北师大-八年级数学上册第二章实数测试卷(精华)(带答案)
八年级数学上册第二章《实数》测试卷-北师大版(含答案)

八年级数学上册第二章《实数》测试卷-北师大版(含答案)一、选择题(每题3分,共30分)1.在π,227,-3,38,3.14,0这些数中,无理数的个数是( )A .1B .2C .3D .4 2.下列各式中,无意义的是( )A .- 3B .-3C .3-3 D .(-3)2 3.下列计算错误的是( )A .8=2 2B .2-1=12 C .16=±4 D .|3-2|=2-3 4.与a 3b 不是同类二次根式的是( )A .ab2 B .b a C .1abD .b a 35.下列计算错误的是( )A .62×3=6 6B .27÷3=3C .32-2=3 2D .(2-3)(2+3)=1 6.当1<x <4时,化简(1-x )2-(x -4)2结果是( )A .-3B .3C .2x -5D .57.已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 022时,所对应y 值的总和是( )A .2 034B .2 033C .2 032D .2 031 8.已知a +b =4,ab =2,则a -b 的值为( )A .2 2B .2 3C .±2 2D .±2 39.将4块尺寸完全相同的长方形薄木板(薄木板如图,厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个框内.已知薄木板的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .219+2B .19+4C .219+4D .19+210.正方形ABCD 在数轴上的位置如图所示,点A ,D 对应的数分别为1和0,若正方形ABCD 绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2,则翻转2 022次后,数轴上数2 022对应的点是( ) A .D B .C C .B D .A 二、填空题(每题3分,共15分) 11.化简:32=________________,23=____________.12.计算3-64125的结果等于________________.13.已知a ,b 满足-()4+a 2=2 022||b -3,a 2+b 2的平方根为________. 14.对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +ba -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 15.观察下列各式:①223=2+23;②338=3+38;③4415=4+415;….根据这些等式反映的规律,若x 2 022y =x +2 022y ,则x 2-y =________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来.(1)如图1,点A表示的数是________;(2)如图2,直线l垂直数轴于表示4的点,请用尺规作出表示1-13的点(不写作法,保留作图痕迹).17.计算:(1)18+|3-8|-(3)2;(2)2+32-3-(3+6)(3-6).18.解方程:(1)9(x+2)2-64=0;(2)12(x +3)3=108.19.求代数式a+a2-2a+1的值,其中a=-2 022.小亮的解法为:原式=a+(1-a)2=a+1-a=1.小芳的解法为:原式=a+(1-a)2=a+a-1=-4 045.(1)________的解法是错误的;(2)求代数式a+2a2-6a+9的值,其中a=-2 022.20.已知m-15的平方根是±2,33+4n=3,求m+n的算术平方根.21.已知:如图.化简:a2-(a+b)2+(b-c)2+(a+c)2.22.阅读下面的内容:我们规定:用[x]表示实数x的整数部分,用<x>表示实数x的小数部分,如[3.14]=3,<3.14>=0.14;[2]=1,而大家知道2是无理数,无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1来表示2的小数部分,即<2>=2-1.事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是2的小数部分,又例如:∵22<(7)2<32,即2<7<3,∴[7]=2,<7>=7-2.请解答以下问题:(1)[11]=________,<11>=________;(2)如果<5>=a,[41]=b,求a+b-5的平方根.23.(5+2)(5-2)=1,a·a=a(a≥0),(b+1)(b-1)=b-1(b≥0)……像这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,5与5,2+1与2-1,23+3与23-3等都互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:233;(2)计算:12-3+13-2;(3)比较 2 023- 2 022与 2 022- 2 021的大小,并说明理由.参考答案一、1. B 2. B 3. C 4. A 5. D 6. C 7. A 8. C 9. C 10. C 二、11. 42;63 12. -45 13. ±19 14. 2 15. 1 三、16. 解:(1) 5(2)如图,点P 即为所求.17. 解:(1)原式=32+3-22-3=2.(2)原式=(2+3)2(2-3)×(2+3)-(9-6)=4+43+3-3=4+43.18. 解:(1)因为9(x +2)2-64=0,所以9(x +2)2=64, 所以(x +2)2=649, 所以x +2=±83, 所以x =23或x =-143. (2)因为12(x +3)3=108, 所以(x +3)3=216, 所以x +3=6,所以x =3. 19. 解:(1)小芳(2)a +2a 2-6a +9=a +2(a -3)2, 因为a =-2 022,所以a -3<0,所以原式=a +2(3-a )=a +6-2a =6-a =6-(-2 022)=6+2 022= 2 028,即代数式的值是2 028.20.解:因为m-15的平方根是±2,所以m-15=(±2)2,所以m=19.因为33+4n=3,所以3+4n=27,所以n=6.所以m+n的算术平方根为m+n=19+6=5.21.解:根据数轴可得a<0,a+b<0,b-c<0,a+c<0,所以原式=|a|-|a+b|+|b-c|+|a+c|=-a+a+b+c-b-a-c=-a.22.解:(1)3;11-3(2)因为2<5<3,6<41<7,且<5>=a,[41]=b,所以a=5-2,b=6,所以a+b-5=5-2+6-5=4,所以a+b-5的平方根是±2.23.解:(1)233=2×333×3=239.(2)12-3+13-2=2+3(2-3)×(2+3)+3+2(3-2)×(3+2)=2+3+3+2=2+23+2.(3) 2 023- 2 022< 2 022- 2 021.理由如下:因为 2 023- 2 022=12 023+ 2 022,2 022- 2 021=12 022+ 2 021,2 023+ 2 022> 2 022+ 2 021,所以 2 023- 2 022< 2 022- 2 021.。
