(完整版)高中物理选修3-4知识点整理
高中物理4全部知识点归纳

高中物理选修3-4全部知识点归纳一、简谐运动、简谐运动的表达式和图象1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零;②阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,3、描述振动的物理量研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
⑴位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
⑷频率f :振动物体单位时间内完成全振动的次数。
⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:T f =1,T ωπ2=. ⑹相位ϕ:表示振动步调的物理量。
4、研究简谐振动规律的几个思路:⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。
在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
(完整版)高中物理选修3-4知识点清单(非常详细)

(完整版)高中物理必修3-4知识点清单(非常详细)第一章 机械振动 第二章 机械波一、简谐运动1.概念:质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x -t 图象)是一条正弦曲线的振动.2.平衡位置:物体在振动过程中回复力为零的位置. 3.回复力(1)定义:使物体返回到平衡位置的力. (2)方向:时刻指向平衡位置.(3)来源:振动物体所受的沿振动方向的合力. 4.简谐运动的表达式(1)动力学表达式:F =-kx ,其中“-”表示回复力与位移的方向相反.(2)运动学表达式:x =A sin (ωt +φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢,(ωt +φ)代表简谐运动的相位,φ叫做初相.5 定义 意义振幅 振动质点离开平衡位置的最大距离描述振动的强弱和能量周期振动物体完成一次全振动所需时间描述振动的快慢,两者互为倒数:T =1f频率振动物体单位时间内完成全振动的次数相位 ωt +φ描述质点在各个时刻所处的不同状态二、单摆1.定义:在细线的一端拴一个小球,另一端固定在悬点上,如果细线的伸缩和质量都不计,球的直径比线的长度短得多,这样的装置叫做单摆.2.视为简谐运动的条件:θ<5°.3.回复力:F =G 2=G sin θ=mg lx . 4.周期公式:T =2πl g. 5.单摆的等时性:单摆的振动周期取决于摆长l 和重力加速度g ,与振幅和振子(小球)质量都没有关系.三、受迫振动及共振 1.受迫振动:系统在驱动力作用下的振动.做受迫振动的物体,它的周期(或频率)等于驱动力周期(或频率),而与物体的固有周期(或频率)无关.2.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当二者相等时,振幅达到最大,这就是共振现象.共振曲线如图所示.考点一 简谐运动的五个特征 1.动力学特征 F =-kx ,“-”表示回复力的方向与位移方向相反,k 是比例系数,不一定是弹簧的劲度系数.2.运动学特征简谐运动的加速度与物体偏离平衡位置的位移成正比而方向相反,为变加速运动,远离平衡位置时x 、F 、a 、E p 均增大,v 、E k 均减小,靠近平衡位置时则相反.3.运动的周期性特征相隔T 或nT 的两个时刻振子处于同一位置且振动状态相同. 4.对称性特征(1)相隔T 2或2n +12T (n 为正整数)的两个时刻,振子位置关于平衡位置对称,位移、速度、加速度大小相等,方向相反.(2)如图所示,振子经过关于平衡位置O 对称的两点P 、P ′(OP =OP ′)时,速度的大小、动能、势能相等,相对于平衡位置的位移大小相等.(3)振子由P 到O 所用时间等于由O 到P ′所用时间,即t PO =t OP ′.(4)振子往复过程中通过同一段路程(如OP 段)所用时间相等,即t OP =t PO . 5.能量特征振动的能量包括动能E k 和势能E p ,简谐运动过程中,系统动能与势能相互转化,系统的机械能守恒.6.(1)由于简谐运动具有周期性、往复性、对称性,因此涉及简谐运动时,往往出现多解.分析此类问题时,特别应注意,物体在某一位置时,位移是确定的,而速度不确定,时间也存在周期性关系.(2)相隔(2n +1)T2的两个时刻振子的位置关于平衡位置对称,位移、速度、加速度等大反向.考点二 简谐运动的图象的应用某质点的振动图象如图所示,通过图象可以确定以下各量: 1.确定振动物体在任意时刻的位移. 2.确定振动的振幅.3.确定振动的周期和频率.振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示周期.4.确定质点在各时刻的振动方向.5.比较各时刻质点加速度的大小和方向.6.(1)简谐运动的图象不是振动质点的轨迹,它表示的是振动物体的位移随时间变化的规律;(2)因回复力总是指向平衡位置,故回复力和加速度在图象上总是指向t 轴;(3)速度方向可以通过下一个时刻位移的变化来判定,下一个时刻位移如果增加,振动质点的速度方向就远离t 轴,下一个时刻的位移如果减小,振动质点的速度方向就指向t 轴.