【6套合集】山东省日照实验高级中学2020中考提前自主招生数学模拟试卷附解析
2020年山东省日照市实验学校中考模拟数学试题一

2020年山东省日照市实验学校中考模拟数学试题一1.下图中几何体的左视图是()A.B.C.D.2.请将780000用科学计数法表示为()A.47.810⨯0.7810⨯D.6 7810⨯C.6⨯B.57.8103.将一副三角尺按如图的方式摆放,其中l1∥l2,则∠α的度数是( )A.30°B.45°C.60°D.70°4.下列既是中心对称又是轴对称图形的()A.B.C.D.5.下列计算正确的是()A.a4+a2=a6B.2a•4a=8a C.(a2)3=a5D.a5÷a2=a36.某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是().A.1~2月份利润的增长快于2~3月份利润的增长B.1~4月份利润的极差与1~5月份利润的极差不同C.1~5月份利润的众数是130万元D.1~5月份利润的中位数为120万元7.化简:的结果是()A.﹣1B.(x+1)(x﹣1)C.D.8.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m<98B.m89>C.m=98D.m=899.将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()A.233cm B.433cm C.5cm D.2cm10.如图,在平面直角坐标系xOy中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,顶点C的坐标为(﹣3,4),反比例函数y=kx的图象与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是()A .- 503B .-252C .﹣12D .-25411.如图,在矩形ABCD 中,AB=3,AD=3,点E 从点B 出发,沿BC 边运动到点C ,连结DE ,点E 作DE 的垂线交AB 于点F ,在点E 的运动过程中,以EF 为边,在EF 上方作等边△EFG ,则边EG 的中点H 所经过的路径长是( )A .2 3B .33C .332D .23312.如图,抛物线22(1y x x m m =-+++为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线221y x x m =-+++与直线2y m =+有且只有一个交点;②若点()12,M y -、点21,2N y ⎛⎫ ⎪⎝⎭、点3(2)P y ,在该函数图象上,则123y y y << ③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为()21y x m =-++;④点A 关于直线1x =的对称点为,C 点D E 、分别在x 轴和y 轴上,当1m =时,四边形BCDE 周长的最小值为34+2.其中正确判断的序号是( )A .①②③B .①②④C .②③④D .①③④13.分解因式:2x 2﹣8=_____________14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.15.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC 的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是______.16.一组按规律排列的式子:234525101726,,,,a a a a a--,···,第n个式子是_____.(用含n的式子表示,n为正整数).17.如图,反比例函数y=kx(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是________.18.如图,四边形ABCD是菱形,AB=2,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为_________.19.计算:()112322sin602oπ-⎛⎫--+⎪⎝⎭20.解不等式组:()352212x xxx⎧->-⎪⎨>-⎪⎩21.如图,在Y ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF .22.某批发市场有中招考试文具套装,其中A 品牌的批发价是每套20元,B 品牌的批发价是每套25元,小王需购买,A B 两种品牌的文具套装共1000套.(1)若小王按需购买,A B 两种品牌文具套装共用22000元,则各购买多少套?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y 元.设A 品牌文具套装买了x 包,请求出y 与x 之间的函数关系式.23.如图,已知点E 在ABC V 的边AB 上,90,C BAC ∠=∠o 的平分线交BC 于点D ,且D 在以AE 为直径的O e 上.(1)求证:BC 是O e 的切线;(2)若4,6DC AC ==,求圆心O 到AD 的距离.24.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.25.如图1,反比例函数k y x =(x >0)的图象经过点A (23,1),射线AB 与反比例函数图象交于另一点B (1,a ),射线AC 与y 轴交于点C ,∠BAC =75°,AD ⊥y 轴,垂足为D .(1)求k 的值;(2)求tan ∠DAC 的值及直线AC 的解析式;(3)如图2,M 是线段AC 上方反比例函数图象上一动点,过M 作直线l ⊥x 轴,与AC 相交于点N ,连接CM ,求△CMN 面积的最大值.26.如图1,ABC ∆中,,,CA CB ACB D α=∠=为ABC ∆内一点,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆,点,A D 的对应点分别为点,B E ,且,,A D E 三点在同一直线上.(1)填空:CDE ∠= (用含α的代数式表示);(2)如图2,若60α=o ,请补全图形,再过点C 作CF AE ⊥于点F ,然后探究线段,,CF AE BE 之间的数量关系,并证明你的结论;(3)若90,52AC α︒==,且点G 满足90,6AGB BG ︒∠==,直接写出点C 到AG的距离.27.已知:如图1,抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C ,点D 为顶点.()1求抛物线解析式及点D 的坐标;()2若直线l 过点D ,P 为直线l 上的动点,当以A 、B 、P 为顶点所作的直角三角形有.且只有三个时,求直线l 的解析式;()3如图2,E 为OB 的中点,将线段OE 绕点O 顺时针旋转得到'OE ,旋转角为(090)o o αα<<,连接'E B 、'E C ,当1''2E B E C +取得最小值时,求直线'BE 与抛物线的交点坐标.参考答案1.D【解析】【分析】根据左视图是从左面看到的图形,即可.【详解】从左面看从左往右的正方形个数分别为1,2,故选D .【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键. 2.B【解析】【分析】根据科学记数法的定义,即可得到答案.【详解】780000=7.8100000⨯=57.810⨯.故选B .【点睛】本题主要考查科学记数法,掌握科学记数法的形式:10n a ⨯(010a ≤<,n 为整数)是解题的关键.3.C【解析】【分析】先由两直线平行内错角相等,得到∠A=30°,再由直角三角形两锐角互余即可得到∠α的度数.【详解】解:如图所示,∵l1∥l2,∴∠A=∠ABC=30°,又∵∠CBD=90°,∴∠α=90°﹣30°=60°,故选C.【点睛】此题考查了平行线的性质和直角三角形的性质.注意:两直线平行,内错角相等.4.C【解析】【分析】根据中心对称图形和轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是轴对称图形,但不是中心对称图形,故本选项不符合题意,B.是轴对称图形,但不是中心对称图形,故本选项不符合题意,C.既是轴对称图形,又是中心对称图形,故本选项符合题意,D.是轴对称图形,但不是中心对称图形,故本选项不符合题意,故选C.【点睛】本题主要考查中心对称图形和轴对称图形的定义,熟练掌握中心对称图形和轴对称图形的定义是解题的关键.5.D【解析】【分析】直接利用合并同类项法则以及幂的乘方运算法则、单项式乘以单项式、同底数幂的乘除运算法则分别计算得出答案.A、a4+a2,无法计算,故此选项错误;B、2a•4a=8a2,故此选项错误;C、(a2)3=a6,故此选项错误;D、a5÷a2=a3,故此选项正确;故选:D.【点睛】此题主要考查了合并同类项以及幂的乘方运算、单项式乘以单项式、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.C【解析】根据折线图1~2月以及2~3月的倾斜程度可以得出:2~3月份利润的增长快于1~2月份利润的增长;故A选项错误,1~4月份利润的极差为:130-100=30,1~5月份利润的极差为:130-100=30;故B选项错误;根据只有130出现次数最多,∴130万元是众数,故C选项正确;1~5月份利润的中位数是:从小到大排列后115万元位于最中间,故D选项错误7.D【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式==.故选D.本题考查分式的运算,解题的关键是熟练运用分式的运算法则. 8.C【解析】试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴△=32-4×2m=9-8m=0,解得:m=98.故选C.9.B【解析】【分析】首先作QH⊥PA,垂足为H,则QH=2cm,易证得△APQ为等边三角形,然后利用三角函数即可求得PQ的长.【详解】如图,作QH⊥PA,垂足为H,则QH=2cm,由平行线的性质,得∠DPA=∠BAC=l0°,由折叠的性质,得∠DPQ+∠APQ=180°,即∠DPA+∠APQ+∠APQ=180°,60°+2∠APQ=180°,∴∠APQ=60°,又∵∠PAQ=∠BAC=60°,∴△APQ为等边三角形,在Rt△PQH中,sin∠HPQ=HQ PQ∴PQ=2sin60︒433故选B.此题考查了折叠的性质、等边三角形的判定与性质以及特殊角的三角函数问题.10.B【解析】【分析】先利用勾股定理计算出OC=5,再利用菱形的性质得到AC=OB=OC=5,AC∥OB,则B(-5,0),A(-8,4),接着利用待定系数法确定直线OA的解析式为y=-12x,则可确定D(-5,52),然后把D点坐标代入y=kx中可得到k的值.【详解】∵C(−3,4),∴,∵四边形OBAC为菱形,∴AC=OB=OC=5,AC∥OB,∴B(−5,0),A(−8,4),设直线OA的解析式为y=mx,把A(−8,4)代入得−8m=4,解得m=−12,∴直线OA的解析式为y=-12x,当x=−5时,y=-12x =52,则D(−5,52),把D(−5,52)代入y=kx,∴k=−552⨯= -252.