北师大版八年级上册 第二章 实数 检测题.(含详细答案解析)doc

北师大版八年级上册第二章实数检测题一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在实数-3.1415926,,,,,中,无理数有()A. 1个B. 2个C. 3个D. 4个2.的绝对值是()A. -4B. 4C.D.3.下列二次根式中,与是同类二次根式的是()A. B. C. D.4.的平方根是()A. 2B. 4C. -2或2D. -4或45.下列说法:①10的平方根是±;②-2是4的一个平方根;③的平方根是;④0.01的算术平方根是0.1;⑤.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.如图,数轴上与,对应的点分别为,,点关于点的对称点为,设点表示的数为,则等于()A. B. 3 C. D. 57.下列计算正确的是()A. B. C. D. =48.已知是最小的正整数,则实数的值是()A. 12B. 11C. 8D. 39.我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于.若我们规定一个新数“”,使其满足(即方程有一个根为).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,,,,从而对于任意正整数,我们可以得到,同理可得,,.那么的值为()A. 0B. 1C. -1D.10.下列计算正确的是()A.B.C.D.二、填空题(共 8 小题,每小题 3 分,共 24 分)11.已知有理数,,满足,那么的值为________.12.当时,二次根式的值为________.13.若,,则的值________.14.的平方根是________,________(用代数式表示),________.15.若实数,则________.16.试写出两个无理数________和________,使它们的和为.17.有三个数,,,其中没有平方根,,则这三个数按照从小到大的顺序排列应为:________________________.18.化简下列二次根式:(1)________;(2)________;(3)________.三、解答题(共 6 小题,每小题 10 分,共 60 分)19.已知:为的小数部分的倒数,且,求下列代数式的值:;.20.把下列根式化成最简二次根式:(1) (2) (3) (4)21.利用计算器,比较下列各组数的大小:(1)与;(2)与.22.选择合适的方法计算:(1))(2)(3) (4)23.阅读下列材料:“为什么不是有理数”.假是有理数,那么存在两个互质的正整数,,使得,于是有.∵是偶数,∴也是偶数,∴是偶数.设(是正整数),则,∴也是偶数∴,都是偶数,不互质,与假设矛盾.∴假设错误∵不是有理数有类似的方法,请证明不是有理数.24.先阅读,后解答:像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是________;的有理化因式是________.(2)将下列式子进行分母有理化:①________;②________.(3)计算.北师大版八年级上册第二章实数检测题一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在实数-3.1415926,,,,,中,无理数有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:π,是无理数,故选:B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.的绝对值是()A. -4B. 4C.D.【答案】B【解析】【分析】根据复数的绝对值是它的相反数,可得答案.【详解】解:=-4,的绝对值为4,故选:B.【点睛】本题考查了实数的性质,利用绝对值的性质是解题关键.3.下列二次根式中,与是同类二次根式的是A. B. C. D.【答案】C【解析】试题解析:,是最简二次根式,,,则与是同类二次根式的是,故选C.4.的平方根是()A. 2B. 4C. -2或2D. -4或4【答案】C【解析】分析:根据算术平方根的意义,先求出的值,再根据平方根的意义求解.详解:由题意可得=4因为(±2)2=4所以4的平方根为±2即的平方根为±2.故选:C.点睛:此题主要考查了平方根的概念,一个数的平方等于a,那么这个数叫a的平方根,关键是要利用算术平方根化简.5.下列说法:①10的平方根是±;②-2是4的一个平方根;③的平方根是;④0.01的算术平方根是0.1;⑤.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题解析:①10的平方根是±,正确;②-2是4的一个平方根,正确;③的平方根是±,故错误;④0.01的算术平方根是0.1;⑤=a2,故错误,其中正确的是①②④.故选C.6.如图,数轴上与,对应的点分别为,,点关于点的对称点为,设点表示的数为,则等于()A. B. 3 C. D. 5【答案】D【解析】【分析】先根据已知条件可以求出线段AB的长度,然后根据对称的性质即可求出x,最后即可求出题目的结果.【详解】解:由数轴上各点的位置可知,x=1-(−1)=2-,则|x−3|+x2=4-2+(2-)2=4−2+7−4=5.故选:D.【点睛】此题主要考查了利用数轴表示实数的方法,关键是正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.7.下列计算正确的是()A. B. C. D. =4【答案】B【解析】【分析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A、与不能合并,所以A选项不正确;B、-=2−=,所以B选项正确;C、×=,所以C选项不正确;D、=÷=2÷=2,所以D选项不正确.