考点三 受迫振动和共振自由振动 受迫振动 共振受力情况仅受回 复力 受驱动 力作用 受驱动力作用振动周期 或频率 由系统本身性质决定,即固有周期T 0或固有频率f 0由驱动力的周期或频率决定,即T =T 驱或f =f 驱 T 驱=T 0或f 驱=f 0振动能量 振动物体的机械能不变 由产生驱动力的物体提供振动物体获得的能量最大常见例子弹簧振子或单摆(θ≤5°) 机械工作时底座发生的振动共振筛、声音的共鸣等(1)共振曲线:如图所示,横坐标为驱动力频率f ,纵坐标为振幅A .它直观地反映了驱动力频率对某振动系统受迫振动振幅的影响,由图可知,f 与f 0越接近,振幅A 越大;当f =f 0时,振幅A 最大.(2)受迫振动中系统能量的转化:受迫振动系统机械能不守恒,系统与外界时刻进行能量交换.3.(1)无论发生共振与否,受迫振动的频率都等于驱动力的频率,但只有发生共振现象时振幅才能达到最大.(2)受迫振动系统中的能量转化不再只有系统内部动能和势能的转化,还有驱动力对系统做正功补偿系统因克服阻力而损失的机械能.三、实验:用单摆测定重力加速度1.实验原理由单摆的周期公式T =2πl g ,可得出g =4π2T2l ,测出单摆的摆长l 和振动周期T ,就可求出当地的重力加速度g .2.实验器材单摆、游标卡尺、毫米刻度尺、停表. 3.实验步骤(1)做单摆:取约1 m 长的细丝线穿过带中心孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,让摆球自然下垂,如图所示.(2)测摆长:用毫米刻度尺量出摆线长L (精确到毫米),用游标卡尺测出小球直径D ,则单摆的摆长l =L +D2.(3)测周期:将单摆从平衡位置拉开一个角度(小于5°),然后释放小球,记下单摆摆动30~50次的总时间,算出平均每摆动一次的时间,即为单摆的振动周期.(4)改变摆长,重做几次实验. 4.数据处理(1)公式法:g =4π2lT2.(2)图象法:画l -T 2图象.g =4π2k ,k =l T 2=ΔlΔT2.5.注意事项(1)悬线顶端不能晃动,需用夹子夹住,保证悬点固定. (2)单摆必须在同一平面内振动,且摆角小于10°.(3)选择在摆球摆到平衡位置处时开始计时,并数准全振动的次数.(4)小球自然下垂时,用毫米刻度尺量出悬线长L ,用游标卡尺测量小球的直径,然后算出摆球的半径r ,则摆长l =L +r .(5)选用一米左右的细线.四、机械波 1.形成条件(1)有发生机械振动的波源. (2)有传播介质,如空气、水等. 2.传播特点(1)传播振动形式、传递能量、传递信息. (2)质点不随波迁移. 3.分类机械波⎩⎪⎨⎪⎧横波:振动方向与传播方向垂直.纵波:振动方向与传播方向在同一直线上.五、描述机械波的物理量1.波长λ:在波动中振动相位总是相同的两个相邻质点间的距离.用“λ”表示. 2.频率f :在波动中,介质中各质点的振动频率都是相同的,都等于波源的振动频率. 3.波速v 、波长λ和频率f 、周期T 的关系公式:v =λT=λf机械波的速度大小由介质决定,与机械波的频率无关. 六、机械波的图象1.图象:在平面直角坐标系中,用横坐标表示介质中各质点的平衡位置,用纵坐标表示某一时刻各质点偏离平衡位置的位移,连接各位移矢量的末端,得出的曲线即为波的图象,简谐波的图象是正弦(或余弦)曲线.2.物理意义:某一时刻介质中各质点相对平衡位置的位移. 四、波的衍射和干涉1.波的衍射定义:波可以绕过障碍物继续传播的现象.2.发生明显衍射的条件:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者小于波长时,才会发生明显的衍射现象.3.波的叠加原理:几列波相遇时能保持各自的运动状态,继续传播,在它们重叠的区域里,介质的质点同时参与这几列波引起的振动,质点的位移等于这几列波单独传播时引起的位移的矢量和.4.波的干涉(1)定义:频率相同的两列波叠加时,某些区域的振动加强、某些区域的振动减弱,这种现象叫波的干涉.(2)条件:两列波的频率相同.5.干涉和衍射是波特有的现象,波同时还可以发生反射、折射. 五、多普勒效应由于波源与观察者互相靠近或者互相远离时,接收到的波的频率与波源频率不相等的现象.考点一 波动图象与波速公式的应用1.波的图象反映了在某时刻介质中的质点离开平衡位置的位移情况,图象的横轴表示各质点的平衡位置,纵轴表示该时刻各质点的位移,如图.图象的应用:(1)直接读取振幅A 和波长λ,以及该时刻各质点的位移.(2)确定某时刻各质点加速度的方向,并能比较其大小. (3)结合波的传播方向可确定各质点的振动方向或由各质点的振动方向确定波的传播方向.2.波速与波长、周期、频率的关系为:v =λT=λf . 3.波的传播方向与质点的振动方向的互判方法图象律表示同一质点在各时刻的位移表示某时刻各质点的位移考点三 波的干涉、衍射、多普勒效应 1.波的干涉中振动加强点和减弱点的判断某质点的振动是加强还是减弱,取决于该点到两相干波源的距离之差Δr . (1)当两波源振动步调一致时若Δr =n λ(n =0,1,2,…),则振动加强; 若Δr =(2n +1)λ2(n =0,1,2,…),则振动减弱.(2)当两波源振动步调相反时若Δr =(2n +1)λ2(n =0,1,2,…),则振动加强;若Δr =n λ(n =0,1,2,…),则振动减弱. 2.波的衍射现象是指波能绕过障碍物继续传播的现象,产生明显衍射现象的条件是缝、孔的宽度或障碍物的尺寸跟波长相差不大或者小于波长.3.