PWM控制直流电机重要资料

合集下载

无刷直流电机pwm调速原理

无刷直流电机pwm调速原理

无刷直流电机pwm调速原理
无刷直流电机(BLDC)是一种电动机,其转子上没有传统的电刷。

相比传统的有刷直流电机,BLDC电机拥有更高的效率和可靠性。

为了实现BLDC电机的调速,通常使用PWM(脉宽调制)技术。

PWM调速原理如下:在电机电源上加上一个有特定占空比的方波信号,即PWM信号。

PWM信号的占空比决定了电机的平均电压,从而决定了电机的转速。

当PWM信号的占空比增加时,电机的平均电压也会增加,电机的转速也会随之增加。

反之,当PWM信号的占空比减小时,电机的平均电压也会减小,电机的转速也会减小。

BLDC电机的控制主要包括两个方面:判断当前转子位置和根据位置控制电机。

判断转子位置通常采用霍尔传感器或反电动势感应法。

在控制电机时,可以采用开环控制或闭环控制。

开环控制指直接根据PWM信号控制电机转速;闭环控制则需要通过传感器反馈来调整PWM信号的占空比,使电机达到预期转速。

PWM调速技术不仅可以用于BLDC电机,也可以用于其他类型的电机调速。

通过合理的PWM信号设置,可以实现电机的精确调速和控制。

- 1 -。

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理
直流电动机的PWM调压调速是指通过调节脉宽调制(PWM)信号的占空比,控制直流电动机的电压和转速。

其原理是利用数字信号的高低电平与时间的对应关系,通过高电平和低电平的时间比例来控制脉冲信号的平均值,从而实现对电动机的调压和调速。

具体来说,PWM调压调速主要包括以下几个步骤:
1.信号发生器:使用微控制器或其他信号发生器产生一个固定频率的方波信号,通常频率为几千赫兹到几十千赫兹。

这个信号称为PWM基准信号。

2.调制器:通过控制占空比,将PWM基准信号转换为调制后的PWM信号。

占空比是指高电平持续的时间与一个周期的比值。

例如,占空比为50%的PWM信号表示高电平和低电平持续时间相等。

调制器可以是硬件电路或者软件控制的。

3.电压调节:将调制后的PWM信号经过滤波器平滑输出,形成电压调节信号。

滤波器通常使用低通滤波器,将PWM信号的高频成分滤除,得到平均电压。

4.转速控制:通过调节占空比,改变PWM信号的高电平时间,从而改变直流电动机的平均电压。

占空比越大,输出电压就越高;占空比越小,输出电压就越低。

5.转速反馈:为了实现闭环控制,通常需要通过传感器获取直流电动机的转速,并将转速信息反馈给调速控制器。

调速控制器会根据反馈信号与设定的转速进行比较,调节占空比控制电动机的转速。

总结起来,PWM调压调速原理就是通过调节PWM信号的占空比控制直流电动机的电压和转速。

通过改变占空比,可以改变PWM信号的高电平时间,从而改变电动机的平均电压和转速。

同时,结合转速反馈,可以实现封闭环控制,使电动机的转速能够与设定值保持一致。

PWM控制直流电机调速

PWM控制直流电机调速

毕业设计论文PWM 控制直流机电调速脉宽调制(PWM)控制技术,是利用半导体开关器件的导通和关断,把直流电压变成电压脉冲序列,并控制电压脉冲的宽度和脉冲序列的周期以达到变压变频目的的一种控制技术。

PWM 控制技术广泛地应用于开关稳压电源,不间断电源(UPS),以及交直流电动机传动等领。

本文阐述了 PWM 变频调速系统的基本原理和特点,并在此基础上给出了一种基于 Mitel SA866DE 三相 PWM 波形发生器和绝缘栅双极功率晶体管(IGBT)的变频调速设计方案。

直流电动机具有优良的调速特性,调速平滑、方便, 调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,在许多需要调速或者快速正反向的电力拖动系统领域中得到了广泛的应用。

直流电动机的转速调节主要有三种方法:调节电枢供电的电压、减弱励磁磁通和改变电枢回路电阻。

针对三种调速方法,都有各自的特点,也存在一定的缺陷。

例如改变电枢回路电阻调速只能实现有级调速,减弱磁通虽然能够平滑调速,但这种方法的调速范围不大,普通都是配合变压调速使用。

所以,在直流调速系统中,都是以变压调速为主。

其中,在变压调速系统中,大体上又可分为可控整流式调速系统和直流PWM 调速系统两种。

直流 PWM 调速系统与可控整流式调速系统相比有下列优点:由于PWM 调速系统的开关频率较高 ,仅靠电枢电感的滤波作用就可获得平稳的直流电流 , 低速特性好,稳速精度高,调速范围宽,可达1:10000 摆布;同样,由于开关频率高, 快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高;直流电源采用不控整流时,电网功率因数比相控整流器高。