故选B.【点睛】本题考查反比例函数图象上点的坐标特征和菱形的性质,解题的关键是掌握反比例函数图象上点的坐标特征和菱形的性质.11.C【解析】【分析】连接FH ,取EF 的中点M ,连接BM ,HM ,据BM =EM =HM =FM ,可得点B ,E ,H ,F 四点共圆,连接BH ,则30HBE EFH ∠=∠=︒,进而得到点H 在以点B 为端点,BC 上方且与射线BC 夹角为30°的射线上,再过C 作'CH BH ⊥于点H ',根据点E 从点B 出发,沿BC 边运动到点C ,即可得到点H 从点B 沿BH 运动到点H ',再利用在Rt 'BH C V 中,323cos 3BH BC CBH '=⋅∠'=⨯=,即可得出点H 所经过的路径长是23. 【详解】 连接FH ,取EF 的中点M ,连接BM ,HM ,在等边三角形EFG 中,EF =FG ,H 是EG 的中点,∴190,302FHE EFH EFG ∠=∠=∠=o o , 又∵M 是EF 的中点,∴FM =HM =EM ,在Rt △FBE 中,90FBE o ,∠= M 是EF 的中点, ∴BM =EM =FM ,∴BM =EM =HM =FM ,∴点B ,E ,H ,F 四点共圆,连接BH ,则30HBE EFH ∠=∠=o ,∴点H 在以点B 为端点,BC 上方且与射线BC 夹角为30o 的射线上,如图,过C 作CH ′⊥BH 于点H ′,∵点E 从点B 出发,沿BC 边运动到点C ,∴点H 从点B 沿BH 运动到点H ′,在Rt △BH ′C 中,90BH C ∠'=o ,∴cos 3BH BC CBH '=⋅∠'==∴点H . 故选:C.【点睛】 属于综合题,考查等边三角形的性质,锐角三角函数等,综合性比较强,难度较大,对学生综合能力要求较高.12.D【解析】【分析】根据一元二次方程的判别式的值,即可判断①;根据抛物线的对称性和二次函数的增减性,即可判断②;根据二次函数的平移规律“左加右减,上加下减”即可判断③;先求出A ,B ,C 的坐标,作点B 关于y 轴的对称点()13B ′﹣,,作点C 关于x 轴的对称点()22C ',﹣,连接B C '',与x 轴、y 轴分别交于D E 、点,则四边形BCDE 的最小周长B C BC ''+=,即可判断④.【详解】①把2y m +=代入221y x x m =-+++中,得2210x x +﹣=,440QV =﹣=,∴一元二次方程两个相等的实数根,∴抛物线221y x x m =-+++与直线2y m +=有且只有一个交点,故此小题结论正确;Q ②抛物线的对称轴为:直线1x =,∴点()32P y ,关于直线1x =的对称点为30Py '(,), 10a Q =﹣<,∴当1x <时,y 随x 增大而增大,又1202Q ﹣<<,点()12,M y ﹣、点21,2N y ()、点30P y '(,)在该函数图象上,231y y y ∴>>,故此小题结论错误; ③将该抛物线向左平移2个单位,再向下平移2个单位后,抛物线的解析式为:()2222?12y x x m -+++++-=(),即:()21y x m ++=-,故此小题结论正确; ④当1m =时,抛物线的解析式为:222y x x ++=﹣,(02)(22)(13)A C B ∴,,,,,,作点B 关于y 轴的对称点()13B ′﹣,,作点C 关于x 轴的对称点()22C ',﹣,连接B C '',与x 轴、y 轴分别交于D E 、点,则BE ED CD BC B E ED C D BC B C BC +++'++'+''+==,根据两点之间线段最短,可知B C ''最短,而BC 的长度一定,∴四边形BCDE 的最小周长B C BC ''+==2222B M C M BM CM ''+++=22223511+++=342+.故此小题结论正确;综上所述:结论正确有①③④,故选D .【点睛】本题主要考查二次函数的图象和性质,一次函数与二次函数图象的交点以及轴对称的性质,熟练掌握二次函数图象的对称性,增减性,函数图象的交点问题与方程的根的关系,二次函数的平移规律,利用轴对称性,求线段和的最小值,是解题的关键.13.2(x+2)(x﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.14.5 12【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为255 3025512=++.故答案为:5 12.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A 的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.15.1 3【解析】如图,分别过点A,B作AE⊥1l,BF⊥1l,BD⊥3l,垂足分别为E,F,D.∵△ABC 为等腰直角三角形,∴AC=BC ,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE ⊥1l ,BF ⊥1l ∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF ,∠ACE=∠CBF.∵∠CAE=∠BCF ,AC=BC ,∠ACE=∠CBF ,∴△ACE ≌△CBF ,∴CE=BF ,AE=CF.设平行线间距离为d=l ,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3, ∴tanα=tan ∠BAD=BD AD =13. 点睛:分别过点A ,B 作AE ⊥1l ,BF ⊥1l ,BD ⊥3l ,垂足分别为E ,F ,D ,可根据ASA 证明△ACE ≌△CBF ,设平行线间距离为d=1,进而求出AD 、BD 的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;16.()2111n n n a++-⋅ 【解析】【分析】观察分母的变化规律为:a 的1次幂、2次幂、3次幂…n 次幂,分子的变化规律为:2、5、10、17…21n +,分式的符号变化规律为:+,-,+,…,()11n +-,结合上述三个规律,即可得到答案.【详解】 ∵221211a a +⋅=(-1), ()23222511aa +-⋅-=, ()243310311aa +-⋅=, …,∴第n 个式子是:()2111n n n a++-⋅. 故答案是:()2111n n n a++-⋅. 【点睛】 本题主要考查代数式的变化规律,分别找出分子,分母以及分式的符号变化规律,是解题的关键.17.【解析】【分析】根据反比例函数图象上点的坐标特征由A 点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-4x,且OB=AB=2,则可判断△OAB 为等腰直角三角形,所以∠AOB=45°,再利用PQ ⊥OA 可得到∠OPQ=45°,然后由轴对称的性质得PB=PB′,BB′⊥PQ ,所以∠BPQ=∠B′PQ=45°,于是得到B′P ⊥y 轴,则点B′的坐标可表示为(-4t ,t ),于是利用PB=PB′得t-2=|-4t |=4t,然后解方程可得到满足条件的t 的值. 【详解】解:如图,∵点A 坐标为(-2,2),∴k=-2×2=-4, ∴反比例函数解析式为y=-4x, ∵OB=AB=2,∴△OAB 为等腰直角三角形,∴∠AOB=45°,∵PQ ⊥OA ,∴∠OPQ=45°,∵点B 和点B′关于直线l 对称,∴PB=PB′,BB′⊥PQ ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-4t,t),∵PB=PB′,∴t-2=|-4t|=4t,整理得t2-2t-4=0,解得t1=1+5,t2=1-5(不符合题意,舍去),∴t的值为1+5,故答案为1+5.【点睛】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质、会用求根公式法解一元二次方程等是关键.18.23【解析】【分析】根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.【详解】如图,连接MN,∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS),∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长,过E点作EF⊥BC交CB的延长线于F,∴∠EBF=180°-120°=60°,∵BC=2,∴BF=1,Rt△EFC中,∵EF2+FC2=EC2,故答案为:【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质,轴对称最短路线问题和旋转的问题.19.3【解析】【分析】首先根据负指数次幂、零次幂、绝对值以及三角函数的计算法则求出各式的值,然后进行求和得出答案.【详解】解:()101222sin602o π-⎛⎫--++ ⎪⎝⎭=2﹣1+2=3. 【点睛】本题主要考查的是实数的计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.20.12x <<. 【解析】 【分析】通过去分母,去括号,移项,合并同类项,未知数化为1,求出各个不等式的解,进而即可求出不等式组的解. 【详解】()352212x x xx ⎧->-⎪⎨>-⎪⎩①② 解不等式①得:1x >, 解不等式②得:2x <,∴不等式组的解集为:12x <<.【点睛】本题主要考查解一元一次不等式组的解,掌握解一元一次不等式组的基本步骤,是解题的关键.21.证明见解析 【解析】 【分析】 【详解】∵四边形ABCD 是平行四边形, ∴AB=DC ,AB ∥DC , ∴∠B=∠DCF ,∵在△ABE 和△DCF 中,AB=DC ,∠B=∠DCF ,BE=CF , ∴△ABE ≌△DCF (SAS ),∴∠BAE=∠CDF .22.(1)购买A 种品牌的文具600套、B 种品牌的文具400套;(2)y 与x 之间的函数关系式是:420500y x =-+. 【解析】 【分析】(1)设购买A 种品牌的文具x 套、B 种品牌的文具y 套,根据“小王需购买,A B 两种品牌的文具套装共1000套,购买,A B 两种品牌文具套装共用22000元”,列出二元一次方程组,进而即可求解;(2)根据题意,直接列出函数解析式,即可. 【详解】(1)设购买A 种品牌的文具x 套、B 种品牌的文具y 套, 由题意得:1000202522000x y x y +=⎧⎨+=⎩,解得,600400x y =⎧⎨=⎩,答:购买A 种品牌的文具600套、B 种品牌的文具400套;(2)由题意可得:[]500202510000.8420500y x x x ++⨯+=(﹣)=﹣, 即:y 与x 之间的函数关系式是:420500y x =-+. 【点睛】本题主要考查二元一次方程组的实际应用以及一次函数的实际应用,找出等量关系,列出方程组,找出数量关系,列出函数解析式,是解题的关键.23.(1)见解析;(2)圆心O 到AD . 【解析】 【分析】(1)连接OD ,由“双平等腰”模型,得//OD AC ,从而得OD BC ^,进而即可得到结论;(2)过O 作OF AD ⊥于F ,由勾股定理得AD =DF 证明ACD DFO V V ∽,得到CD ACFO DF=,进而即可求解. 