多普勒效应的成因分析 (1)接收频率:观察者接收到的频率等于观察者在单位时间内接收到的完全波的个数.当波以速度v 通过观察者时,时间t 内通过的完全波的个数为N =vtλ,因而单位时间内通过观察者的完全波的个数,即接收频率.(2)当波源与观察者相互靠近时,观察者接收到的频率变大,当波源与观察者相互远离时,观察者接收到的频率变小.第三章 电磁波一、电磁波的产生1.麦克斯韦电磁场理论变化的磁场产生电场,变化的电场产生磁场. 2.电磁场变化的电场和变化的磁场总是相互联系成为一个完整的整体,这就是电磁场. 3.电磁波电磁场(电磁能量)由近及远地向周围传播形成电磁波. (1)电磁波是横波,在空间传播不需要介质.(2)真空中电磁波的速度为3.0×108m/s.(3)电磁波能产生干涉、衍射、反射和折射等现象. 二、电磁波的发射与接收 1.电磁波的发射(1)发射条件:足够高的频率和开放电路. (2)调制分类:调幅和调频. 2.电磁波的接收(1)调谐:使接收电路产生电谐振的过程.(2)解调:使声音或图像信号从高频电流中还原出来的过程.第四章 光的折射 全反射一、光的折射与折射率 1.折射定律(1)内容:如图所示,折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比.(2)表达式:sin θ1sin θ2=n .(3)在光的折射现象中,光路是可逆的. 2.折射率(1)折射率是一个反映介质的光学特性的物理量.(2)定义式:n =sin θ1sin θ2.(3)计算公式:n =c v,因为v <c ,所以任何介质的折射率都大于1.(4)当光从真空(或空气)射入某种介质时,入射角大于折射角;当光由介质射入真空(或空气)时,入射角小于折射角.二、全反射1.条件:(1)光从光密介质射入光疏介质. (2)入射角≥临界角.2.临界角:折射角等于90°时的入射角,用C 表示,sin C =1n.三、光的色散、棱镜 1.光的色散 (1)色散现象白光通过三棱镜会形成由红到紫七种色光组成的彩色光谱,如图.(2)成因由于n 红<n 紫,所以以相同的入射角射到棱镜界面时,红光和紫光的折射角不同,就是说紫光偏折得更明显些,当它们射到另一个界面时,紫光的偏折角最大,红光偏折角最小.三、 全反射现象1.在光的反射和全反射现象中,均遵循光的反射定律;光路均是可逆的.2.当光射到两种介质的界面上时,往往同时发生光的折射和反射现象,但在全反射现象中,只发生反射,不发生折射.当折射角等于90°时,实际上就已经没有折射光了.3.全反射现象可以从能量的角度去理解:当光由光密介质射向光疏介质时,在入射角逐渐增大的过程中,反射光的能量逐渐增强,折射光的能量逐渐减弱,当入射角等于临界角时,折射光的能量已经减弱为零,这时就发生了全反射.4.分析全反射问题的基本思路(1)画出恰好发生全反射的临界光线,作好光路图. (2)应用几何知识分析边、角关系,找出临界角. (3)判断发生全反射的范围. 考点三 光路的计算与判断1.光线射到介质的界面上时,要注意对产生的现象进行分析:(1)若光线从光疏介质射入光密介质,不会发生全反射,而同时发生反射和折射现象,不同色光偏折不同.(2)若光线从光密介质射向光疏介质,是否发生全反射,要根据计算判断,要注意不同色光临界角不同.2.作图时要找出具有代表性的光线,如符合边界条件或全反射临界条件的光线. 3.解答时注意利用光路可逆性、对称性和几何知识. 4.各种色光的比较颜色 红橙黄绿青蓝紫 频率ν 低―→高 同一介质中的折射率 小―→大 同一介质中速度 大―→小波长 大―→小 临界角 大―→小 通过棱镜的偏折角 小―→大四、实验:测定玻璃的折射率 1.实验原理用插针法找出与入射光线AO 对应的出射光线O ′B ,确定出O ′点,画出折射光线OO ′,然后测量出角θ1和θ2,代入公式n =sin θ1sin θ2计算玻璃的折射率.2.实验过程(1)铺白纸、画线. ①如图所示,将白纸用图钉按在平木板上,先在白纸上画出一条直线aa ′作为界面,过aa ′上的一点O 画出界面的法线MN ,并画一条线段AO 作为入射光线.②把玻璃砖平放在白纸上,使它的长边跟aa ′对齐,画出玻璃砖的另一条长边bb ′.(2)插针与测量.①在线段AO 上竖直地插上两枚大头针P 1、P 2,透过玻璃砖观察大头针P 1、P 2的像,调整视线的方向,直到P 1的像被P 2挡住,再在观察的这一侧依次插两枚大头针P 3、P 4,使P 3挡住P 1、P 2的像,P 4挡住P 1、P 2的像及P 3,记下P 3、P 4的位置.②移去玻璃砖,连接P 3、P 4并延长交bb ′于O ′,连接OO ′即为折射光线,入射角θ1=∠AOM ,折射角θ2=∠O ′ON .③用量角器测出入射角和折射角,查出它们的正弦值,将数据填入表格中. ④改变入射角θ1,重复实验步骤,列表记录相关测量数据. 3.数据处理(1)计算法:用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1和sin θ2.算出不同入射角时的sin θ1sin θ2,并取平均值.(2)作sin θ1-sin θ2图象:改变不同的入射角θ1,测出不同的折射角θ2,作sin θ1-sin θ2图象,由n =sin θ1sin θ2可知图象应为直线,如图所示,其斜率为折射率.(3)“单位圆”法确定sin θ1、sin θ2,计算折射率n :以入射点O 为圆心,以一定的长度R 为半径画圆,交入射光线OA 于E 点,交折射光线OO ′于E ′点,过E 作NN ′的垂线EH ,过E ′作NN ′的垂线E ′H ′.