故选:B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.8.已知是最小的正整数,则实数的值是()A. 12B. 11C. 8D. 3【答案】B【解析】【分析】直接利用算术平方根的定义分析得出答案.【详解】解:∵是最小的正整数,则12-n=1时,符合题意,∴实数n的值是:11.故选:B.【点睛】此题主要考查了算术平方根的定义,正确得出12-n的最小值是解题关键.9.我们知道,一元二次方程没有实数根,即不存在一个实数的平方等于.若我们规定一个新数“”,使其满足(即方程有一个根为).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有,,,,从而对于任意正整数,我们可以得到,同理可得,,.那么的值为()A. 0B. 1C. -1D.【答案】D【解析】【分析】原式利用题中的新定义化简,四项结合计算即可得到结果.【详解】解:根据题中的新定义得:原式=(i-1-i+1)+…+(i-1-i+1)+i=i,故答案为:D.【点睛】此题考查了解一元二次方程-直接开平方法,弄清题中的新定义是解本题的关键.10.下列计算正确的是()A.B.C.D.【答案】A【解析】【分析】根据二次根式的加减运算对A、B、C进行判断;根据二次根式的乘法法则对D进行判断.【详解】解:A、原式=3-2=,所以A选项正确;B、与不能合并,所以B选项错误;C、2与不能合并,所以C选项错误;D、原式==×,所以D选项错误.故选:A.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、填空题(共 8 小题,每小题 3 分,共 24 分)11.已知有理数,,满足,那么的值为________.【答案】25【解析】【分析】由题中条件不难发现,等号左边含有未知数的项都含有根号,而等号右边的则没有.将等式移项后,可尝试用配方法,将等式转化为三个完全平方数之和等于0的形式,从而分别求出x、y、z的值,再求代数式的值.【详解】解:将题中等式移项并将等号两边同乘以2得:x−2+y−2+z−2=0.配方得(x−2+1)+(y−1−2+1)+(z−2−2+1)=0.∴(−1)2+(−1)2+(−1)2=0.∴=1且=1且=1.解得x=1 y-2 z=3.∴(x-yz)2=(1-2×3)2=25.【点睛】将已知条件移项后观察特征,选择正确的方法即配方法是关键.12.当时,二次根式的值为________.【答案】3【解析】【分析】把x=-3代入已知二次根式,通过开平方求得答案.【详解】解:把x=-3代入中,解得:=3,故答案为:3.【点睛】本题考查了二次根式的定义.此题利用代入法求得二次根式的值.13.若,,则的值________.【答案】-5【解析】【分析】首先把a、b分母有理化,再代入计算即可.【详解】解:∵a===-2-,b===-2+,∴a+b+ab.=-2--2++(-2-)(-2+).=-4+(-2)2-()2=-4+4-5.=-5.故答案为:-5.【点睛】本题考查了二次根式的化简求值、分母有理化、平方差公式;熟练掌握分母有理化是解决问题的关键.14.的平方根是________,________(用代数式表示),________.【答案】(1). ±2,(2). 3-,(3). -4【解析】【分析】=4,然后再求4的平方根;<3,然后再利用绝对值的性质计算即可,根据立方根的性质计算即可.【详解】解:∵=4,4的平方根是±2,∴的平方根是±2;∵5<9,∴<,即<3,.∴|−3|=3-;∵(-4)3=-64∴=−4.故答案为:±2;3-;-4.【点睛】本题主要考查的是平方根、立方根和绝对值的性质,先求得=4是解题的关键.15.若实数,则________.【答案】4【解析】【分析】直接利用二次根式有意义的条件得出x,y的值,进而代入求出答案.【详解】解:∵y=+有意义,∴x-2=0,y=0,解得:x=2,故x2+y2=22+0=4.故答案为:4.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.16.试写出两个无理数________和________,使它们的和为.【答案】(1). ,(2).【解析】【分析】由于无理数就是无限不循环小数,而两个无理数的和为有理数,所以此无理数应为有理数与无理数相加的形式,例如6+和-.由此即可求解.【详解】解:例如6+和-等,答案不唯一.【点睛】此题主要考查了无理数的定义,是开放性题目,答案不唯一,只要写出的两个无理数的和为6,即符合要求.17.有三个数,,,其中没有平方根,,则这三个数按照从小到大的顺序排列应为:________________________.【答案】(1). a,(2). b,(3). c【解析】【分析】根据算术平方根的意义求出a b c的范围,再比较即可.【详解】解:∵a没有平方根,∴a<0,∵>b,∴0<b<1,∵<c,∴c>1,∴这三个数按照从小到大的顺序排列应为a<b<c,故答案为:a,b,c.【点睛】本题考查了实数的大小比较和算术平方根的意义,关键是确定a b c的范围.18.化简下列二次根式:(1)________;(2)________;(3)________.【答案】(1). ,(2). ,(3).【解析】【分析】(1)、(3)把被开方数的分母去掉即可得出结论;(2)把假分数化为带分数,再化为最减二次根式即可.【详解】解:(1)原式==.故答案为:;(2)原式===.故答案为:;(3)原式=8=2.故答案为:2.【点睛】本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.三、解答题(共 6 小题,每小题 10 分,共 60 分)19.已知:为的小数部分的倒数,且,求下列代数式的值:;.【答案】(1);(2).【解析】【分析】(1)先估算的范围,求出x、y的值,再代入求出即可;(2)把x、y的值代入求出即可.【详解】解:∵,为的小数部分的倒数,∴,∵,∴,当,时,;当,时,.【点睛】本题考查了估算无理数的大小,倒数,求代数式的值的应用,能求出x、y的值是解此题的关键.20.把下列根式化成最简二次根式:(1)(2)(3)(4)【答案】(1) ;(2).【解析】【分析】根据最简二次根式的定义和最简二次根式必须满足两个条件进行化简计算即可.【详解】解:(1);(2)原式;(3)原式;(4)原式.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.21.利用计算器,比较下列各组数的大小:(1)与;(2)与.【答案】(1) (2).