【详解】(1)连接OD ,OA OD Q =, OAD ODA ∴∠∠=,AD Q 平分BAC ∠,OAD CAD ∴∠∠=, ODA CAD ∴∠∠=, //OD AC ∴,又90C ∠︒Q =,90ODB C ∴∠∠︒==, OD BC ∴⊥,BC ∴是O e 的切线;(2)过O 作OF AD ⊥于F ,由勾股定理得:2246213AD +==,1132DF AD ∴==,90OFD C ODA CAD ∠∠︒∠∠Q ==,=,ACD DFO ∴V V ∽,CD ACFO DF∴=, 413FO ∴=, 213FO ∴=,即圆心O 到AD 的距离是:213.【点睛】本题主要考查切线的判定定理,垂径定理,等腰三角形的性质定理,勾股定理,相似三角形的判定和性质定理,添加合适的辅助线,构造等腰三角形和直角三角形,是解题的关键.24.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)25.(1)3(2331y x=-;(3)134+【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得3(2)作BH⊥AD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(13,则31,31,可判断△ABH为等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC ﹣∠BAH=30°,根据特殊角的三角函数值得tan ∠AD ⊥y 轴,则OD=1,Rt △OAD 中利用正切的定义可计算出CD=2,易得C 点坐标为(0,﹣1),于是可根据待定系数法求出直线AC 的解析式为﹣1;(3)利用M 点在反比例函数图象上,可设M 点坐标为(t ,t)(0<t <,由于直线l ⊥x 轴,与AC 相交于点N ,得到N 点的横坐标为t ,利用一次函数图象上点的坐标特征得到N 点坐标为(t ,3 t ﹣1),则3t+1,根据三角形面积公式得到S △CMN =12•t•),再进行配方得到S=﹣6t 20<t <,最后根据二次函数的最值问题求解.试题解析:(1)把A (1)代入y=kx,得 (2)作BH ⊥AD 于H ,如图1,把B (1,a )代入反比例函数解析式,得,∴B 点坐标为(1,,∴﹣1,1,∴△ABH 为等腰直角三角形,∴∠BAH=45°, ∵∠BAC=75°,∴∠DAC=∠BAC ﹣∠BAH=30°,∴tan ∠DAC=tan30°∵AD ⊥y 轴,∴OD=1,tan ∠DAC=CD DA ∴CD=2,∴OC=1, ∴C 点坐标为(0,﹣1), 设直线AC 的解析式为y=kx+b ,把A(23,1)、C(0,﹣1)代入得2311k bb⎧+=⎪⎨=-⎪⎩,解得331kb⎧=⎪⎨⎪=-⎩,∴直线AC的解析式为y=3x﹣1;(3)设M点坐标为(t,23)(0<t<23),∵直线l⊥x轴,与AC相交于点N,∴N点的横坐标为t,∴N点坐标为(t,3t﹣1),∴MN=23t﹣(33t﹣1)=23t﹣33t+1,∴S△CMN=12•t•(23t﹣33t+1)=﹣36t2+12t+3=﹣36(t﹣32)2+938(0<t<23),∵a=﹣36<0,∴当t=32时,S有最大值,最大值为938.26.(1)1802α-;(2)23AE BE=+,理由见解析;(3)1或7【解析】【分析】(1)由旋转的性质可得,CD CE DCE a=∠=,即可求解;(2)由旋转的性质可得,,60AD BE CD CE DCE︒==∠=,可证CDE∆是等边三角形,由等边三角形的性质可得3DF EF==,即可求解;(3)分点G 在AB 的上方和AB 的下方两种情况讨论,利用勾股定理可求解. 【详解】(1)Q 将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆ACD BCE ∴∆≅∆,DCE a ∠=CD CE ∴=1802CDE α-∴∠=故答案为:1802α- (2)23AE BE CF =+理由如下:如图,Q 将CAD ∆绕点C 按逆时针方向旋转角60o 得到CBE ∆ACD BCE ∴∆≅∆,,60AD BE CD CE DCE ︒∴==∠= CDE ∴∆是等边三角形,且CF DE ⊥3DF EF ∴==AE AD DF EF =++Q 33AE BE ∴=+(3)如图,当点G 在AB 上方时,过点C 作CE AG ⊥于点E ,90,52ACB AC BC ︒∠===Q 45,10CAB ABC AB ︒∴∠=∠== 90ACB AGB ︒∠==∠Q∴点C ,点G ,点B ,点A 四点共圆45,AGC ABC ︒∴∠=∠=且CE AG ⊥ 45AGC ECG ︒∴∠=∠=CE GE ∴=10,6,90AB GB AGB ︒==∠=Q228AG AB GB ∴=-=222AC AE CE =+Q ,222(52)(8)CE CE ∴=-+7CE ∴=(不合题意舍去),1CE = 若点G 在AB 的下方,过点C 作CF AG ⊥, 同理可得:7CF =Q 点C 到AG 的距离为1或7.【点睛】本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键. 27.(1)()1,4-;(2)334y x =+或343y x =--(3317. 【解析】 【分析】()1由抛物线的交点式可知抛物线的解析式为()()13y x x =+-,通过整理可得到抛物线的解析式,然后利用配方法可得到抛物线的定点坐标;()2过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即2个点.Q 以AB 为直径的G e 如果与直线l 相交,那么就有2个点Q ;如果圆与直线l 相切,就只有1个点Q 了,以AB 为直径作G e ,作QD 与G e 相切,则QG QD ⊥,过Q 作QE GD ⊥,先求得点Q 的坐标,于是可求得l 的解析式,由图形的对称性可知点Q 的坐标还可以是()13,1+-,然后可求得另一种情况;()3取M 使34OM =,连接'ME ,接下来,证明'OME V ∽'OEC V ,从而可得到1''2ME CE =,故此当M 、'E 、B 在一条直线上时,1''2E B E C +有最小值,最后,依据勾股定理求得MB 的长度即可. 【详解】()1Q 抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,()()21323y x x x x ∴=+-=--.2223(1)4y x x x =--=--Q , ∴抛物线的顶点坐标为()1,4-.()2过点A 、B 分别作x 轴的垂线,这两条垂线与直线l 总是有交点的,即2个点Q .以AB 为直径的G e 如果与直线l 相交,那么就有2个点Q ;如果圆与直线l 相切,就只有1个点Q 了.如图所示:以AB 为直径作G e ,作QD 与G e 相切,则QG QD ⊥,过Q 作QE GD ⊥.()1,0A -Q ,()3,0B ,4AB ∴=.2QG ∴=. 又4DG =Q , 1sin 2GDQ ∴∠=. 1sin 2GQE ∴∠=, 1GE ∴=,223QE QG GE ∴=-=.∴点Q 的坐标为()13,1--. 设l 的解析式为y kx b =+,则()4131k b k b +=-⎧⎪⎨-+=-⎪⎩,解得:3k =-,43b =-+, ∴直线l 的解析式为334y x =-+-.由图形的对称性可知:当直线l 经过点()13,1+-时,直线l 与G e 相切, 则()4131k b k b +=-⎧⎪⎨++=-⎪⎩, 解得:3k =,43b =--,∴直线l 的解析式为343y x =--.综上所述,直线l 的解析式为334y x =-+-或343y x =--.()3如图所示:取M 使34OM =,连接'ME .3OC =Q ,3'2OE =,34OM ,2'OE OC OM ∴=⋅,OE OC OM OE'∴=. 又''MOE E OC ∠=∠Q ,'OME ∴V ∽'OE C V ,12ME OE CE OC ''∴==. 1''2ME CE ∴=. 1''''2E B E C BE ME ∴+=+, ∴当M 、'E 、B 在一条直线上时,1''2E B E C +有最小值,1''2E B E C ∴+的最小值===. 【点睛】本题考查二次函数综合题,主要用到了待定系数法求函数解析式、相似三角形的判定和性质、切线的性质、锐角三角函数、勾股定理等知识,解题的关键是确定出1''2E B E C +取得最小值的条件.。
山东省日照市实验中学2020届数学中考模拟试卷

山东省日照市实验中学2020届数学中考模拟试卷一、选择题1.若式子2(1)m -有意义,则实数m 的取值范围是( ) A .m >﹣2B .m >﹣2且m≠1C .m≥﹣2D .m≥﹣2且m≠1 2.小明用尺规作了如下四幅图形:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,从保留的作图痕迹看出作图正确的是( )A .①②④B .②③C .①③④D .①②③④3.如图所示,小兰用尺规作图作△ABC 边AC 上的高BH ,作法如下:①分别以点DE 为圆心,大于DE 的长为半径作弧两弧交于F ;②作射线BF ,交边AC 于点H ;③以B 为圆心,BK 长为半径作弧,交直线AC 于点D 和E ;④取一点K 使K 和B 在AC 的两侧;所以BH 就是所求作的高.其中顺序正确的作图步骤是( )A.①②③④B.④③①②C.②④③①D.④③②① 4.方程1235x x =+的解为( ). A .1x =-B .0x =C .3x =-D .1x = 5.如果a+b=2,那么代数式22212b a b a b a ab b -⎛⎫+⋅ ⎪-++⎝⎭的值是( )A .12B .1C D .2 6.下列图形中是轴对称图形,不是中心对称图形的是( )A .线段B .圆C .平行四边形D .角7.在44⨯的正方形的网格中画出了如图所示的格点ABC △,则tan ABC ∠的值为( )A B .13 C .32 D .238.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y(km)与行驶的时间t(h)之间的函数关系如图所示.有下列结论;①A,B两城相距300 km;②小路的车比小带的车晚出发1 h,却早到1 h;③小路的车出发后2.5 h追上小带的车;④当小带和小路的车相距50 km时,t=54或t=154.其中正确的结论有( )A.①②③④B.①②④C.①②D.②③④9.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为()A. B. C. D.10.用直尺和圆规作一个直角三角形斜边上的高,作图错误的是()A.B.C.D.11.如图,平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,CE=2,DF=1,∠EBF=60°,则这个平行四边形ABCD的面积是()A.B.C.D.12.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )A.1 B.2 C.3 D.4二、填空题13.