如图所示,sin θ1=EH OE ,sin θ2=E ′H ′OE ′,OE =OE ′=R ,则n =sin θ1sin θ2=EHE ′H ′.只要用刻度尺量出EH 、E ′H ′的长度就可以求出n .4.注意事项(1)玻璃砖应选用厚度、宽度较大的. (2)大头针要插得竖直,且间隔要大些.(3)入射角不宜过大或过小,一般在15°~75°之间.(4)玻璃砖的折射面要画准,不能用玻璃砖界面代替直尺画界线. (5)实验过程中,玻璃砖和白纸的相对位置不能改变.第五章 光的干涉 衍射 偏振一、光的干涉1.定义:在两列光波的叠加区域,某些区域的光被加强,出现亮纹,某些区域的光被减弱,出现暗纹,且加强和减弱互相间隔的现象叫做光的干涉现象.2.条件:两列光的频率相等,且具有恒定的相位差,才能产生稳定的干涉现象. 3.双缝干涉:由同一光源发出的光经双缝后形成两束振动情况总是频率相等的相干光波,屏上某点到双缝的路程差是波长的整数倍处出现亮条纹;路程差是半波长的奇数倍处出现暗条纹.相邻的明条纹(或暗条纹)之间距离Δx 与波长λ、双缝间距d 及屏到双缝距离l 的关系为Δx =l dλ.4.薄膜干涉:利用薄膜(如肥皂液薄膜)前后表面反射的光相遇而形成的.图样中同一条亮(或暗)条纹上所对应薄膜厚度相同.二、光的衍射 1.光的衍射现象光在遇到障碍物时,偏离直线传播方向而照射到阴影区域的现象叫做光的衍射. 2.光发生明显衍射现象的条件当孔或障碍物的尺寸比光波波长小,或者跟光波波长相差不多时,光才能发生明显的衍射现象.3.衍射图样(1)单缝衍射:中央为亮条纹,向两侧有明暗相间的条纹,但间距和亮度不同.白光衍射时,中央仍为白光,最靠近中央的是紫光,最远离中央的是红光.(2)圆孔衍射:明暗相间的不等距圆环.(3)泊松亮斑:光照射到一个半径很小的圆板后,在圆板的阴影中心出现的亮斑,这是光能发生衍射的有力证据之一.三、光的偏振1.偏振光:在跟光传播方向垂直的平面内,光在某一方向振动较强而在另一些方向振动较弱的光即为偏振光.光的偏振现象证明光是横波(填“横波”或“纵波”).2.自然光:太阳、电灯等普通光源发出的光,包括在垂直于传播方向上沿各个方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫做自然光.3.偏振光的产生 自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫做起偏器.第二个偏振片的作用是检验光是否是偏振光,叫做检偏器.考点一 光的干涉 1.双缝干涉(1)光能够发生干涉的条件:两光的频率相同,振动步调相同. (2)双缝干涉形成的条纹是等间距的,两相邻亮条纹或相邻暗条纹间距离与波长成正比,即Δx =l dλ.(3)用白光照射双缝时,形成的干涉条纹的特点:中央为白条纹,两侧为彩色条纹. 2.薄膜干涉(1)如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.(2)光照射到薄膜上时,在膜的前表面AA ′和后表面BB ′分别反射出来,形成两列频率相同的光波,并且叠加,两列光波同相叠加,出现明纹;反相叠加,出现暗纹.(3)条纹特点:①单色光:明暗相间的水平条纹; ②白光:彩色水平条纹. 3.明暗条纹的判断方法屏上某点到双缝距离之差为Δr ,若Δr =k λ(k =0,1,2,…),则为明条纹;若Δr =(2k +1)λ2(k =0,1,2,…),则为暗条纹. 考点二 光的衍射现象的理解 1两种现象比较项目单缝衍射 双缝干涉不同 点 条纹宽度 条纹宽度不等,中央最宽 条纹宽度相等条纹间距 各相邻条纹间距不等 各相邻条纹等间距 亮度情况中央条纹最亮,两边变暗 条纹清晰,亮度基本相等相同点干涉、衍射都是波特有的现象,属于波的叠加;干涉、衍射都有明暗相间的条纹2.光的干涉和衍射都属于光的叠加,从本质上看,干涉条纹和衍射条纹的形成有相似的原理,都可认为是从单缝通过两列或多列频率相同的光波,在屏上叠加形成的.考点三 光的偏振现象的理解 1.偏振光的产生方式(1)自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫起偏器.第二个偏振片的作用是检验光是否为偏振光,叫检偏器.(2)自然光射到两种介质的交界面上,如果光入射的方向合适,使反射光和折射光之间的夹角恰好是90°时,反射光和折射光都是偏振光,且偏振方向相互垂直.2.偏振光的理论意义及应用(1)理论意义:光的偏振现象说明了光波是横波. (2)应用:照相机镜头、立体电影、消除车灯眩光等. 考点四 实验:用双缝干涉测量光的波长 1.实验原理单色光通过单缝后,经双缝产生稳定的干涉图样,图样中相邻两条亮(暗)纹间距Δx 与双缝间距d 、双缝到屏的距离l 、单色光的波长λ之间满足λ=d Δx /l .2.实验步骤 (1)观察干涉条纹①将光源、遮光筒、毛玻璃屏依次安放在光具座上.如图所示.②接好光源,打开开关,使灯丝正常发光.③调节各器件的高度,使光源发出的光能沿轴线到达光屏.④安装双缝和单缝,中心大致位于遮光筒的轴线上,使双缝与单缝的缝平行,二者间距约5 cm ~10 cm ,这时,可观察白光的干涉条纹.⑤在单缝和光源间放上滤光片,观察单色光的干涉条纹. (2)测定单色光的波长①安装测量头,调节至可清晰观察到干涉条纹.②使分划板中心刻线对齐某条亮条纹的中央,记下手轮上的读数a 1,将该条纹记为第1条亮纹;转动手轮,使分划板中心刻线移动至另一亮条纹的中央,记下此时手轮上的读数a 2,将该条纹记为第n 条亮纹.③用刻度尺测量双缝到光屏的距离l (d 是已知的). ④改变双缝间的距离d ,双缝到屏的距离l ,重复测量. 3.数据处理(1)条纹间距Δx =|a 2-a 1n -1|.(2)波长λ=d lΔx .(3)计算多组数据,求λ的平均值. 4.注意事项(1)安装时,注意调节光源、滤光片、单缝、双缝的中心均在遮光筒的中心轴线上,并使单缝、双缝平行且间距适当.(2)光源灯丝最好为线状灯丝,并与单缝平行且靠近.(3)调节的基本依据是:照在光屏上的光很弱,主要原因是灯丝与单缝、双缝,测量头与遮光筒不共轴所致,干涉条纹不清晰一般原因是单缝与双缝不平行所致,故应正确调节.。