【解析】【分析】(1)首先用计算器分别求出与的值各是多少;然后根据实数大小比较的方法判断即可.(2)首先用计算器分别求出与的值各是多少;然后根据实数大小比较的方法判断即可.【详解】解:(1),,∵,∴.(2),,∵,∴.【点睛】此题主要考查了计算器-数的开方问题,以及实数大小比较的方法,要熟练掌握.22.选择合适的方法计算:(1))(2)(3)(4)【答案】(1) ;(2) ;(3) ;(4).【解析】【分析】(1)直接进行二次根式的除法运算,然后将二次根式化为最简.(2)将化为最简后再进行根式的除法运算.(3)将带分数化为分数,然后再进行根式的除法运算.(4)直接进行根式的除法运算,然后再将二次根式化为最简.【详解】解:(1);(2);(3)原式;(4)原式.【点睛】本题考查二次根式的乘除法运算,难度不大,注意选择适当的方法可使运算变得简单.23.阅读下列材料:“为什么不是有理数”.假是有理数,那么存在两个互质的正整数,,使得,于是有.∵是偶数,∴也是偶数,∴是偶数.设(是正整数),则,∴也是偶数∴,都是偶数,不互质,与假设矛盾.∴假设错误∵不是有理数有类似的方法,请证明不是有理数.【答案】见解析【解析】【分析】利用类比的思想,仿照证“为什么不是有理数”来证明.【详解】解:假设是有理数,则存在两个互质的正整数,,使得,于是有,∵是的倍数,∴也是的倍数,∴是的倍数,设(是正整数),则,即,∴,∴也是的倍数,∴,都是的倍数,不互质,与假设矛盾,∴假设错误,∴不是有理数.【点睛】本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,从而得到所求.24.先阅读,后解答:像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是________;的有理化因式是________.(2)将下列式子进行分母有理化:①________;②________.(3)计算.【答案】 (1),;(2)①;②3-;(3)9.【解析】【分析】(1)根据分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式,所以,的有理化因式是;+2的有理化因式是−2;(2)①分子、分母同乘以;②分子、分母同乘以3-;计算解答出即可;(3)先对每个分式分母有理化,然后再相加减.【详解】解:(1)∵×=3;(+2)×(−2)=3;∴的有理化因式是;+2的有理化因式是−2;(2)①==;②==3-;(3)++…++.=++…++ .=-1+-+…+-+-.=9.【点睛】本题考查了分母有理化,两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式;一个二次根式的有理化因式不止一个.。
北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章实数测试题(含答案)一、选择题(共10小题,每小题3跟,共30分)1.下列式子正确的是()A.√9=±3B.√−19=−13C.√(−2)2=2D.√−93=﹣32.下列说法正确的是()A.1的平方根是1B.负数没有立方根C.√81的算术平方根是3D.(−3)2的平方根是−33.下列计算正确的是()A.√4=±2B.√36=6C.√(−6)2=﹣6D.﹣√−83=﹣24.下列四个实数中,是无理数的为()A.0B.√2C.﹣2D.。
125.下列根式中是最简二次根式的是()A.B.C.D.6.如图所示,在数轴上表示实数√10的点可能是()A.点M B.点N C.点P D.点Q 7.给出下列数-2.010010001…,0 ,3.14,237,π,0.333….其中无理数有()个A.1B.2C.3D.48.下列命题正确的是()A.同旁内角互补B.一组数据的方差越大,这组数据波动性越大C.若∠α=72°55′,则∠α的补角为107°45'D.对角线互相垂直的四边形是菱形9.下列运算正确的是()A.√10÷√2=5B.(t−3)2=t2−9C.(−2ab2)2=4a2b4D.x2⋅x=x210.下列运算正确的是()A .√4 =±2B .(−14)−2=﹣16C .x 6÷x 3=x 2D .(2x 2)3=8x 6二、填空题(共5小题,每小题3分,共15分)11.函数y =√2−x x−1的自变量x 的取值范围是 .12.如果 √a −1 有意义,那么a 的取值范围是 .13.一个正数的两个平方根分别是m −4和5,则m 的立方根是 . 14.请写出一个正整数m 的值使得√8m 也是整数,则m 的最小值是 . 15.49的平方根是 ;27的立方根是 .三、解答题(第16题10分,第17-18题每题7分,第19-21每题9分,第22-23每题12分,满分75分)16.在平面直角坐标系中,点P (- √3 ,-1)到原点的距离是多少?17.方老师想设计一个长方形纸片,已知长方形的长是 √140π cm ,宽是 √35π cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.18.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是 √8 的整数部分,求a +b +c 的平方根. 19.有一道练习题:对于式子2a-√a 2−4a +4先化简,后求值,其中a=√2。
北师大版八年级数学上册《第二章实数》单元检测卷带答案

北师大版八年级数学上册《第二章实数》单元检测卷带答案学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数为无理数的是( )B.0.2C.-5D.√3A.122.下列二次根式中,为最简二次根式的是( )D.√4A.−√2B.√12C.√153.下列计算正确的是( )3=2B.√(−3)2=−3A.√−8C.2√5+3√5=5√5D.(√2+1)2=34.要使二次根式√3x−6有意义,则x的取值范围是( )A. x>2B. x<2C. x≤2D. x≥25.估计√10的值在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间6.下列二次根式中与√18是同类二次根式的是( )A.√6B.√30C.√48D.√327.若x,y为实数,且(x−1)²与√3y−6互为相反数,则x²+y²的平方根为( )A.±√3B.√5C.±5D.±√58.若9−√5的整数部分为x,小数部分为y,则x-2y=( )A.−2√5B.6−3√5C.2√5D.6+3√59.已知实数a,b在数轴上的位置如图所示,化简|a+b|−√(b−a)2,其结果是( )A.-2aB.2aC.2bD.-2b10.