如图,AB切⊙O于C,AO交⊙O于D,AO的延长线交⊙O于E,若∠A=α,则∠ECB=_____(用含α的式子表示).14.(2017山东省威海市)如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为______.15.如图,矩形ABCD中,点E,F分别在边AD,CD上,且EF⊥BE,EF=BE,△DEF的外接圆⊙O恰好切BC于点G,BF交⊙O于点H,连结DH.若AB=8,则DH=_____.16.因式分解__________.17.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.18.已知线段AB按以下步骤作图:①分别以点A,点B为圆心,以AB长为半径作圆弧,两弧相交于点C;②连结AC、BC;③以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D;④连结BD.则∠ADB的大小是_____度.三、解答题19.在平面直角坐标系xOy中,直线y=kx+b(k<0),经过点(6,0),且与坐标轴围成的三角形的面积是9,与函数y=mx(x>0)的图象G交于A,B两点.(1)求直线的表达式;(2)横、纵坐标都是整数的点叫作整点.记图象G在点A、B之间的部分与线段AB围成的区域(不含边界)为W.①当m=2时,直接写出区域W内的整点的坐标;②若区域W内恰有3个整数点,结合函数图象,求m的取值范围.200)﹣121.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为400人,如表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率为;(2)表中A=,B=;(3)该校学生平均每人读多少本课外书?22.某商品现在的售价为每件30元,每星期可卖出160件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出2件.已知商品的进价为每件10元.(1)在顾客得到实惠的情况下,如何定价商家才能获得4200元的利润?(2)如何定价才能使利润最大?23.(1)解不等式组:4(1)710853x x x x ++⎧⎪-⎨-<⎪⎩… (2)化简:22242442x x x x x x x --+÷-+- 24.如图,已知一次函数y =kx+b 的图象与x 轴,y 轴分别相交于A ,B 两点,且与反比例函数y =m x 交于点C ,D .作CE ⊥x 轴,垂足为E ,CF ⊥y 轴,垂足为F .点B 为OF 的中点,四边形OECF 的面积为16,点D 的坐标为(4,﹣b ).(1)求一次函数表达式和反比例函数表达式;(2)求出点C 坐标,并根据图象直接写出不等式kx+b≤m x的解集.25.(1)计算:221b a a b a b ⎛⎫÷- ⎪-+⎝⎭(2)解方程:x 2-6x-1=0【参考答案】***一、选择题13.45°+2α 14.3. 1516.17.218.30三、解答题19.(1)y =﹣12x+3;(2)①(3,1);②1≤m<2.【分析】(1)借助直线与x轴、y轴的交点坐标表示出直线与坐标轴围成的三角形的两条直角边长,利用面积是9,求出直线与y轴的交点为C(0,3),利用待定系数法求出直线的表达式;(2)①先求出当m=2时,两函数图象的交点坐标,再结合图象找到区域W内的整点的坐标;②利用特殊值法求出图象经过点(1,1)、(2,1)时,反比例函数中m的值,结合图象得到在此范围内区域W内整点有3个,从而确定m的取值范围为1≤m<2.【详解】如图:(1)设直线与y轴的交点为C(0,b),∵直线与两坐标轴围成的三角形的面积是9,∴12×6b=9,b=±3.∵k<0,∴b=3,∵直线y=kx+b经过点(6,0)和(0,3),∴直线的表达式为y=﹣12x+3;(2)①当m=2时,两函数图象的交点坐标为方程组1322y xyx⎧=-+⎪⎪⎨⎪=⎪⎩的解,∴A(3,),观察图象可得区域W内的整点的坐标为(3,1);②当y=mx图象经过点(1,1)时,则 m=1,当y=mx图象经过点(2,1)时,则 m=2,∴观察图象可得区域W内的整点有3个时1≤m<2.【点睛】本题考查了反比例函数与一次函数的综合问题,结合图象利用反比例函数与一次函数的交点解决问题.20【解析】【分析】将原式中每一项分别化为11+再进行化简.解:原式=11+=【点睛】本题考查实数的运算;熟练掌握运算性质,绝对值的意义,负整数指数幂,零指数幂是解题的关键.21.(1)40%;(2)960;0.4;(3)4(本).【解析】【分析】(1)八年级的人数占全校总人数的百分率=1-32%-28%;(2)由频率的意义可知,B=1﹣0.32﹣0.24﹣0.04,再求出样本容量,利用样本容量×0.24即可求出A 的值;(3)先求出全校总人数,再求该校学生平均每人读的本数即可.【详解】解:(1)该校八年级的人数占全校总人数的百分率为1﹣32%﹣28%=40%,故答案为40%;(2)B=1﹣0.32﹣0.24﹣0.04=0.4,由160÷0.04=4000得图书总数是4000本,所以A=4000×0.24=960(本);故答案为960;0.4;(3)因为八年级的人数是400人,占40%,所以求得全校人数有:400÷40%=1000(人),所以全校学生平均每人阅读:4000÷1000=4(本).【点睛】本题考查的是频数分布表和扇形统计图的综合运用,考查分析频数分布直方图和频率的求法.扇形统计图直接反映部分占总体的百分比大小.22.(1)在顾客得到实惠的情况下,售价为40元时商家才能获得4200元的利润;(2)售价为60元时利润最大为5000元.【解析】【分析】1)设商品的定价为x元,根据“获得总利润=(实际售价-进价)×销售量”列出关于x的方程,解之可得;(2)依据以上所得相等关系列出总利润w关于x的函数解析式,再将其配方成顶点式,利用二次函数的性质,结合x为整数可得答案.【详解】(1)设商品的涨价x元,由题意得:(30+x-10)(160-2x)=4200,整理得:x2-60x+500=0,解得:x=10或50,故为尽可能让利于顾客并使每周利润为4200元,取x的值为10,所以,在顾客得到实惠的情况下,售价为40元时商家才能获得4200元的利润;(2)由题意得:y=(30+x-10)(160-2x)=-2x2+120x+3200,=-2(x-30)2+5000∵-2<0,∴当x=30时,y取得最大值,此时y=5000(元),即当售价为60元时,会获得每周销售最大利润,每周最大销售利润为5000元.【点睛】该题主要考查了二次函数的性质及其应用问题;解题的关键是深入把握题意,准确找出命题中隐含的数量关系,正确列出函数关系式来分析、解答.23.(1)﹣2≤x<72;(2)22x x - 【解析】【分析】(1)根据解不等式组的方法可以解答本题;(2)根据分式的除法和加法可以解答本题.【详解】 解:(1)4(1)710853x x x x ++⎧⎪⎨--<⎪⎩①②…, 由不等式①,得x≥﹣2,由不等式②,得x<, 故原不等式组的解集是﹣2≤x<72; (2) 22242442x x x x x x x --+÷-+- 2(2)(2)(2)1(2)2x x x x x x x+--=+⋅-- 212x x +=+- 222x x x ++-=- 22x x =- 【点睛】本题考查分式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的解答方法.24.(1)y =﹣2x+4;(2)﹣2≤x<0或x≥4.【解析】【分析】(1)由矩形的面积求得m =﹣16,得到反比例函数的解析式,把D (4,﹣b )代入求得的解析式得到D (4,﹣4),求得b =4,把D (4,﹣4)代入y =kx+4,即可求得一次函数的解析式;(2)由一次函数的解析式求得B 的坐标为(0,4),根据题意OF =8,C 点的纵坐标为8,代入反比例函数的解析式求得横坐标,得到C 的坐标,根据C 、D 的坐标结合图象即可求得不等式kx+b≤m x的解集.【详解】解:(1)∵CE ⊥x 轴,CF ⊥y 轴,∵四边形OECF 的面积为16,∴|m|=16,∵双曲线位于二、四象限,∴m =﹣16,∴反比例函数表达式为y =16x -, 将x =4代入y =16x -得:y =﹣4, ∴D (4,﹣4),∴b =4将D (4,﹣4)代入y =kx+4,得k =﹣2∴一次函数的表达式为y =﹣2x+4;(2)∵y =﹣2x+4,∴B (0,4),∴OF =8,将y =8代入y =﹣2x+4得x =﹣2,∴C (﹣2,8),∴不等式kx+b≤m x 的解集为﹣2≤x<0或x≥4. 【点睛】本题主要考查了反比例函数与一次函数的交点问题,用到的知识点是待定系数法求反比例函数与一次函数的解析式,这里体现了数形结合的思想,关键是根据反比例函数与一次函数的交点求出不等式的解集.25.(1)1a b -;(2) x 1,x 2 【解析】【分析】(1)先把括号内通分,再把除法运算化为乘法运算,然后把分母因式分解后约分即可;(2)利用配方法解方程.【详解】(1)原式=()()b a b a b +-÷a b a a b +-+ =()()b a b a b +-•a b b + =1a b -; (2)x 2-6x=1,x 2-6x+9=10,(x-3)2=10,x-,所以x 1,x 2.【点睛】本题考查了分式的混合运算,解一元二次方程-配方法,熟练掌握分式混合运算的法则以及配方法的基本步骤是解本题的关键.。
山东省日照市2020版数学中考模拟试卷(5月)(II)卷

山东省日照市2020版数学中考模拟试卷(5月)(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列说法正确的个数为()个①若a为有理数,则a+5的倒数是②负数的倒数一定比它本身大。
③若两个数互为相反数,则这两个数的商为-1 ④符号不同的两个数互为相反数A . 0B . 1C . 2D . 32. (2分)(2017·临高模拟) 据统计部门预测,到2020年武汉市常住人口将达到约14500000人,数字14500000用科学记数法表示为()A . 0.145×108B . 1.45×107C . 14.5×106D . 145×1053. (2分)(2018·盐城) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分) (2019九下·温州竞赛) 我校七年级开展了“你好!阅读“的读书话动。
为了解全段699名学生的读书情况,随机调查了本年级50名学生平均每月读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()册数01234人数41216171A . 中位数是2B . 众数是17C . 平均数是2D . 方差是25. (2分)(2016·黔南) 下面四个图形中,∠1=∠2一定成立的是()A .B .C .D .6. (2分)(2020·温州模拟) 如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内)。