正因为直流 PWM 调速系统有以上的优点,并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。

pwm直流电机控制原理

pwm直流电机控制原理

pwm直流电机控制原理
PWM(脉宽调制)是一种控制技术,可以用于控制直流电机的转速和方向。

它通过改变信号的脉冲宽度来控制电机驱动电压的大小。

在PWM控制中,周期性地产生一个固定频率的方波信号,即PWM信号。

这个信号的高电平时间(脉冲宽度)可以根据需要进行调整。

脉冲宽度越长,电机接收到的驱动电压就越高,转速也会相应增加。

脉冲宽度越短,则驱动电压越低,转速也会减小。

PWM信号的周期必须远远小于电机的机械响应时间,以确保控制的稳定性。

频率一般设定在几千赫兹到几十千赫兹之间,以避免电机产生噪音。

脉冲宽度的调整则通过改变占空比(高电平时间与周期的比值)来实现。

在具体的实现中,通常使用微控制器或专用的PWM控制器来产生PWM信号。

通过改变占空比的值,控制电机的转速。

例如,当占空比为50%时,电机接收到的驱动电压为平均值的一半,电机转速为额定转速的一半;当占空比为100%时,电机接收到的驱动电压为最大值,电机转速为最大转速。

为了实现方向控制,可以使用H桥电路。

H桥电路可以控制电流的方向,从而改变电机的转向。

通过控制H桥的开关状态,可以将电机正反转。

综上所述,PWM控制技术通过改变信号的脉冲宽度来控制直
流电机的转速和方向。

通过微调占空比的值,可以精确控制电机的转速,并利用H桥电路控制电机的转向。

直流电机pwm调速的续流二极管

直流电机pwm调速的续流二极管

直流电机是工业生产中常见的电机之一,它通常以PWM(脉宽调制)方式进行调速。

而在PWM调速过程中,续流二极管扮演了重要角色。

本文将从直流电机的工作原理、PWM调速原理、续流二极管的作用和选择等方面进行详细介绍。

一、直流电机的工作原理直流电机是一种将电能转换为机械能的装置,它的工作原理基于洛伦兹力和带电粒子在磁场中受力的规律。

当直流电流通过电机的线圈时,产生的磁场与永磁体或者电磁铁产生的磁场相互作用,从而使得电机的转子产生力矩,从而驱动机械装置运转。

二、PWM调速原理PWM调速是通过改变电机输入的脉冲宽度来控制电机的平均电压和平均电流,从而改变电机的转速。

具体实现上,PWM调速是将直流电源高频开关,使得电机在分时段内接收到占空比不同的电压脉冲,从而实现调速。

三、续流二极管的作用在PWM调速过程中,电机的正负半周各有一个脉冲开关管,分别为一组导通和一组关断。

当开关管关断时,直流电机线圈中的电流不能突然中断,否则会产生电感压降。

为了避免电感压降引起的反冲电压,需要在开关管关断时,让电流有一条回路可以继续流动,这就是续流二极管的作用。

四、续流二极管的选择续流二极管应具有较快的反向恢复时间,这样才能在开关管关断瞬间尽快导通,避免电感压降引起的反冲电压。

续流二极管的电流和电压等参数也需要根据具体的电机工作条件来选择。

五、总结直流电机的PWM调速是一种常见的调速方式,而续流二极管在PWM调速过程中的作用不可忽视。

正确选择合适的续流二极管,对电机的稳定性和性能有着重要影响。

希望本文对读者对直流电机的PWM 调速和续流二极管有所帮助。

六、续流二极管的工作原理续流二极管在PWM调速过程中,起到了保护开关管和电机的作用。

在电机线圈中的电流无法突然中断的情况下,如果没有合适的续流二极管,就会导致电感压降产生反冲电压,这样会对开关管和电机造成不良影响,甚至损坏设备。

续流二极管的工作原理主要是利用其具有的快速反向恢复时间和导通特性来形成一个回路,让电流有一条通路继续流动,从而避免反冲电压的产生。

直流电机的PWM冲调速控制技术

直流电机的PWM冲调速控制技术

直流电机的PWM冲调速控制技术直流电机的PWM冲(宽度调变)调速控制技术为调节马达转速和方向需要对其直流电压的大小和方向进行控制。

目前,常用大功率晶体管脉宽调制(PWM)调速驱动系统和可控硅直流调速驱动系统两种方式。