高中物理选修3-4知识点总结

高中物理选修3-4知识点总结篇一:高中物理选修3-4全部知识点归纳高中物理选修3-4全部知识点归纳一、简谐运动、简谐运动的表达式和图象1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零;②阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动。
3、描述振动的物理量研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
⑴位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
⑵振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
⑶周期T:振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
⑷频率f:振动物体单位时间内完成全振动的次数。
⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:T⑹相位?:表示振动步调的物理量。
4、研究简谐振动规律的几个思路:⑴用动力学方法研究,受力特征:回复力F =- kx;加速度,简谐振动是一种变加速运动。
(完整版)高中物理选修3-4知识点总结

单摆装置:在一不可伸长、质量、弹性忽略的细线(线的长度比小球的直径大得多)下端拴一可视为质点的小球,上端固定.
单摆的特点:最大摆角小于5°时做简谐振动,单摆的回复力由重力沿圆弧切线方向的分力提供,重力势能与动能的相互转化,机械能守恒.
共振:当驱动力的频率接近物体的固有频率时,受迫振动的振幅增大,当驱动力的频率等于物体的固有频率时,受迫振动的振幅最大。驱动力的频率与物体的固有频率相差越远,受迫振动的振幅越小。当驱动力的频率等于系统的固有频率时,振动的振幅最大
由共振曲线可知,物体做受迫振动时,驱动力周期(频率)与物体固有周期(频率)相差越小,驱动力对物体做正功,增大系统的能量,.受迫振动的振幅越大
(4)周期T:振动物体完成一次全振动所经历的时间叫做周期。
(5)频率f:振动物体单位时间内完成全振动的次数。
(6)周期、频率大小由系统本身的性质决定(与振幅无关),又称固有周期和固有频率。
简谐运动的周期公式(决定式): 与振幅无关,只由振子质量和弹簧的劲度决定。(m是振动物体的质量,k是比例系数)。
弹簧振子振动,O点为平衡位置,AA’分别是左、右两端的最大位移处,振子的振动可以分成四个阶段:
。
四个阶段中,振子的位移,回复力、速度和加速度的变化如下表:
简谐振动在平衡位置,位移为零,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。物体的速度在最大位移处改变方向。简谐振动是一种变加速运动。
纵波:质点振动方向与波的传播方向在同一直线
气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气图象:用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。
(完整word版)物理选修3-4知识点(全)

选修3—4考点汇编 一、机械振动(*振动图象是历年考查的重点:同一质点在不同时刻的位移)1、只要回复力满足F kx =-或位移满足sin()x A t ωϕ=+的运动即为简谐运动。
说明:①做简谐运动的物体,加速度、速度方向可能一致,也可能相反。
②做简谐运动的物体,在平衡位置速度达到最大值,而加速度为零。
③做简谐运动的物体,在最大位移处加速度达到最大值,而速度为零。
2、质点做简谐运动时,在T/4内通过的路程可能大于或等于或小于A (振幅),在3T/4内通过的路程可能大于或等于或小于3A 。
3、质点做简谐运动时,在1T 内通过的路程一定是4A ,在T/2内通过的路程一定是2A 。
4、简谐运动方程sin()x A t ωϕ=+中t ωϕ+叫简谐运动的相位,用来表示做简谐运动的质点此时正处于一个运动周期中的哪个状态。
5、单摆的回复力是重力沿振动方向(垂直于摆线方向)的分力,而不是摆球所受的合外力(除两个极端位置外)。
6、单摆的回复力sin /F mg mgx L θ=≈-,其中x 指摆球偏离平衡位置的位移,x 前面的是常数mg/L ,故可以认为小角度下摆球的摆动是简谐运动。
7、摆的等时性是意大利科学家伽利略发现的,而单摆的周期公式是由荷兰科学家惠更斯发现的,把调准的摆钟,由北京移至赤道,这个钟变慢了,要使它变准应该增加摆长。
(附单摆的周期公式:2L T gπ=) 8、阻尼振动是指振幅逐渐减小的振动,无阻尼振动是指振幅不变的振动。
9、物体做受迫振动时,频率由驱动力频率决定与固有频率无关。