已知AB=a,AD=b,∠BCO=θ,则点A到OC的距离等于()A . asinθ+bsinθB . acosθ+bcosθC . asinθ+bcosθD . acosθ+bsinθ7. (2分)若一次函数y=kx+b的图象经过一、三、四象限,则k,b应满足()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<08. (2分)(2017·新泰模拟) 如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长为()A . 6B .C . 5D .二、填空题 (共10题;共11分)9. (1分)(3﹣π)0+(﹣0.2)﹣2=________.10. (1分) (2019八下·长春期末) 若有意义,则的取值范围为________.11. (1分)(2018·惠山模拟) 因式分解:a3-4a=________.12. (2分) (2017九上·莘县期末) 如图,在△ABC在,DE∥BC, = ,S△ADE=8,则四边形BDEC 的面积为________.13. (1分)(2019·沈阳模拟) 分式方程的解是________.14. (1分) (2019九上·孝感月考) 已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为________.15. (1分) (2016九上·淅川期末) 抛物线y=x2﹣2x﹣3与x轴的交点坐标为________.16. (1分)(2017·随州) 如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C 位于弦AB两侧,连接AD、CD、OB,若∠BOC=70°,则∠ADC=________度.17. (1分)已知点P(2,﹣3),则点P关于x轴对称的点的坐标为________.18. (1分) (2019九上·余杭期中) 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为________cm.三、解答题 (共10题;共89分)19. (5分) (2019八上·昆明期末) 先化简,再求值:(x﹣y)2+(x+y)(x﹣y),其中 x=1,y=2.20. (10分)(2017·兴庆模拟) 解不等式组:.21. (7分)(2020·泸县模拟) 绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x(单位:万元)。
【考试必备】山东省实验中学中考提前自主招生数学模拟试卷(6套)附解析

中学自主招生数学试卷一、选择题1. 某车间2019年4月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的 【 】A.众数是4B.中位数是1.5C.平均数是2D.方差是1.252. 如图所示,A ,B ,C 均在⊙O 上,若∠OAB =40O ,ACB 是优弧,则∠C 的度数为 【 】A. 40OB.45OC. 50OD. 55O3. 若二次函数y=ax 2+bx +c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则x 取x 1+x 2时,函数值为 【 】A. a +cB. a - cC. - cD. c4. 已知在锐角△ABC 中,∠A =550 ,AB ﹥BC 。
则∠B 的取值范围是 【 】A.35o ﹤∠B ﹤55oB. 40o ﹤∠B ﹤55oC. 35o ﹤∠B ﹤70oD. 70o ﹤∠B ﹤90o5. 正比例函数y 1=k 1x (k 1>0)与反比例函数22k y x(k 2>0)部分图象如图所示,则不等式k 1x >2k x的解集在数轴上表示正确的是 【 】A. B.C.D.6. 定义运算符号“*”的意义为(a 、b 均不为0).下面有两个结论: ①运算“*”满足交换律; ②运算“*”满足结合律 其中 【 】A.只有①正确B. 只有②正确C.①和②都正确 D. ①和②都不正确7. 已知00x y >>,且22231x xy y xy ⎧-=⎪⎨⎪+=⎩,那么()2x y +的值为 【 】 A. 2 B. 3 C. 4 D.58. 如图,点A 的坐标为(0,1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰直角 △ABC ,使∠BAC=90O ,设点 B 的横坐标为 x ,点 C 的纵坐标为 y ,能表示 y 与x 的函数关系的图象大致是( )A BC D9.已知△ABC 是⊙O 的内接正三角形,△ABC 的面积为a ,DEFG 是半圆O 的内接正方形,面积等于b ,那么ab 的值为 【 】A. 2B.2 C. 5 D. 1610. 横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数是【 】A .2个B .3个C .4个D .5个二、填空题11.如图,五边形ABCDE 是正五边形,若12//l l , 则12∠-∠= .12.实数a 、b 、c 满足a 2-6b = -17,b 2+8c = - 23,c 2+2a =14,则a +b +c =_______ 13.把抛物线2y x bx c =++的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是221y x x =-+,则b=_______,c=________ 14.对于正数x ,规定21()21x f x x +=-,则122018()()()______201920192019f f f +++=15.如图,在△ABC 内的三个小三角形的面积分别 是10、16、20,若△ABC 的面积S ,则S=_____16.工人师傅在一个长为25cm 、宽为18cm 的矩形铁皮上剪去一个和三边都相切的⊙A 后,在剩余部分的废料上再剪出一个最大的⊙B ,则圆B 的半径是___cm 三、解答题17. (本题满分10分)甲、乙两船从河中A 地同时出发,匀速顺水下行至某一时刻,两船分别到达B 地和C 地.已知河中各处水流速度相同,且A 地到B 地的航程大于A 地到C 地的航程.两船在各自动力不变情况下,分别从B 地和C 地驶回A 地所需的时间为t 1和t 2.试比较t 1和t 2的大小关系.18. (本题满分10分) 关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ+=+① ()cos cos cos sin sin αβαβαβ+=-②()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-≠-其中③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:()(2tan 45tan 60tan105tan 45601tan 45tan 601422o o oooo o +=+==-++===-+-根据上面的知识,你可以选择适当的公式解决下面实际问题:如图所示,直升机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60o,底端C点的俯角 为75 o,此时直升机与建筑物CD的水平距离BC为42米,求建筑物CD的高。
【2020-2021自招】山东日照实验高级中学初升高自主招生数学模拟试卷【4套】【含解析】

第一套:满分150分2020-2021年山东日照实验高级中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中学自主招生数学试卷一、选择题1. 某车间2019年4月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的 【 】A.众数是4B.中位数是1.5C.平均数是2D.方差是1.252. 如图所示,A ,B ,C 均在⊙O 上,若∠OAB =40O ,ACB 是优弧,则∠C 的度数为 【 】A. 40OB.45OC. 50OD. 55O3. 若二次函数y=ax 2+bx +c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则x 取x 1+x 2时,函数值为 【 】A. a +cB. a - cC. - cD. c4. 已知在锐角△ABC 中,∠A =550 ,AB ﹥BC 。
则∠B 的取值范围是 【 】A.35o ﹤∠B ﹤55oB. 40o ﹤∠B ﹤55oC. 35o ﹤∠B ﹤70oD. 70o ﹤∠B ﹤90o5. 正比例函数y 1=k 1x (k 1>0)与反比例函数22k y x(k 2>0)部分图象如图所示,则不等式k 1x >2k x的解集在数轴上表示正确的是 【 】A. B.C.D.6. 定义运算符号“*”的意义为(a 、b 均不为0).下面有两个结论: ①运算“*”满足交换律; ②运算“*”满足结合律 其中 【 】A.只有①正确B. 只有②正确C.①和②都正确 D. ①和②都不正确7. 已知00x y >>,且22231x xy y xy ⎧-=⎪⎨⎪+=⎩,那么()2x y +的值为 【 】 A. 2 B. 3 C. 4 D.58. 如图,点A 的坐标为(0,1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰直角 △ABC ,使∠BAC=90O ,设点 B 的横坐标为 x ,点 C 的纵坐标为 y ,能表示 y 与x 的函数关系的图象大致是( )A BC D9.已知△ABC 是⊙O 的内接正三角形,△ABC 的面积为a ,DEFG 是半圆O 的内接正方形,面积等于b ,那么ab 的值为 【 】A. 2B.2 C. 5 D. 1610. 横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数是【 】A .2个B .3个C .4个D .5个二、填空题11.如图,五边形ABCDE 是正五边形,若12//l l , 则12∠-∠= .12.实数a 、b 、c 满足a 2-6b = -17,b 2+8c = - 23,c 2+2a =14,则a +b +c =_______ 13.把抛物线2y x bx c =++的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是221y x x =-+,则b=_______,c=________ 14.对于正数x ,规定21()21x f x x +=-,则122018()()()______201920192019f f f +++=15.如图,在△ABC 内的三个小三角形的面积分别 是10、16、20,若△ABC 的面积S ,则S=_____16.工人师傅在一个长为25cm 、宽为18cm 的矩形铁皮上剪去一个和三边都相切的⊙A 后,在剩余部分的废料上再剪出一个最大的⊙B ,则圆B 的半径是___cm 三、解答题17. (本题满分10分)甲、乙两船从河中A 地同时出发,匀速顺水下行至某一时刻,两船分别到达B 地和C 地.已知河中各处水流速度相同,且A 地到B 地的航程大于A 地到C 地的航程.两船在各自动力不变情况下,分别从B 地和C 地驶回A 地所需的时间为t 1和t 2.试比较t 1和t 2的大小关系.18. (本题满分10分) 关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ+=+① ()cos cos cos sin sin αβαβαβ+=-②()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-≠-其中③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:()(2tan 45tan 60tan105tan 45601tan 45tan 601422o o oooo o +=+==-++===-+-根据上面的知识,你可以选择适当的公式解决下面实际问题:如图所示,直升机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60o,底端C点的俯角 为75 o,此时直升机与建筑物CD的水平距离BC为42米,求建筑物CD的高。