可控硅直流(SCR)驱动方式,主要通过调节触发装置控制SCR 的导通角来移动触发脉冲的相位,从而改变整流电压的大小,使直流电机电枢电压的变化易平滑调速。

由于SCR本身的工作原理和电源的特点,导通后是利用交流过零来关闭的,因此,在低整流电压时,其输出是很小的尖峰值的平均值,从而造成电流的不连续性。

由于晶体管的开关响应特性远比SCR 好,因此前者的伺服驱动特性要比后者好得多。

所谓脉冲宽度调变(Pulse Width Modulate 简称 PWM)信号就是一连串可以调整脉冲宽度的信号。

脉宽调变是一种调变或改变某个方波的简单方法。

在它的基本形式上,方波工作周期(duty cycle)是根据输入信号的变化而变化。

在直流电机控制系统中,为了减少流经电机绕线电流及降低功率消耗等目的,常常使用脉冲宽度调变信号(PWM)来控制交换式功率组件的开与关动作时间。

其最常使用的就是借着改变输出脉冲宽度或频率来改变电机的转速。

图1 PWM 脉冲宽度调变信号图若将供应电机的电源在一个固定周期做ON及OFF的控制,则ON的时间越长,电机的转速越快,反之越慢。

此种ON与OFF比例控制速度的方法即称为脉冲宽度调变,ON的期间称为工作周期(duty cycle),以百分比表示。

若直流电机的供应电源电压为10伏特,乘以20%的工作周期即得到2伏特的输出至电机上,不同的工作周期对应出不同电压让直流电机转速产生不同的变化。

若直流电机的供应电源电压为10伏特,乘以20%的工作周期即得到2伏特的输出至电机上,不同的工作周期对应出不同电压让直流电机转速产生不同的变化。

PWM产生器方块图如下图所示,计数器采下数计数器与上数计数器的两种PWM讯号。

基于PWM的直流无刷电机控制系统

基于PWM的直流无刷电机控制系统

基于PWM的直流无刷电机控制系统一、本文概述随着科技的快速发展和电机控制技术的不断进步,直流无刷电机(BLDC,Brushless Direct Current Motor)在各个领域的应用越来越广泛。

它们具有高效、低噪音、长寿命等优点,尤其在航空、汽车、家用电器、电动工具以及机器人等领域得到了广泛应用。

而基于脉冲宽度调制(PWM,Pulse Width Modulation)的直流无刷电机控制系统,以其灵活的控制方式、精确的速度调节和优秀的动态响应特性,成为现代电机控制领域的重要研究方向。

本文将对基于PWM的直流无刷电机控制系统进行深入研究。

我们将简要介绍PWM技术的基本原理及其在电机控制中的应用。

接着,我们将重点探讨基于PWM的直流无刷电机控制系统的构成、工作原理以及主要控制策略。

文章还将分析该控制系统的性能特点,包括调速范围、动态响应、稳定性等。

我们将展望基于PWM的直流无刷电机控制系统的未来发展趋势和应用前景。

通过本文的研究,我们期望能够为读者提供一个全面、深入的了解基于PWM的直流无刷电机控制系统的机会,同时为相关领域的工程师和研究者提供有益的参考和启示。

二、直流无刷电机的基本原理直流无刷电机(Brushless Direct Current Motor,简称BLDCM)是一种通过电子换向器替代传统机械换向器的直流电机。

其基本原理主要基于电磁感应和电子换向技术。

电磁感应:直流无刷电机内部通常包含定子(stator)和转子(rotor)两部分。

定子通常由多个电磁铁组成,而转子则带有永磁体。

当定子上的电磁铁通电时,会产生磁场,与转子上的永磁体相互作用,从而驱动转子旋转。

这就是电磁感应的基本原理。

电子换向:与传统的直流电机使用机械换向器不同,直流无刷电机使用电子换向器。

电子换向器通常由微处理器和功率电子开关(如MOSFET或IGBT)组成。

微处理器根据电机的运行状态和位置传感器(如霍尔传感器)的反馈信号,控制功率电子开关的通断,从而实现电磁铁的电流方向的改变。

直流电机PWM恒速控制器

直流电机PWM恒速控制器

直流电机恒速控制器摘要:当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流驱动控制作为电气传动的主流在现代化生产中起着主要作用。