10、如果驱动力频率等于振动系统的固有频率,受迫振动的振幅最大,这种现象叫共振,共振现象的应用有转速计和共振筛等,军队过桥要便步走,火车过桥要慢行,厂房建筑物的固有频率要远离机器运转的频率范围之内都是为了减小共振。
11、轮船航行时,如果左右摆动有倾覆危险,可采用改变航向和速度,使波浪冲击力的频率远离轮船摇摆的固有频率。
这是共振防止的一种方法。
高中物理选修34知识点总结及讲义

高中物理选修34知识点总结及讲义高中物理选修34知识点总结及讲义一、知识点总结1、光的折射和反射:理解光的折射和反射的基本原理,包括入射角、折射角、反射角等概念。
掌握斯涅尔定律的应用,了解透明介质和不透明介质的折射率。
2、光的波动性和粒子性:掌握光的波动性和粒子性的基本概念,了解光的双重性质。
理解波长和频率的关系,掌握光速不变原理。
3、光学仪器:了解各种光学仪器的原理和使用方法,如凸透镜、凹透镜、显微镜、望远镜等。
4、光的干涉和衍射:掌握光的干涉和衍射的基本原理,了解干涉和衍射的产生条件。
理解波动叠加的概念,掌握干涉和衍射的实验应用。
5、光的偏振:理解光的偏振现象和偏振原理,掌握偏振片的原理和使用方法。
了解偏振的应用,如3D电影技术。
二、讲义1、光的折射和反射(1)光的折射:当光从一种介质射向另一种介质时,光的传播方向会发生改变,这种现象称为光的折射。
折射角是由折射定律定义的,入射角和折射角的正弦之比等于两种介质的折射率之比。
(2)光的反射:当光遇到介质表面时,一部分光会被反射回去,这种现象称为光的反射。
反射角是由反射定律定义的,入射角和反射角的正弦之比等于两种介质的折射率之比。
(3)应用案例分析:潜水镜、光纤通信等。
2、光的波动性和粒子性(1)光的波动性:光是一种波,具有波动性。
波长和频率是描述光波的两个基本物理量。
光速是光波传播的速度,光速不变原理是指在真空中光速是一个恒定值,与观察者的运动状态无关。
(2)光的粒子性:光不仅具有波动性,还具有粒子性。
光子是光的基本粒子,其能量与频率成正比,与波长成反比。
光在传播过程中表现为波动性,但在与物质相互作用时表现为粒子性。
(3)应用案例分析:光电效应、激光等。
3、光学仪器(1)凸透镜:凸透镜是一种常见的光学仪器,具有汇聚光线的作用。
平行于主轴的光线经过凸透镜后会汇聚于一点,这个点称为焦点。
焦距是凸透镜的一个基本参数,它表示光线从凸透镜到焦点的距离。
(2)凹透镜:凹透镜也是一种常见的光学仪器,具有发散光线的作用。
高中物理选修3-4知识点整理

选 修3—4一、知识网络二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
简谐运动的回复力:即F = – kx注意:其中x 都是相对平衡位置的位周期:gLT π2=机械振动简谐运动物理量:振幅、周期、频率 运动规律简谐运动图象阻尼振动 受力特点回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mgF-= 受迫振动 共振波的叠加 干涉 衍射 多普勒效应 特性 实例声波,超声波及其应用机械波形成和传播特点 类型横波 纵波 描述方法波的图象波的公式:vT =λx=vt电磁波电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在赫兹证实电磁波的存在电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收 电磁波与信息化社会:电视、雷达等 电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线 相对论简介相对论的诞生:伽利略相对性原理 狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性长度的相对性: 20)(1cvl l-=时间间隔的相对性:2)(1cv t -∆=∆τ相对论的时空观狭义相对论的其他结论:相对论速度变换公式:21cv u v u u'+'=相对论质量: 20)(1cv m m -=质能方程2mc E=广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲引力场的存在使得空间不同位置的时间进程出现差别移。
区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反⑵“k ”对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: “x = A sin (ωt +φ)”3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。
高中物理选修3-4知识点汇总

第一章 机械振动1. 机械振动物体在某一中心位置两侧所做的往复运动;条件是物体离开平衡位置就受到回复力作用并且阻力足够小。
2. 回复力振动物体离开平衡位置受到指向平衡位置的合力;可以是几个力的合力或某个力的分力,不一定等于合外力。
3. 描述振动的位移特指偏离平衡位置的位移;由平衡位置指向振动质点所在位置;矢量。
4. 振幅物体离开平衡位置的最大距离;标量。
5. 周期物体完成一次全振动所需要的时间。
6. 频率单位时间内完成的全振动的次数;与周期互为倒数。
7. 简谐振动物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动;F=-kx 。
