矩阵,X Y θ,,分别为输入向量、输出向量及阈值向量。
确定权数ij w 的基本思想是修正ij w 使得输入输出偏差尽可能小。
权的修正公式为:(1)()(),()(())ij W t W t W t W t w t δδδ+=+=,()()(()())()ij t j j i m nw t d t y t x t δε⨯=-,其中,()()1,,1,,i j x t d t i m j n ∙∙∙∙∙∙==,,,分别表示第t 组用于学习的输入和期望输出数据,tε称为学习效率,用于控制调整速度。
与权值修正原理类似,阈值修正公式可假设为:1(1)()(),()(()())t j j n t t t t d t y t θθδθδθε⨯+=+=-,通过更新权数和阈值使得输入输出偏差趋于零。
若将激活函数()f ⋅取为阶跃函数,上述思想即是感知机原理。
1x x x 1n2y 输入层输出层图5.37由此,我们给出感知机学习规则算法步骤为:用t 表示学习步骤的序号,0t =表示学习前的神经网络的初始状态。
第1步:赋初值。
给网络上权数和阈值赋初值,如00ij i w θ==,;第2步:计算样本实际输出。
选择一个样本作为网络输入,计算样本在目前神经网络中的实际输出。
如,对于第p 个样本,感知机输出为:1()(()())nY p Y p Y p ∙∙∙=,,, 其中,()()1,,i ij j i Y p f w x i n θ∙∙∙=-=∑,第3步:计算误差。
计算感知机输出的实际结果与期望输出之差:()()t D p Y p δ=- 第4步:权数修正。
如果0t δ=,则转第2步,否则调整权值:(1)()(),()i i i i t i W p W p W p W p x δδηδ+=+=第5步:若训练样本已完全输入或输出误差小于预设值,则学习结束;否则,转第2步继续学习。
如果对给定的两类样本数据(通常就是用于学习的输入数据),在空间中可以用一条直线(平面)将其分开,则称该样本数据是线性样本,否则称为非线性样本,对样本进行分类或识别即属于人工神经网络的重要应用之一。
感知机可以识别二值逻辑加问题,而不能识别异或问题。
对于非线性问题,可以用反向传播(BP )模型解决。
4. BP 网络k 第层1k +第层1k 第-层图5.38 多层前向神经网络结构BP 网络应用得最为广泛,最为重要的一种神经网络。
这种网络一般有多层,有输入层,输出层和隐含层,上一层的输出即是下一层的输入,输出层所在的层数就是神经网络的层数。
一般的多层前向神经网络结构如图5.38所示。
在实际应用中,BP 网络的激活函数一般采用S 型函数:1()1zf z e-=+, 这是因为S型函数有很好的函数特性,其效果又近似于符号函数,现主要讨论采用S 型函数的多层前向神经网络的学习方法。
假设有一个K 层的神经网络,从第0层到第1层的原始输入向量、权矩阵、第1层神经元接受向量和第1层输出向量以及它们之间的关系为:012n x x X x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦ ,0111()ij n n W w ⨯=,11112111T n z z Z W X z ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦ ,11112111()n y y Y f Z y ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦第1k -层到第k 层的权矩阵、神经元接受向量和输出向量以及它们之间的关系分别为:1()ij k kkk n n W w -⨯=,121kkk T k k k k n z z Z W Y z -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦ ,12()k k k k kk n y y Y f Z y ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦其中,()k ki i y f z =。
我们先讨论单样本学习规则。
学习规则是:确定W ,使得()()()TK K F W D Y D Y =--最小,其中12()KTn D d d d ∙∙∙=,,,为理想输出。
采用S 型函数的前向多层神经网络的反推学习(BP)算法步骤如下: 第1步:选定学习的数组{()()}1,2,,X t D t t T ∙∙∙=,,,随机确定初始权矩阵(0)W ;第2步:用学习数据()X t 计算12()()()k Y t Y t Y t ∙∙∙,,,; 第3步:计算① 1111121()2()K KK K K T K Kij n n K n y y F WB w y ----⨯-⎡⎤⎢⎥⎛⎫∂⎢⎥=-⎪ ⎪⎢⎥∂⎝⎭⎢⎥⎢⎥⎣⎦,121112,,,K K K K K n K K K K K K n dy dy dy B diag W B dz dz dz ++⎡⎤=⎢⎥⎢⎥⎣⎦其中,111221,,,,KKTK K KK n n K B d y d y d y W I ++⎡⎤=---=⎣⎦。
② 2112122212()2()K K K K K T K K ij n n K n y y F W B w y -------⨯-⎡⎤⎢⎥⎛⎫∂⎢⎥=- ⎪⎪⎢⎥∂⎝⎭⎢⎥⎢⎥⎣⎦,111112111112,,,KK K K K n K K K K K K n dy dy dy B diag W B dz dz dz --------⎡⎤=⎢⎥⎢⎥⎣⎦③ 2k K ≤-时,1111121()2()k kk k k T k kij n n k n y y F WB w y ----⨯-⎡⎤⎢⎥⎛⎫∂⎢⎥=-⎪ ⎪⎢⎥∂⎝⎭⎢⎥⎢⎥⎣⎦, 其中,121112,,,k kkk k nk k k k kk n dy dy dy B diag W B dz dz dz ++⎡⎤=⎢⎥⎢⎥⎣⎦。
第4步:反向修正()W t ,修正公式为:(1)()(),1,,1k k k W t W t W t k K K δ∙∙∙+=+=-,,其中,1111121()()1()()()(())2()k kk k k Tk t t k kijn n k n y t y t F W W t t B t w y t δεε----⨯-⎡⎤⎢⎥⎛⎫∂⎢⎥=-=⎪⎪⎢⎥∂⎝⎭⎢⎥⎢⎥⎣⎦。
第5步:循环利用T 个学习样本,重复第2步~第4步,对网络权数进行调整,直到整个训练集误差最小(网络达到稳定状态)。
当激活函数1()1xf x e-=+时,1()(1())1,,1,,kj k kj j k k k jdy f z f z i n j n dz∙∙∙∙∙∙-=-==,,,代入①、②、③使计算可以得以简化。