长期以来,直流电机因其转速调节比较灵活,方法简单,易于大范围平滑调速,控制性能好等特点,一直在传动领域占有统治地位。

它广泛应用于数控机床、工业机器人等工厂自动化设备中。

随着现代化生产规模的不断扩大,各个行业对直流电机的需求愈益增大,并对其性能提出了更高的要求。

为此,研究并制造高性能、高可靠性的直流电机控制系统有着十分重要的现实意义。

本文介绍一套基于单片机的直流电机恒速控制器,根据系统的要求完成了整体方案设计和系统选型,针对所设计的控制方案对控制系统的软、硬件设计作了详细论述。

硬件部分先作了整体设计,然后介绍了以51单片机为核心的硬件构成,对键盘电路、测量电路和显示电路等作了详细阐述;软件部分采用模块化设计思想,编制了各个模块的流程图。

论述了软件的设计思想和方法。

针对直流电机运行环境恶劣、干扰严重的特点,从系统的硬件设计、软件设计等多方面进行抗干扰的综合考虑,并利用多种软件和硬件技术来提高和改善系统的抗干扰能力,有效地提高了系统的可靠性和实用性。

关键词:直流电机单片机恒速控制目录摘要 (2)第1章绪论 (4)1.1 引言 (4)1.2 单片机控制调速系统 (4)第2章 PWM调速系统介绍 (5)2.1 PWM技术简介 (5)2.2 直流电动机的PWM调速 (7)第3章系统硬件的具体设计与实现 (9)3.1 微控制器概述 (9)3.1.1 主控芯片STC89C52简介 (9)3.1.2 时钟电路设计 (12)3.1.3 复位电路设计 (13)3.2 直流电动机工作电路 (14)3.3 数码管显示电路 (16)3.4 按键电路设计 (17)3.5 转速测量电路设计 (20)3.6 电源电路 (20)第4章软件设计 (21)4.1 Keil C51简介 (21)4.2 主程序设计 (22)4.3 PWM控制程序设计 (22)第5章论文总结 (24)致谢 (25)参考文献 (26)程序一:电路原理图 (27)附录二:程序 (28)第1章绪论1.1 引言在电气时代的今天,电机在工农业生产、人们日常生活中起着十分重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PWM调速原理
PWM的原理: PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。

PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。

1.PWM控制的基本原理
(1)理论基础:
冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

冲量指窄脉冲的面积。

效果基本相同,是指环节的输出响应波形基本相同。

低频段非常接近,仅在高频段略有差异。

(2)面积等效原理:
分别将如图1所示
电压窄脉冲加在一阶惯性环节(R-L电路)上,如图a所示。

其输出电流I(t)对不同窄脉冲时的响应波形如图b所示。

从波形可以看出,在I(t)的上升段,I(t)的形状也略有不同,但其下降段则几乎完全相同。

脉冲越窄,各I(t)响应波形的差异也越小。

如果周期性地施加上述脉冲,则响应I(t)也是周期性的。

用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

图2 冲量相同的各种窄脉冲的响应波形
用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。

SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。

图3 用PWM波代替正弦半波
要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。

PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。

PWM波形可等效的各种波形:
直流斩波电路:等效直流波形
SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。

2. PWM相关概念
占空比:就是输出的PWM中,高电平保持的时间与该PWM的时钟周期的时间之比
如,一个PWM的频率是1000Hz,那么它的时钟周期就是1ms,就是1000us,如果高电平出现的时间是200us,那么低电平的时间肯定是800us,那么占空比就是200:1000,也就是说PWM的占空比就是1:5。

分辨率也就是占空比最小能达到多少,如8位的PWM,理论的分辨率就是1:255(单斜率), 16位的的PWM理论就是1:65535(单斜率)。

频率就是这样的,如16位的PWM,它的分辨率达到了1:65535,要达到这个分辨率,T/C就必须从0计数到65535才能达到,如果计数从0计到80之后又从0开始计到80.......,那么它的分辨率最小就是1:80了,但是,它也快了,也就是说PWM的输出频率高了。

双斜率 / 单斜率
假设一个PWM从0计数到80,之后又从0计数到80.......这个就是单斜率。

假设一个PWM从0计数到80,之后是从80计数到0.......这个就是双斜率。

可见,双斜率的计数时间多了一倍,所以输出的PWM频率就慢了一半,但是分辨率却是1:(80+80) =1:160,就是提高了一倍。

假设PWM是单斜率,设定最高计数是80,我们再设定一个比较值是10,那么T/C从0计数到10时(这时计数器还是一直往上计数,直到计数到设定值80),单片机就会根据你的设定,控制某个IO口在这个时候是输出1还是输出0还是端口取反,这样,就是PWM的最基本的原理了。