19. (本题满分12分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.(图1)(图2)请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.20.(本题满分12分)阅读以下的材料:(1)如果两个正数a,b,即a>0,b>0,有下面的不等式:当且仅当a=b时取到等号,我们把叫做正数的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。
它在数学中有广泛的应用,是解决最值问题的有力工具。
(2)茎叶图是一个与直方图相类似的特殊工具,但又与直方图不同,茎叶图保留原始资料的资讯,直方图则失去原始资料的讯息。
茎叶图的思路是将一组数中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。
例如:将2、10、15、20、23、27这6个数据用茎叶图表示如右图。
下面举两个例子: 例1:已知x>0,求函数的最小值。
解:令a =x ,,则有,得,当且仅当即x=2时,函数有最小值,最小值为2。
例2:已知a >0,b >0,且121a b a b+=+,则的最小值是_______. 解:因为a >0,b >0,所以()122333b a a b a b a b a b a b⎛⎫+=++=++⎪⎝⎭≥+=+当且仅当2=b a a b即1,2a b ==+时取等号,3a b ++的最小值是根据上面回答下列问题:①已知x>1,则当x=______时,函数41y x x =+-取到最小值,最小值为______; ②为保障中考期间的食品安全,某县城对各考点进行食品检查,如图所示是某食品中微量元素含量数据的茎叶图,已知该组数据的平均数为11.5,若m>0,n>0且m+n=a+b 求41m n+的最小值; ③已知x>0,则自变量x 取何值时,函数 224xy x x =++取到最大值,最大值为多少?21.(本题满分12分) 如此巧合!下面是小刘对一道题目的解答.题目:如图,Rt ABC △的内切圆与斜边AB 相切于点D ,3AD =,4BD =,求ABC △的面积.解:设ABC △的内切圆分别与AC 、BC 相切于点E 、F ,CE 的长为x . 根据切线长定理,得3AE AD ==,4BF BD ==,CF CE x ==. 根据勾股定理,得()()()2223434x x +++=+.整理,得2712x x +=. 所以12ABC S AC BC =⋅△()()1342x x =++()217122x x =++()112122=⨯+12=. 小刘发现12恰好就是34⨯,即ABC △的面积等于AD 与BD 的积.这仅仅是巧合吗?请你帮他完成下面的探索.已知:ABC △的内切圆与AB 相切于点D ,AD m =,BD n =. 可以一般化吗?(1)若90C ∠=,求证:ABC △的面积等于mn .倒过来思考呢?(2)若2AC BC mn ⋅=,求证90C ∠=. 改变一下条件…… (3)若60C ∠=,用m中学自主招生数学试卷一、选择题(本大题10个小题,每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母用2B 铅笔涂在对应的答题卡上 1.(3分)的相反数是( ) A .B .C .D .2.(3分)电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是( ) A .10.9×104B .1.09×104C .10.9×105D .1.09×1053.(3分)如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,点F 在BC 的延长线上,若∠ACF =140°,∠ADE =105°,则∠A 的大小为( )A .30°B .35°C .50°D .75°4.(3分)下列计算正确的是( ) A .(xy )3=xy 3B .x 5÷x 5=x C .3x 2•5x 3=15x 5D .5x 2y 3+2x 2y 3=10x 4y 95.(3分)2019年1月3日上午10时26分,嫦娥四号探测器成功着陆在月球背面,开启了月球探测的新篇章,中国人迈开了走向星辰大海的第一步.如图是某正方体的展开图,在原正方体上“星”字所在面相对的面上的汉字是( )A.走B.向C.大D.海6.(3分)在一次数学竞赛中,五位同学答对题目的个数分别为7,5,3,5,10,则这组数据的众数、中位数、方差分别是()A.5、3、4.6 B.5、5、5.6 C.5、3、5.6 D.5、5、6.6 7.(3分)方程的解为()A.2 B.2或4 C.4 D.无解(3分)如图,在△ABC中,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE CD,过点8.B作BF∥DE,与AE的延长线交于点F.若AB=12,则BF的长为()A.7 B.8 C.10 D.169.(3分)在平面直角坐标系中,若直线y=x+n与直线y=mx+6(m、n为常数,m<0)相交于点P(3,5),则关于x的不等式x+n+1<mx+7的解集是()A.x<3 B.x<4 C.x>4 D.x>610.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A 向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F 的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题5个小题,每小题3分,共15分)11.(3分)比较大小:3.(填“>”或“<”号)12.(3分)实数a、b在数轴上对应点的位置如图所示,则|a+b|+|b|=.(3分)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义ad 13.﹣bc,请你将化为代数式,再化简为.14.(3分)如图,长方形纸片ABCD的长AB=3,宽BC=2,以点A为圆心,以AB的长为半径作弧;以点C为圆心,以BC的长为半径作弧.则图中阴影部分的面积是.15.(3分)在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(1),其中x满足x2﹣2x﹣5=0.17.(9分)某校为了解学生对排球、羽毛球、足球、篮球(以下分别用A、B、C、D表示)这四种球类运动的喜好情况.对全体学生进行了抽样调查(每位学生只能选一项最喜欢的运动),并将调查情况绘制成如下两幅不完整的统计图.请根据以上信息回答下面问题:(1)本次参加抽样调查的学生有人.(2)补全两幅统计图.(3)若从本次参加抽样调查的学生中任取1人,则此人喜欢哪类球的概率最大?求其概率.18.(9分)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为点D,直线AC交⊙C于点E、F,且CF AC(1)求证:△ABF是直角三角形.(2)若AC=6,则直接回答BF的长是多少.19.(9分)如图,一架无人机在距离地面高度为13.3米的点A处,测得地面点M的俯角为53°,这架无人机沿仰角为35°的方向飞行了55米到达点B,恰好在地面点N的正上方,M、N在同一水平线上求出M、N两点之间的距离.(结果精确到1米)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.)20.(9分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y x+3交AB,BC分别于点M,N,反比例函数y的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.21.(10分)某小区2号楼对外销售,已知2号楼某单元共33层,一楼为商铺,只租不售,二楼以上价格如下:第16层售价为6000元/米2,从第16层起每上升一层,每平方米的售价提高30元,反之每下降一层,每平方米的售价降低10元,已知该单元每套的面积均为100米2(1)请在下表中,补充完整售价y(元/米2)与楼层x(x取正整数)之间的函数关系式.(2)某客户想购买该单元第26层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算.22.(10分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.23.(11分)在平面直角坐标系中,抛物线y bx+c,经过点A(1,3)、B(0,1),过点A作x轴的平行线交抛物线于另一点C(1)求抛物线的表达式及其顶点坐标;(2)如图1,点G是BC上方抛物线上的一个动点,分别过点G作GH⊥BC于点H、作GE ⊥x轴于点E,交BC于点F,在点G运动的过程中,△GFH的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,过A点的直线垂直x轴于点M,点N为直线AM上任意一点,当△BCN为直角三角形时,请直接写出点N的坐标.参考答案与试题解析一、选择题(本大题10个小题,每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上1.【解答】解:的相反数是.故选:B.2.【解答】解:将10.9万用科学记数法表示为:1.09×105.故选:D.3.【解答】解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:B.4.【解答】解:A、原式=x3y3,错误;B、原式=1,错误;C、原式=15x5,正确;D、原式=7x2y3,错误,故选:C.5.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“星”与面“海”相对,故选:D.6.【解答】解:数据中5出现2次,次数最多,所以众数为5;数据按从小到大的顺序排列为3、5、5、7、10,则中位数为5;∵平均数为(7+5+3+5+10)÷5=6,∴方差为[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6;故选:B.7.