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是△ABC的高,则BD的长为( )A.10√1313B.9√1313C.8√1313D.7√1313二、填空题:本大题共5小题,每小题3分,共15分.11.25的算术平方根是 .12.比较大小:4 √17-1.(填“>”“<”或“=”)13.一个正数a的两个平方根是2b-1和b+4,则a+b的立方根为 .14.已知m=5+2√6,n=5−2√6,则代数式m²−mn+n²的值为 .15.如图,将长方形OABC放在数轴上OA=2,OC=1,以点 A 为圆心,AC的长为半径画弧交数轴于点P,则点 P 表示的数为 .三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:√8−√3×√6+√12+|1−√2|.17.先化简,再求值:a√ba −2b√ab3+3√ab,其中a=3,b=9.18.已知a+1的立方根是−2,2b−1的算术平方根是3,c是√30的整数部分,求a−b+3c 的平方根.四、解答题(二):本大题共3小题,每小题9分,共27分.19.已知x=√5+2,求代数式x²−4x−7的值.解:根据x=√5+2,得(x−2)²=5,∴x²−4x+4=5,即x²−4x=1.把x²−4x作为整体代入,得x²−4x−7=1−7=−6.以上解法是把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下列问题:(1)已知x=√5−2,求代数式x²+4x−10的值;,求代数式x³−2x+1的值.(2)已知x=√5−1220.如图,在四边形ABCD中AB=1,AD=√3,BD=2,∠ABC+∠ADC=180°,CD=√2.(1)试说明△ABD是直角三角形;(2)求 BC 的长.21.综合与实践问题:你了解黄金矩形吗?问题背景素材一 矩形就是长方形,四个角都是90°,两组对边平行且相等.素材二 宽与长的比是 √5-1 (约为0.618)的矩形叫作 黄金矩形.黄金矩形给我们以协调、匀称的美感.世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计.如希腊 的巴特农神庙(如图1).素材三我们在学习二次根式时,常遇到 √3+1这种分母含有无理式的式子,需要通过分式性质和平 方差公式来进行化简.我们称之为“分母有理 化”.例如: 2√3+1=2(√3−1)(√3+1)(√3−1)=2(√3−1)(√3)2−12=√3-1.素材四 黄金矩形是可以通过折纸折叠出来的,操作步 骤如下:【第一步】在一张矩形纸片的一端,利用图2所示的方法折出一个正方形,然后把纸片展平.【第二步】如图3,把这个正方形折成两个相等的矩形,再把纸片展平.【第三步】折出内侧矩形的对角线 AB ,并把 AB 折到图4中所示的AD 处.【第四步】展平纸片,按照所得的点 D 折出 DE,矩形 BCDE(图 5)就是黄金矩形.解决问题任务一(1)化简: 1√2−1 任务二 (2)设MN 为x ,请用含x 的式子表示AB ,并说明矩形 BCDE 是黄金矩形.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22.【问题背景】已知a,b,c 满足|a −d|+√b −5+(c −3√2)2=0,且d 的立方根是2.【构建联系】 (1)求a,b,c,d 的值;(2)试判断√2(a−b )是有理数还是无理数; 【深入探究】(3)以a ,b ,c 为边能否组成三角形? 若能,求出该三角形的周长;若不能,请说明理由.23.【背景资料】式的代数式相乘,积不含有二次根式,我们称这两个代数式互为“有理化因式”.例如,√5与√5,√2+1与√2−1,2√3+3√5与2√3−3√5等都是互为“有理化因式”.进行二次根式计算时,利用“有理化因式”可以化去分母中的根号. 【知识技能】(1)化简:3√2【数学理解】(2)计算: (√2+1+√3+√2√4+√3+⋯+√2025+√2024(√2025+1);)【拓展探索】(3)已知a =√2023−√2022,b =√2024−√2023,c =√2025−√2024, 试比较a,b,c 的大小.参考答案一、1. D 2. A 3. C 4. D 5. C 6. D 7. D 8. C 9. A 10. D 二、11.5 12.> 13.2 14.97 15.2- √5 三、16.解:原式 =2√2−3√2+√22+√2−1=√22−1.17.解:原式 =√ab −2√ab +3√ab =2√ab.当a=3,b=9时,原式=2√3×9=6√3.18.解:由题意,得 a +1=−8,2b −1=9,∴a =−9,b =5.∵25<30<36,∴5<√30<6.∵c 是 √30的整数部分 ∴c =5.(√5+2)(√5−2)=1,√a ⋅√a =a (a ≥0),(√b +1)(√b −1)=b −1(b ≥0) 两个含有二次根 像∴a-b+3c=-9-5+15=-14+15=1.∴a-b+3c的平方根为±1.四、19.解: (1)∵x=√5−2,∴x+2=√5∴x2+4x+4=5∴x2+4x=1.∴x²+4x−10=1−10=−9.(2)∵x=√5−12,∴x2=(√5−12)2=6−2√54=3−√52.原式=x(x2−2)+1=√5−12×(3−√52−2)+1=√5−12×−√5−12+1=1−54+1=−1+1=0.20.解:(1)在△ABD中∵AB2+AD2=12+(√3)2=4=BD2,∴ABD是直角三角形.(2)在四边形ABCD中∵∠ABC+∠ADC=180°,∴∠A+∠C=180°.由(1)得∠A=90°,∴∠C=90°.在Rt△BCD中,由勾股定理,得BC=√BD2−CD2=√22−(√2)2=√2.21.解: (1√2−1=√2+1(√2−1)(√2+1)=√2+1(√2)2−12=√2+1.(2)∵MN为x,则BC=MB=x,AC=12x.∴在Rt△ABC中,由勾股定理,得AB=√AC2+BC2=√(12x)2+x2=√52x.由折叠的性质可知∴CD=AD−AC=AB−AC=√52x−12x=√5−12x,∴CD:BC=√5−12x:x=√5−12.∴矩形 BCDE 是黄金矩形.五、22.解:(1)∵d的立方根是2,∴d=8.由题意,得a−8=0,b−5=0,c−3√2=0,∴a=8,b=5,c=3√2.(2)由(1)得√2(a−b)=√2√2×(8−5)=√23√2=1,∴√2(a−b)是有理数.(3)能.理由如下:∵5−3√2<8<5+3√2,∴以a,b,c为边能组成三角形,即组成的三角形的周长为8+5+3√2=13+3√2.23.解: (13√2=√23√2×√2=√23.(2)原式=(√2−1(√2+1)(√2−1)√3−√2(√3+√2)(√3−√2)√4−√3(√4+√3)(√4−√3)+⋯+)√2025−√2024(√2025+√2024)(√2025−√2024))(√2025+1)=(√2−1+√3−√2+√4−√3+⋯+√2025−√2024)(√2025+1)=(√2025−1)(√2025+1)=2025−1=2024.同理可得1b =√2024−√2023=√2024+√2023,1 c =√2025−√2024=√2025+√2024.∵1a <1b<1c,∴a>b>c.。