8. 弹簧振子忽略摩擦、弹簧质量的理想化模型;周期和频率由弹簧劲度系数和振子质量决定;可以水平放置和竖直放置。
9. 单摆一条不可伸长、忽略质量的细线下端拴一可视为质点的小球;回复力是重力沿切线方向的分力;当摆角很小时,单摆的摆动是简谐振动,周期T=2g L。
10. 简谐振动的图像表示振动质点在各个时刻相对于平衡位置的位移,不表示运动轨迹。
11. 阻尼振动振幅逐渐减小的振动;减小的机械能等于克服摩擦所做的功。
12. 受迫振动在外界周期性驱动力作用下的振动;受迫振动的频率等于驱动频率,与固有频率无关;驱动频率越接近固有频率,振幅越大,相等时共振。
第二章 机械波13. 机械波机械振动在介质中的传播;需要波源和弹性介质;波动由振动引起,但振动不一定就有波动;分为纵波和横波。
14. 纵波质点振动方向与波的传播方向在同一直线上的波。
15. 横波质点振动方向与波的传播方向垂直的波;高中主要研究横波。
16. 波长在波的传播方向上,两个相邻的、在振动过程中对平衡位置的位移总是相等的质点之间的距离;横波的两个相邻的波峰或波谷之间的距离;振动在一个周期里传播的距离;用λ表示。
17. 波速波的传播速率;只与介质有关;同一种均匀介质中,波速是定值,与波源无关。
18. 频率波传播的频率与波源的振动频率相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l
x
(说明:
d
d 双缝间距, l 双缝到光屏的距离,
光的波长, x 条纹间距)①对于双缝干涉实验现象,光屏离双缝越远条纹间距越
大,两缝间距越小条纹间距越大。②对于双缝干涉实验现象,用白光做双缝干涉实验得到的是彩色条纹。
8、光波从真空射入介质时,频率不变,波长变小。 (常据本知识点出选择题) 9、在薄膜干涉实验中,干涉条纹是由同一束光线经薄膜前后两表面反射回来的光线相互叠加产生的。薄膜干涉条纹是等距 离平行线时,说明同一级亮条纹处薄膜的厚度处处相等。
多普勒效应是波动过程共有的特征。
18、利用次声波传播距离较远建立次声波站, 可以探知几千米外的核武器试验和导弹发射。 利用超声波的穿透能力和反射情
况,可以制成超声波探伤仪。利用超声波可以把普通水“打碎”成直径仅为几微米的小水珠,制成“超声波加湿器”
。
19、蝙蝠和海豚等动物有完美的“声纳”系统,它们分别能在空气和水中确定物体的位置。雷达利用的是无线电,既是电磁
20、激光雷达利用了激光平行度好的特点。军事上“激光”武器,医学上的“激光刀”是利用激光亮度高的特点。 第四章 电磁波
1、十七世纪初期明确形成了牛顿主张的微粒说和惠更斯的波动说。 2、十九世纪初期麦克斯韦和赫兹分别预言和证实了光是一种电磁波。
-3-
3、光的本质是一种频率很高的电磁波。电磁波是一种物质,电磁波也具有能量。电磁波由真空进入玻璃后频率不变,波长 变小。
16、屋外的人虽然看不到屋内的人,但却能听到屋内人的谈笑声,这是声波的衍射现象。
17、当观察者接收到的完全波个数多于波源发出的完全波个数(如波源和观察者相对靠近)
,观察者感觉到频率变高,但波
源的频率不变。( *多普勒效应: 迎面而来的火车与远走的火车) 不仅机械波, 电磁波和光波也会发生多普勒效应 (如“红移”)。
至赤道,这个钟变慢了,要使它变准应该增加摆长。
(附单摆的周期公式: T 2
L
)
g
8、阻尼振动是指振幅逐渐减小的振动,无阻尼振动是指振幅不变的振动。 9、物体做受迫振动时,频率由驱动力频率决定与固有频率无关。 10、如果驱动力频率等于振动系统的固有频率, 受迫振动的振幅最大, 这种现象叫共振,共振现象的应用有转速计和共振筛 等,军队过桥要便步走,火车过桥要慢行,厂房建筑物的固有频率要远离机器运转的频率范围之内都是为了减小共振。 11、轮船航行时,如果左右摆动有倾覆危险,可采用改变航向和速度,使波浪冲击力的频率远离轮船摇摆的固有频率。这是 共振防止的一种方法。 12、简谐波中,其他质点的振动都将重复振源质点的振动,既是振源带动下的振动,故应为受迫振动。 13、一切复杂的振动虽不是简谐振动,但它们都可以看作是由若干个振幅和频率不同的简谐运动合成的。
v
f ,颜色决定 f )。
14、全反射棱镜是应用了光的全反射现象,无影灯主要是应用了光的直线传播,影的形成。
15、把复色光分解为单色光的现象叫光的色散,光在折射、干涉、衍射时都能发生色散。
16、用毛上细密的羽丝充当了衍射光栅,白天隔着羽毛看太阳,可以看到衍射图样。
17、自然光包含着垂直于传播方向上光振动沿各个方向均匀分布的光, 的光。太阳,白炽灯等普通光源发出的光都是自然光。
件)(叠加再任何情况下都可以,而干涉必须满足频率与相位差条件
)
11、水波从深水区到达浅水区时传播方向朝法线方向偏折,这说明水波的传播速度与水深有关,浅水区水波的传播速度小。
12、人耳要把回声与原声区别开来,回声与原声到达人耳的时间差需在 间测出人与障碍物距离。
0.1S 以上。因而知道声速就可以根据回声到来的时
偏振光包含这垂直于传播方向上光振动沿着特定方向
18、偏振片的作用是只让振动方向与透振方向平行的广播才能通过。
拍摄玻璃橱窗内的物品时, 往往在镜头前加上一个偏振
片,作用是减弱反射光。电子表的液晶显示用到了偏振光,立体电影中也用到了偏振光。
19、激光可以像无线电波那样进行调制,用以传递信息,利用的是激光相干性好的特点。
4、麦克斯韦电磁理论: 均匀变化的电场产生恒定磁场, 非均匀变化的电场产生变化的磁场; 均匀变化的磁场产生恒定电场, 非均匀变化的磁场产生变化的电场。 (注意理解此点)