【解答】解:去分母得:2x=(x﹣2)2+4,分解因式得:(x﹣2)[2﹣(x﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选:C.8.【解答】解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD AB=6.又CE CD,∴CE=2,∴ED=CE+CD=8.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=16.故选:D.9.【解答】解:∵直线y=x+n从左向右逐渐上升,直线y=mx+6(m、n为常数,m<0)从左向右逐渐下降,且两直线相交于点P(3,5)∴当x<3时,x+n<mx+6,∴x+n+1<mx+7.故选:A.10.【解答】解:当F在PD上运动时,△AEF的面积为y AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y AE•AF x(6﹣x)x2+3x(2<x≤4),图象为:故选:A.二、填空题(本大题5个小题,每小题3分,共15分)11.【解答】解:∵3>>2,∴2>1>1,∴1<3.故答案为:<.12.【解答】解:∵a<0<b,a+b<0,∴|a+b|+|b|=﹣(a+b)+b=﹣a﹣b+b=﹣a.故答案为:﹣a.13.【解答】解:∵ad﹣bc,∴=(x+3)(x+3)﹣(x﹣1)(x+1)=x2+6x+9﹣x2+1=6x+10,故答案为:6x+10.14.【解答】解:由图可得,图中阴影部分的面积是:6,故答案为:6.15.【解答】解:如图,作AH⊥CD于H.∵四边形ABCD是菱形,∠BAD=120°,∴AB∥CD,∴∠D+∠BAD=180°,∴∠D=60°,∵AD=AB=2,∴AH=AD•sin60°,∵B,B′关于EF对称,∴BE=EB′,当BE的值最小时,AE的值最大,根据垂线段最短可知,当EB′时,BE的值最小,∴AE的最大值=2,故答案为2.三、解答题(本大题8个小题,共75分)16.【解答】解:原式••x(x﹣2)=x2﹣2x,由x2﹣2x﹣5=0,得到x2﹣2x=5,则原式=5.17.【解答】解(1)总人数=60÷10%=600(人)故答案为600.(2)如下图:(3)240÷600=0.4此人喜欢蓝球的概率最大,其概率是0.4.18.【解答】(1)证明:如图,连接CD,则CF=CD,∵AB是⊙C的切线.∴CD⊥AB,∠ADC=∠BDC=90°,在Rt△ACD中,∵CF,∴CD=CF,∴∠A=30°∵AC=BC∴∠ABC=∠A=30°,∴∠ACB=120°,∠BCD=∠BCF=60°,又∵BC=BC,∴△BCD≌△BCF(SAS),∴∠BFC=∠BDC=90°,∴△ABF是直角三角形.(2)解:∵AC=BC,CD⊥AB,∴AD=BD=BF,在Rt△ACD中,∵∠A=30°,AC=6,∴CD AC=3,∴AD CD=3.∴BF=3.19.【解答】解:过点A作AC⊥BN于C.过点M作MD⊥AC于D,如图所示.在Rt△AMD中,DM=13.3,∠DAM=53°,∴AD10;在Rt△ABC中,AB=55,∠BAC=35°,∴AC=AB•cos53°=55×0.82=45.1.∵AC⊥BN,MD⊥AC,MN⊥BN,∴四边形MDCN是矩形,∴MN=DC=AC﹣AD≈35.答:MN两点的距离约是35米.20.【解答】解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y x+3得:x=2,∴M(2,2),将x=4代入y x+3得:y=1,∴N(4,1),把M的坐标代入y得:k=4,∴反比例函数的解析式是y;(2)由题意可得:S四边形BMON=S矩形OABC﹣S△AOM﹣S△CON=4×22×24×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).21.【解答】解:(1)由题意可得,当2≤x≤15时,y=6000﹣(16﹣x)×10=10x+5840,当17≤x≤33时,y=6000+(x﹣16)×30=30x+5520,故答案为:10x+5840,30x+5520;(2)第26层每平方米的价格为:30×26+5520=6300元,方案一应付款:W1=100×6300×(1﹣5%)﹣m=598500﹣m,方案二应付款:W2=100×6300×(1﹣7%)=585900,当W1>W2时,598500﹣m>585900,得m<12600,当W1=W2时,598500﹣m=585900,得m=12600,当W1<W2时,598500﹣m>585900,得m>12600,所以当m<12600时,方案二合算;当m=12600时,二个方案相同;当m>12600时,方案一合算.22.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.23.【解答】解:(1)∵抛物线y bx+c,经过点A(1,3)、B(0,1),∴解得:,c=1∴抛物线的表达式为:∵,∴顶点坐标为:,;(2)∵A(1,3),∴把y=3代入,可得x1=1,x,2=4∴C(4,3)由B(0,1)、C(4,3)得直线BC的表达式为,BC延长CA与y轴交于点I,则I(0,3)∵点G是BC上方抛物线上的一个动点,分别过点G作GH⊥BC于点H、作GE⊥x轴于点E,交BC于点F,∴△BCI∽△FGH∴∠BCI=∠FGH∵tan∠BCI,∴tan∠FGH设,,则,∴GF∴当x=2时,GF最长,此时△GFH周长最大.∴GF=2∵∴∴GH△GFH的周长为:GF+FH+GH=22;(3)如图2,由题意,设N(1,n)∵B(0,1)、C(4,3)∴BN2=12+(n﹣1)2=n2﹣2n+2,CN2=32+(n﹣3)2=n2﹣6n+18,BC2=42+22=20当∠BNC=90°时,BN2+CN2=BC2,即(n2﹣2n+2)+(n2﹣6n+18)=20得n1=0,n2=4;当∠CBN=90°时,BN2+BC2=CN2,即(n2﹣2n+2)+20=n2﹣6n+18得n3=﹣1当∠BCN=90°时,BC2+CN2=BN2,即20+n2﹣6n+18=n2﹣2n+2得n4=9综上所述:N点的坐标为:(1,0)或(1,4)或(1,﹣1)或(中学自主招生数学试卷一、选择题(本大题10个小题,每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上1.(3分)的相反数是()A.B.C.D.2.(3分)电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是()A.10.9×104B.1.09×104C.10.9×105D.1.09×1053.(3分)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,点F在BC的延长线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.30°B.35°C.50°D.75°4.(3分)下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x2•5x3=15x5D.5x2y3+2x2y3=10x4y95.(3分)2019年1月3日上午10时26分,嫦娥四号探测器成功着陆在月球背面,开启了月球探测的新篇章,中国人迈开了走向星辰大海的第一步.如图是某正方体的展开图,在原正方体上“星”字所在面相对的面上的汉字是()A.走B.向C.大D.海6.(3分)在一次数学竞赛中,五位同学答对题目的个数分别为7,5,3,5,10,则这组数据的众数、中位数、方差分别是()A.5、3、4.6 B.5、5、5.6 C.5、3、5.6 D.5、5、6.6 7.(3分)方程的解为()A.2 B.2或4 C.4 D.无解(3分)如图,在△ABC中,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE CD,过点8.B作BF∥DE,与AE的延长线交于点F.若AB=12,则BF的长为()A.7 B.8 C.10 D.169.(3分)在平面直角坐标系中,若直线y=x+n与直线y=mx+6(m、n为常数,m<0)相交于点P(3,5),则关于x的不等式x+n+1<mx+7的解集是()A.x<3 B.x<4 C.x>4 D.x>610.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A 向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F 的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题5个小题,每小题3分,共15分)11.(3分)比较大小:3.(填“>”或“<”号)12.(3分)实数a、b在数轴上对应点的位置如图所示,则|a+b|+|b|=.(3分)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义ad 13.﹣bc,请你将化为代数式,再化简为.14.(3分)如图,长方形纸片ABCD的长AB=3,宽BC=2,以点A为圆心,以AB的长为半径作弧;以点C为圆心,以BC的长为半径作弧.则图中阴影部分的面积是.15.(3分)在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为.三、解答题(本大题8个小题,共75分)16.(8分)先化简,再求值:(1),其中x满足x2﹣2x﹣5=0.17.(9分)某校为了解学生对排球、羽毛球、足球、篮球(以下分别用A、B、C、D表示)这四种球类运动的喜好情况.对全体学生进行了抽样调查(每位学生只能选一项最喜欢的运动),并将调查情况绘制成如下两幅不完整的统计图.请根据以上信息回答下面问题:(1)本次参加抽样调查的学生有人.(2)补全两幅统计图.(3)若从本次参加抽样调查的学生中任取1人,则此人喜欢哪类球的概率最大?求其概率.18.(9分)如图,在△ABC中,AC=BC,AB是⊙C的切线,切点为点D,直线AC交⊙C于点E、F,且CF AC(1)求证:△ABF是直角三角形.(2)若AC=6,则直接回答BF的长是多少.19.(9分)如图,一架无人机在距离地面高度为13.3米的点A处,测得地面点M的俯角为53°,这架无人机沿仰角为35°的方向飞行了55米到达点B,恰好在地面点N的正上方,M、N在同一水平线上求出M、N两点之间的距离.(结果精确到1米)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70.)20.(9分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y x+3交AB,BC分别于点M,N,反比例函数y的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.21.(10分)某小区2号楼对外销售,已知2号楼某单元共33层,一楼为商铺,只租不售,二楼以上价格如下:第16层售价为6000元/米2,从第16层起每上升一层,每平方米的售价提高30元,反之每下降一层,每平方米的售价降低10元,已知该单元每套的面积均为100米2(1)请在下表中,补充完整售价y(元/米2)与楼层x(x取正整数)之间的函数关系式.