北师大版八年级数学上册《第二章实数》单元测试卷及答案

北师大版八年级数学上册《第二章实数》单元测试卷及答案一、单选题1.下列各式中,正确的是( )A ()255-=-B . 3.60.6=-C 255=±D 38=-2-2.下列计算正确的是( )A 42=±B 2462=C .(224=D 538+=3.下列各式计算正确的有( )个.①()32320.10.3ab a b -=- ①34a a a ÷= ()3322-=- ①()222219520052002200554000020002538025=-=-⨯⨯+=-+=A .1B .2C .3D .4 422169(35)x x x -+-的结果是( )A .66x -B .66x -+C .-4D .4522+的整数部分为a ,小数部分为b ,则13a b -的值为( ) A .22B 22 C .222 D 216.下列计算正确的是( )A 235=B 1091=C .1333=D 1226=7.下列实数中,无理数是( )A .0B 3C 9D .20198.若x <0233x x ( )A .xB .2xC .0D .﹣2x9.下列说法中正确的有( )个①过一点有且只有一条直线与已知直线垂直②过一点有且只有一条直线与已知直线平行③从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离④实数与数轴上的点是一一对应的A.4B.3C.2D.110.如果规定①为一种运算符号,且b aa b a b-☆=,则3(21)☆☆的值为()A.0B.1C.﹣1D.2二、填空题1135.25 1.73835250=.12.a,b为有理数,如果规定一种新的运算“*”,定义:2*,a b a ab=+请根据“*”的意义计算()3*4-=.13.比较大小:1033283,221(填“>”、“=”或“<”).14.定义运“#”运法则为:x#y=y﹣2,则(4#2)#(﹣3)=.15.如果y44x x--,则2x+y的值是.161012(填“>”或“=”或“<”)17.如果一个正数的平方根是23a-和5a-,那么a的值是.18.若利用计算器进行如下操作:屏幕显示的结果为12若现在进行如下操作:则屏幕显示的结果为.三、解答题19.计算:(1)027|13(2024)++-;(2)若分式221x-的值等于2,求x值.20.计算:11 2334830310+21.已知:实数a、b23(4)0a b+-=.(1)可得a b+的立方根是;(2)当一个正实数x 的平方根分别为m a +和2b m -时,求x 的值.22.计算: 112648327268323.我国南宋时期数学家秦九韶及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九韶公式:如果一个三角形的三条边分别为,,a b c ,记2a b c p ++=,那么三角形的面积为()()()S p p a p b p c =---ABC 中,AB=5,BC=6,AC=7,求ABC 的面积.24.计算 (1)0213π8(3)1 (2)220243*********--+-参考答案1.D2.B3.C4.D5.A6.C7.B8.D9.D10.D11.17.3812.3-13. < > <14.5-15.916.>17.2-18.1.2 19.(1)43 (2)1x= 20.233-21.(1)1;(2)422.(1)43(2)27 423.624.(1)1;33 2 4。
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
北师大版八年级数学上册《第二章实数》单元测试题(含答案)

第二章实数测试题一、选择题(每题3分,共30分)1.有一组数如下:-π,13,|-2|,4,7,39,0.808008…(相邻两个8之间0的个数逐次加1).其中无理数有( )A .4个B .5个C .6个D .7个2.下列说法中,正确说法的个数是( ) ①-64的立方根是-4; ②49的算术平方根是±7; ③127的立方根是13; ④116的平方根是14. A .1 B .2 C .3 D .43.下列各组数中,互为相反数的一组是( )A .-3与3-27 B .-3与(-3)2 C .-3与-13D .||-3与34.下列各式计算正确的是( )A .2+3= 5B .43-33=1C .23×33=6 3D .27÷3=35.下列各式中,无论x 为任何数都没有意义的是( )A .-7xB .-1999x3C .-0.1x2-1D .3-6x2-56.若a =15,则实数a 在数轴上的对应点P 的大致位置是( )图17.如图2是一数值转换机,若输出的结果为-32,则输入的x的值为( )图2A.-4B.4C.±4D.±58.若a,b均为正整数,且a>7,b>320,则a+b的最小值是( )A.6 B.5 C.4 D.39.实数a,b在数轴上所对应的点的位置如图3所示,且||a>||b,则化简a2-||a+b 的结果为( )图3A.2a+b B.-2a+bC.b D.2a-b10.已知x=2-3,则代数式(7+4 3)x2+(2+3)x+3的值是( )A.2+ 3 B.2- 3 C.0 D.7+4 3请将选择题答案填入下表:第Ⅱ卷 (非选择题 共70分)二、填空题(每题3分,共18分) 11.计算:252-242=________.图412.如图4,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是________. 13.用计算器计算并比较大小:39________7.(填“>”“=”或“<”) 14.若|x -y|+y -2=0,则xy -3的值是________.15.若规定一种运算为a ★b =2(b -a),如3★5=2×(5-3)=22,则2★3=________.16.设a ,b 为非零实数,则a |a|+b2b所有可能的值为________. 三、解答题(共52分)17.