5、无线电波的发射需要满足两个条件:第一要有足够高频率,第二振荡电路的电场和磁场分散到尽可能大的空间。
6、在电磁波的发射中,使电磁波随各种信号而改变的技术,叫调制。调制分为调幅和调频两种。在无线电波的接收中,使
2、质点做简谐运动时,在 T/4 内通过的路程可能大于或等于或小于 于 3A 。
A (振幅),在 3T/4 内通过的路程可能大于或等于或小
3、质ห้องสมุดไป่ตู้做简谐运动时,在 1T 内通过的路程一定是 4A ,在 T/2 内通过的路程一定是 2A 。
4、简谐运动方程 x A sin( t ) 中 t
叫简谐运动的相位,用来表示做简谐运动的质点此时正处于一个运动周期
中的哪个状态。
5、单摆的回复力是重力沿振动方向(垂直于摆线方向)的分力,而不是摆球所受的合外力(除两个极端位置外)
。
6、单摆的回复力 F mg sin
mgx / L ,其中 x 指摆球偏离平衡位置的位移, x 前面的是常数 mg/L ,故可以认为小
角度下摆球的摆动是简谐运动。 7、摆的等时性是意大利科学家伽利略发现的,而单摆的周期公式是由荷兰科学家惠更斯发现的,把调准的摆钟,由北京移
金榜教育高三物理复习资料 第一章:机械波
1、只要回复力满足 F kx 或位移满足 x A sin( t ) 的运动即为简谐运动。
说明:①做简谐运动的物体,加速度、速度方向可能一致,也可能相反。 ②做简谐运动的物体,在平衡位置速度达到最大值,而加速度为零。
③做简谐运动的物体,在最大位移处加速度达到最大值,而速度为零。
5、机械波的传播需要介质,当介质中本来静止的质点,随着波的传来而发生振动,表示质点获得能量。波不但传递着能量, 而且可以传递信息。
6、在波动中振动相位总是相同两个相邻质点间的距离叫做波长,在波动中振动相位总是相反两个质点间的距离为半个波长 的奇数倍。
7、任何振动状态相同的点组成的圆叫波面,与之垂直的线叫波线,表示了波的传播方向。
1、经典力学中认为时间和空间是绝对的,而相对论认为时间和空间是相对的。 2、考虑相对论效应, 长度时间的测量结果都是随物体与观察者的相对运动状态而改变的。 种长,尺短,质量大。
(尺缩钟慢效应) ,实际总结就是,
3、光速不变的原理是:真空中的光速在不同的惯性参考系中都是相同的。 4、广义相对论认为,在任何参考系中,物理规律都是相同的。 5、广义相对论告诉我们,引力场的存在使得空间不同位置的时间进程出现差别,物质的引力使光线弯曲。
主要是穿透本领很大(金属探伤) 。
9、白天的天空各处都是亮的是因为大气分子对阳光散射的结果。而天空看起来是蓝的,是由于波长较短的光比波长较长的 光更容易被散射。 傍晚的阳光是红的, 是因为傍晚的阳光在穿过厚厚的大气层时, 大气对波长较短的光吸收也比较强的缘故。
10、当日光灯启动时,旁边的收音机会发出“咯咯”声,这是由于电磁波的干扰造成的。 第五章 相对论
13、波的衍射和波的干涉都满足波的叠加原理, 两列频率不相等的波在空间相遇时, 将不会有干涉现象产生,但也满足波的 叠加原理。
14、夏日的雷声能持续很长时间,这是声波的反射现象。 (轰隆隆) 15、敲响一只音叉,另一只与其相隔不远的音叉也能发出声音,这是声波的共鸣现象。敲响一只音叉,在其周围某些区域声 音较强,某些区域的声音较弱,这是声音的干涉现象。
10、照相机的镜头上镀一层增透膜, 用来增加透射光的强度, 由于增透膜只能增加特定波长的光, 因而镀膜镜头是有颜色的。 11、光的衍射现象说明光的直线传播是有条件的。 (泊松亮斑) 12、不同的色光不可能产生干涉现象,光的颜色决定于频率。光的强度不同有可能产生干涉现象。
13、某单色光由水中射入空气,颜色不变,光速变大,波长变大(
接收电路产生电谐振的过程叫做调谐。 从调谐电路接收到感应电流中还原声音和图像信号过程叫解调,
调幅波的解调叫检波。
7、电磁波谱按波长由长到短频率由小到大的次序依次是:无线电波、红外线、可见光、紫外线、 波动性越来越弱、粒子性越来越强。 (电磁波谱)
x 射线、γ射线。依次是
8、一切物体都在向外辐射红外线,物体温度越高,辐射红外线越强,波长越长。红外线主要是热作用(红外线烤箱、红外 线遥感、遥控器) ,紫外线主要是化学作用(荧光效应、杀菌、验钞机) , x 射线穿透能力较强(医院拍摄 x 光片),γ射线
波。而蝙蝠是利用超声波的定位系统,利用超声波的回声来发现目标、确定飞行方向。
(注意:雷达与蝙蝠的比较)
-2-
第三章 光
1、光从光密介质射向光疏介质时,入射角等于或大于临界角,就会发生全反射现象,光导纤维就是利用全发射现象。
2、两个振动情况总是相同的波源叫相干波源。
3、光能发生干涉衍射现象,所以光是一种波,干涉衍射是波动特有的现象。
4、光的颜色不同是因为光的频率不同。
5、全息照片的拍摄利用了光的干涉原理。
6、对于两个相干光源产生的光的叠加, 出现亮条纹的条件是波程差为半波长的偶数倍 (波长的整数倍) 。对于两个相干光源
产生的光的叠加,出现暗条纹的条件是波程差为半波长的奇数倍。
7、双缝干涉现象中,条纹间距跟光的波长成正比,七色光中,用红光做双缝干涉实验时条纹间距最大。
第二章:波 1、有机械波必有机械振动,有机械振动不一定有机械波。 2、当波动的振源停止振动时,已形成的波动将仍能往前传播,直至能量衰减至零为止。
-1-
3、发生地震时,从地震源传出的地震波,既有横波,也有纵波。
(* 今年地震多发注意掌握)
4、机械波传播的只是振动形式,质点本身并不随波一起传播,在波的传播过程中,任一质点的起振方向都与波源的起振方 向相同。