PWM调速原理
在数控机床的直流伺服系统中,速度调节主要通过改变电枢电压的大小来实现.经常采用晶闸管相控整流调速或大功率晶体管脉宽调制调速两种方法,后者简称PWM,常见于中小功率
系统,它采用脉冲宽度调制技术,其工作原理是:通过改变"接通脉冲"的宽度,使直流电机电枢上的电压的"占空比"改变,从而改变电枢电压的平均值,控制电机的转速.
PWM调速系统具有以下特点:
1.主电路简单,所用功率元件少,且工作于开关状态,因此电路的导通损耗小,装置效率比较高;
2.开关频率高,可避开机床的共振区,工作平稳;
3.采用功率较小的低惯量电机时,具有高的定位速度和精度;
4.低速性能好,稳速精度高,调速范围宽;
5.系统频带宽,动态响应好,抗干扰能力强.
常见的PWM驱动系统的主电路(功率放大器)结构有:H型和T型,下面介绍双极式H型PWM驱动的电路工作原理.
图1-2-2-1
图1-2-2-1中,VD1,VD2,VD3,VD4为续流二极管,用来保护VT1,VT2,VT3,VT4三极管,图中
Ub1=Ub4=-Ub2=-Ub3.
当Ub1=Ub4为正时,VT1 和VT4导通, VT2和 VT3截止,UAB的电压=US;
当Ub2=Ub3为正时, VT1和 VT4截止,但VT2 和VT3不能立即导通,因为电机的反电势使AB 存在续流,续流流经VD3和VD2,保护了四个三极管,若续流在这个过程没有得到很大衰减,而
Ub1=Ub4为正的阶段已经来临,则VT2 和VT3没有导通的时候;若续流在这个过程得到很大衰减,则VT2 和VT3导通,UAB的电压=-US.
显然,Ub1=Ub4为正的时间和Ub2=Ub3为正的时间相同时, UAB的平均值=0,电机动态静
止;Ub1=Ub4为正的时间长于Ub2=Ub3为正的时间时, UAB的平均值>0,电机正转UAB的值越大,转速越高;Ub1=Ub4为正的时间短于Ub2=Ub3为正的时间时, UAB的平均值<0,电机反转,UAB的值越小,转速越高.
可见,只要控制Ub1,Ub4,Ub2,Ub3的脉冲宽度,就可控制电机的转向和速度,且可以达到动态静止,有利于正反转死区的消除
PWM 直流电机调速程序参考
//***********************************************************************/ /
//************ L298驱动直流电机 PWM调速,控制正反转 ********************//
//***********************************************************************/ /
#include<reg51.h> // 头文件
#include<math.h> // 头文件
#define uchar unsigned char
#define uint unsigned int
sbit enA=P1^2; // A相始能端
sbit in1=P1^1; //
sbit in2=P1^0; // 输入端
char zkb=-100; // 设置占空比,范围在(-100~100)占空比的绝对值越大,速度越大
uchar t=0; // 中断计数器
uchar dianji=0; // 电机速度值
uchar SPACH; // 电机当前速度值
//***********************************************************************/ /
//********************** 正反转控制
*************************************//
//***********************************************************************/ /
void motor(char speed)
{
if(speed<=100)
{
dianji=abs(speed);// 取speed的绝对值
if(speed>0) // 不为负数则正转
{
in1=0;
in2=1;
}
if(speed<0) // 否者反转
{
in1=1;
in2=0;
}
}
}
/******************** 延时函数 *******************/ void delay(uint j)
{
for(j;j>0;j--);
}
/******************** 主函数 *******/
void main()
{
TMOD=0x02; //设定T0的工作模式为工作方式2
TH0=0x9B; //装入定时器的初值
TL0=0x9B;
EA=1; //开中断
ET0=1; // 定时器0允许中断
TR0=1; //启动定时器0
while(1)
{
motor(zkb); //
delay(1000); //延时
}
}
//******************* 中断服务子函数 ****************
Void timer0() interrupt 1 //T0中断服务程序
{
if(t==0) //1个PWM周期完成后才会接受新数值
{
SPACH=dianji;
}
if(t<SPACH) enA=1; else if(t>SPACH)enA=0; //产生电机1的PWM信号t++;
if(t>=100) t=0; //1个PWM信号由100次中断产生
}。

相关文档
最新文档