(6分)实数a ,b 在数轴上所对应的点的位置如图5所示,试化简:a2-b2-(a -b )2.图518.(6分)计算:(1)()-62-25+(-3)2;(2)50×8-6×32;(3)(3+2-1)(3-2+1).19.(6分)已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a2+b2-2cd+x 的值.20.(6分)如果a 是100的算术平方根,b 是125的立方根,求a2+4b +1的平方根.21.(6分)某中学要在操场的一块长方形土地上进行绿化,已知这块长方形土地的长为510 m ,宽为415 m .(1)求该长方形土地的面积(精确到0.1 m 2);(2)如果绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金约为多少元?22.(6分)如图6所示,某地有一地下工程,其底面是正方形,面积为405 m2,四个角是面积为5 m2的小正方形渗水坑,根据这些条件如何求a的值?与你的同伴进行交流.图6下面是小康提供的解题方案,根据解题方案请你完成本题的解答过程:①设大正方形的边长为x m,小正方形的边长为y m,那么根据题意可列出关于x的方程为__________,关于y的方程为__________;②利用平方根的意义,可求得x=________(取正值,结果保留根号),y=________(取正值,结果保留根号);③所以a=x-2y=____________=__________(结果保留根号);④答:________________________.23.(8分)如图7,在Rt△OA1A2中,∠A1=90°,OA1=A1A2=1,以OA2为直角边向外作直角三角形,…,使A1A2=A2A3=A3A4=…=A n-1A n=1.(1)计算OA2和OA3的长;(2)猜想OA75的长(结果化到最简);(3)请你用类似的思路和方法在数轴上画出表示-3和10的点.图724.(8分)先阅读材料,再回答问题:因为(2-1)(2+1)=1,所以12+1=2-1;因为(3-2)(3+2)=1,所以13+2=3-2;因为(4-3)(4+3)=1,所以14+3=4- 3.依次类推,你会发现什么规律?请用你发现的规律计算式子12+1+13+2+…+1100+99的值.答案1.A 2.B 3.B 4.D 5.C 6.B 7.C 8.A 9.C 10.A 11.7 12.-213.< 14.1215.6-2 16.±2,017.解:由数轴易知a <0,b >0,|a |<|b |, 所以原式=-a -b -(b -a )=-2b . 18.解:(1)原式=6-5+3=4.(2)原式=5 2×2 2-3 22=20-3=17. (3)(3+2-1)(3-2+1)=[]3+(2-1)[]3-(2-1) =3-(2-1)2=3-3+2 2 =2 2.19.解:由题意知a +b =0,cd =1,x =±2. 当x =2时,原式=-2+2=0; 当x =-2时,原式=-2-2=-2 2, 故原式的值为0或-2 2.20.[解析] 先根据算术平方根、立方根的定义求得a ,b 的值,再代入所求代数式即可计算.解:因为a 是100的算术平方根,b 是125的立方根, 所以a =10,b =5,所以a2+4b+1=121,所以a2+4b+11=11,所以a2+4b+11的平方根为±11.21.[解析] (1)根据这块长方形土地的长为5 10 m,宽为415 m,直接得出面积即可;(2)利用绿化该长方形土地每平方米的造价为180元,即可求出绿化该长方形土地所需资金.解:(1)该长方形土地的面积为510×415=100 6≈244.9(m2).(2)因为绿化该长方形土地每平方米的造价为180元,所以180×244.9=44082(元).答:绿化该长方形土地所需资金约为44082元.22.解:①x2=405 y2=5②9 55③9 5-2 57 5④a的值为7 523.解:(1)OA2=12+12=2,OA3=()22+12=3.(2)OA75=75=5 3.(3)如图所示:24.解:规律:当n是正整数时,1n+1+n=n+1-n,故12+1+13+2+…+1100+99=(2-1)+(3-2)+…+(100-99)=100-1=9.。
北师版八年级数学上册 第二章 实数 综合测试卷 (含答案)

北师版八年级数学上册 第2章实数 综合测试卷(时间90分钟,总分120分)一.选择题(共10小题,3*10=30) 1.8的立方根是( ) A .±2 B .±12C .2D .-22.下列四个数中,是负数的是( ) A .|-2| B .(-2)2 C .- 2 D.(-2)23.下列二次根式中,是最简二次根式的是( ) A .25a B .a 2+b 2 C .a2D .0.5 4.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根5.已知a -3+|b -4|=0,则ab 的平方根是( )A .32 B .±32C .±34D .346.实数a ,b 在数轴上的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( )A .2a +bB .-2a +bC .bD .2a -b7.实数a ,b 在数轴上对应的点的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( )A .bB .-2a +bC .2a +bD .2a -b8.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③(-4)2的平方根是-4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个9.若m <0,n >0,则把代数式m n 中的m 移进根号内的结果是( ) A .m 2n B .-m 2nC . |m 2nD . |-m 2n10.规定用符号[m]表示一个实数m 的整数部分,例如[23]=0, [3.14]=3,按此规定[10+1]的值为( ) A .3 B .4 C .5 D .6二.填空题(共8小题,3*8=24) 11.16的算术平方根是________. 12.若81x 2=49,则x =________.13.将实数3,π,0,-5由小到大用“<”连接起来:____________________. 14.计算:8-18=_________.15.已知x 1=3+2,x 2=3-2,则x 12+x 22=________. 16.已知一个正数的平方根是3x -2和5x +6,则这个数是_________.17.