(2)某客户想购买该单元第26层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算.22.(10分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.23.(11分)在平面直角坐标系中,抛物线y bx+c,经过点A(1,3)、B(0,1),过点A作x轴的平行线交抛物线于另一点C(1)求抛物线的表达式及其顶点坐标;(2)如图1,点G是BC上方抛物线上的一个动点,分别过点G作GH⊥BC于点H、作GE ⊥x轴于点E,交BC于点F,在点G运动的过程中,△GFH的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图2,过A点的直线垂直x轴于点M,点N为直线AM上任意一点,当△BCN为直角三角形时,请直接写出点N的坐标.参考答案与试题解析一、选择题(本大题10个小题,每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上1.【解答】解:的相反数是.故选:B.2.【解答】解:将10.9万用科学记数法表示为:1.09×105.故选:D.3.【解答】解:∵DE∥BC,∴∠DEC=∠ACF=140°,∴∠AED=180°﹣140°=40°,∵∠ADE=105°,∴∠A=180°﹣105°﹣40°=35°,故选:B.4.【解答】解:A、原式=x3y3,错误;B、原式=1,错误;C、原式=15x5,正确;D、原式=7x2y3,错误,故选:C.5.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“星”与面“海”相对,故选:D.6.【解答】解:数据中5出现2次,次数最多,所以众数为5;数据按从小到大的顺序排列为3、5、5、7、10,则中位数为5;∵平均数为(7+5+3+5+10)÷5=6,∴方差为[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6;故选:B.7.【解答】解:去分母得:2x=(x﹣2)2+4,分解因式得:(x﹣2)[2﹣(x﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选:C.8.【解答】解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD AB=6.又CE CD,∴CE=2,∴ED=CE+CD=8.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=16.故选:D.9.【解答】解:∵直线y=x+n从左向右逐渐上升,直线y=mx+6(m、n为常数,m<0)从左向右逐渐下降,且两直线相交于点P(3,5)∴当x<3时,x+n<mx+6,∴x+n+1<mx+7.故选:A.10.【解答】解:当F在PD上运动时,△AEF的面积为y AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y AE•AF x(6﹣x)x2+3x(2<x≤4),图象为:故选:A.二、填空题(本大题5个小题,每小题3分,共15分)11.【解答】解:∵3>>2,∴2>1>1,∴1<3.故答案为:<.12.【解答】解:∵a<0<b,a+b<0,∴|a+b|+|b|=﹣(a+b)+b=﹣a﹣b+b=﹣a.故答案为:﹣a.13.【解答】解:∵ad﹣bc,∴=(x+3)(x+3)﹣(x﹣1)(x+1)=x2+6x+9﹣x2+1=6x+10,故答案为:6x+10.14.【解答】解:由图可得,图中阴影部分的面积是:6,故答案为:6.15.【解答】解:如图,作AH⊥CD于H.∵四边形ABCD是菱形,∠BAD=120°,∴AB∥CD,∴∠D+∠BAD=180°,∴∠D=60°,∵AD=AB=2,∴AH=AD•sin60°,∵B,B′关于EF对称,∴BE=EB′,当BE的值最小时,AE的值最大,根据垂线段最短可知,当EB′时,BE的值最小,∴AE的最大值=2,故答案为2.三、解答题(本大题8个小题,共75分)16.【解答】解:原式••x(x﹣2)=x2﹣2x,由x2﹣2x﹣5=0,得到x2﹣2x=5,则原式=5.17.【解答】解(1)总人数=60÷10%=600(人)故答案为600.(2)如下图:(3)240÷600=0.4此人喜欢蓝球的概率最大,其概率是0.4.18.【解答】(1)证明:如图,连接CD,则CF=CD,∵AB是⊙C的切线.∴CD⊥AB,∠ADC=∠BDC=90°,在Rt△ACD中,∵CF,∴CD=CF,∴∠A=30°∵AC=BC∴∠ABC=∠A=30°,∴∠ACB=120°,∠BCD=∠BCF=60°,又∵BC=BC,∴△BCD≌△BCF(SAS),∴∠BFC=∠BDC=90°,∴△ABF是直角三角形.(2)解:∵AC=BC,CD⊥AB,∴AD=BD=BF,在Rt△ACD中,∵∠A=30°,AC=6,∴CD AC=3,∴AD CD=3.∴BF=3.19.【解答】解:过点A作AC⊥BN于C.过点M作MD⊥AC于D,如图所示.在Rt△AMD中,DM=13.3,∠DAM=53°,∴AD10;在Rt△ABC中,AB=55,∠BAC=35°,∴AC=AB•cos53°=55×0.82=45.1.∵AC⊥BN,MD⊥AC,MN⊥BN,∴四边形MDCN是矩形,∴MN=DC=AC﹣AD≈35.答:MN两点的距离约是35米.20.【解答】解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y x+3得:x=2,∴M(2,2),将x=4代入y x+3得:y=1,∴N(4,1),把M的坐标代入y得:k=4,∴反比例函数的解析式是y;(2)由题意可得:S四边形BMON=S矩形OABC﹣S△AOM﹣S△CON=4×22×24×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).21.【解答】解:(1)由题意可得,当2≤x≤15时,y=6000﹣(16﹣x)×10=10x+5840,当17≤x≤33时,y=6000+(x﹣16)×30=30x+5520,故答案为:10x+5840,30x+5520;(2)第26层每平方米的价格为:30×26+5520=6300元,方案一应付款:W1=100×6300×(1﹣5%)﹣m=598500﹣m,方案二应付款:W2=100×6300×(1﹣7%)=585900,当W1>W2时,598500﹣m>585900,得m<12600,当W1=W2时,598500﹣m=585900,得m=12600,当W1<W2时,598500﹣m>585900,得m>12600,所以当m<12600时,方案二合算;当m=12600时,二个方案相同;当m>12600时,方案一合算.22.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.23.【解答】解:(1)∵抛物线y bx+c,经过点A(1,3)、B(0,1),∴解得:,c=1∴抛物线的表达式为:∵,∴顶点坐标为:,;(2)∵A(1,3),∴把y=3代入,可得x1=1,x,2=4∴C(4,3)由B(0,1)、C(4,3)得直线BC的表达式为,BC延长CA与y轴交于点I,则I(0,3)∵点G是BC上方抛物线上的一个动点,分别过点G作GH⊥BC于点H、作GE⊥x轴于点E,交BC于点F,∴△BCI∽△FGH∴∠BCI=∠FGH∵tan∠BCI,∴tan∠FGH设,,则,∴GF∴当x=2时,GF最长,此时△GFH周长最大.∴GF=2∵∴∴GH△GFH的周长为:GF+FH+GH=22;(3)如图2,由题意,设N(1,n)∵B(0,1)、C(4,3)∴BN2=12+(n﹣1)2=n2﹣2n+2,CN2=32+(n﹣3)2=n2﹣6n+18,BC2=42+22=20当∠BNC=90°时,BN2+CN2=BC2,即(n2﹣2n+2)+(n2﹣6n+18)=20得n1=0,n2=4;当∠CBN=90°时,BN2+BC2=CN2,即(n2﹣2n+2)+20=n2﹣6n+18得n3=﹣1当∠BCN=90°时,BC2+CN2=BN2,即20+n2﹣6n+18=n2﹣2n+2得n4=9综上所述:N点的坐标为:(1,0)或(1,4)或(1,﹣1)或(中学自主招生数学试卷一、选择题(本大题10个小题,每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母用2B铅笔涂在对应的答题卡上1.(3分)的相反数是()A.B.C.D.2.(3分)电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是()A.10.9×104B.1.09×104C.10.9×105D.1.09×1053.(3分)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,点F在BC的延长线上,若∠ACF=140°,∠ADE=105°,则∠A的大小为()A.30°B.35°C.50°D.75°4.(3分)下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x2•5x3=15x5D.5x2y3+2x2y3=10x4y95.(3分)2019年1月3日上午10时26分,嫦娥四号探测器成功着陆在月球背面,开启了月球探测的新篇章,中国人迈开了走向星辰大海的第一步.如图是某正方体的展开图,在原正方体上“星”字所在面相对的面上的汉字是()A.走B.向C.大D.海6.(3分)在一次数学竞赛中,五位同学答对题目的个数分别为7,5,3,5,10,则这组数据的众数、中位数、方差分别是()A.5、3、4.6 B.5、5、5.6 C.5、3、5.6 D.5、5、6.6 7.(3分)方程的解为()A.2 B.2或4 C.4 D.无解(3分)如图,在△ABC中,∠ACB=90°,D为AB中点,连接DC并延长到点E,使CE CD,过点8.B作BF∥DE,与AE的延长线交于点F.若AB=12,则BF的长为()A.7 B.8 C.10 D.169.(3分)在平面直角坐标系中,若直线y=x+n与直线y=mx+6(m、n为常数,m<0)相交于点P(3,5),则关于x的不等式x+n+1<mx+7的解集是()A.x<3 B.x<4 C.x>4 D.x>610.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A 向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F 的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题5个小题,每小题3分,共15分)11.(3分)比较大小:3.(填“>”或“<”号)12.(3分)实数a、b在数轴上对应点的位置如图所示,则|a+b|+|b|=.(3分)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义ad 13.﹣bc,请你将化为代数式,再化简为.14.(3分)如图,长方形纸片ABCD的长AB=3,宽BC=2,以点A为圆心,以AB的长为半径作弧;以点C为圆心,以BC的长为半径作弧.则图中阴影部分的面积是.。