设一个三角形的一边长为a ,这条边上的高为63,其面积与一个边长为32的正方形的面积相等,则a =________.18.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式.即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S =14⎣⎢⎡⎦⎥⎤a 2b 2-⎝⎛⎭⎫a 2+b 2-c 222.现已知△ABC 的三边长分别为2,3,4,则△ABC 的面积为________.三.解答题(共9小题,66分)19. (6分) 求下列各式中x的值.(1)(x+2)3+1=0;(2)9(3x-2)2=64.20. (6分) 计算:(1)(-3)2+3-8+|1-2|;(2)(6-215)×3-61 2.(3)48÷3-215×30+(22+3)2.21. (6分) 已知a,b互为倒数,c,d互为相反数,求-3ab+c+d+1的值.22. (6分) 如图,在四边形ABCD中,AB=AD,∠BAD=90°.若AB=22,CD=43,BC =8,求四边形ABCD的面积.23. (6分) 一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?24. (8分) ) 20.如图,每个小正方形的边长为1.(1)求四边形ABCD的面积和周长;(2)∠BCD是直角吗?请说明理由.25. (8分) 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5(不考虑风速的影响).(1)从50m高空抛物到落地所需时间t1是________s,从100m高空抛物到落地所需时间t2是________s;(2)t2是t1的多少倍?(3)经过1.5s,高空抛物下落的高度是多少?26. (10分) 甲同学用如下图所示的方法作出了C点,表示数13,在△OAB中,∠OAB=90°,OA=2,AB=3,且点O,A,C在同一数轴上,OB=OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.27. (10分) 先阅读下列解答过程,然后作答:形如m±2n的化简,只要我们找到两个正整数a,b(a>b),使a+b=m,ab=n,即(a)2+(b)2=m,a·b=n,那么便有m±2n=(a±b)2=a±b.例如:化简7±4 3.27. 解:首先把7±43化为7±212,这里m=7,n=12.由于4+3=7,4×3=12,即(4)2+(3)2=7,4·3=12,所以7±43=7±212=(4±3)2=2±3.用上述例题的方法化简:(1)13-242;(2)7-40;(3)2- 3.参考答案1-5CCBCB 6-10CACDB 11. 4 12.±7913.-5<0<3<π 14. - 2 15.10 16.49417.2 3 18.315419.解:(1)因为(x +2)3+1=0, 所以(x +2)3=-1,x +2=-1, 解得x =-3.(2)因为9(3x -2)2=64,所以3(3x -2)=±8, 解得x 1=149,x 2=-29.20.解:(1)原式=3-2-1+2= 2.(2)原式=18-245-32=32-65-32=-6 5. (3)48÷3-215×30+()22+32=16-26+11+46=15+2 6. 21.解:由题意,得ab =1,c +d =0,则-3ab +c +d +1=-31+0+1=-1+0+1=0.22.解:∵AB =AD ,∠BAD =90°,AB =22,∴BD =AB 2+AD 2=4.∵BD 2+CD 2=42+(43)2=64,BC 2=64,∴BD 2+CD 2=BC 2,∴△BCD 为直角三角形,且∠BDC =90°.∴S 四边形ABCD =S △ABD +S △BCD =12×22×22+12×43×4=4+8 3.23.解:(1)设这个正方体的棱长为a cm(a >0),由题意得6a 2=2 400, 所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =10 2.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.24. 解:(1)由勾股定理可得AB 2=12+72=50,则AB =50=5 2.∵BC 2=42+22=20,∴BC =2 5.∵CD 2=22+12=5,∴CD = 5.∵AD 2=32+42=25,∴AD =5,故四边形ABCD 的周长为52+25+5+5=52+35+5,面积为7×5-12×1×7-12×4×2-12×1×2-12×(1+5)×3=17.5.(2)∠BCD 是直角.理由如下:连接BD ,由(1)得BC 2=20,CD 2=5,而BD 2=32+42=25,∴DC 2+BC 2=BD 2,∴△BCD 是直角三角形,且∠BCD =90°. 25. 解:(1)10 2 5(2)∵t 2t 1=2510=2,∴t 2是t 1的2倍.(3)由题意得h 5=1.5,即h5=2.25,∴h =11.25m. 答:经过1.5s ,高空抛物下落的高度是11.25m.26. 解:(1)在Rt △OAB 中,由勾股定理得OB 2=OA 2+AB 2,所以OC =OB =OA 2+AB 2=22+32=13, 即点C 表示数13(2)画图略.在△ODE 中,∠EDO =90°,OD =5,DE =2,则OF =OE =29,即F 点为-2927.解:(1)13-242=(7-6)2=7- 6. (2)7-40=7-210=(5-2)2=5- 2. (3)2-3=8-434=8-432=8-2122=(6-2)22=6-22.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八 年 级 上 册 数 学
第二章 实数 单元测试卷(一卷)
一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有
一个答案是正确的,请把正确答案的代号填在该小题后的括号内。
1、若x 2=a ,则下列说法错误的是( )
(A )x 是a 的算术平方根 (B )a 是x 的平方
(C )x 是a 的平方根 (D )x 的平方是a
2、下列各数中的无理数是( )
(A )16 (B )3.14 (C )113 (D )0.01…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )
(A )任何一个实数都可以用分数表示
(B )无理数化为小数形式后一定是无限小数
(C )无理数与无理数的和是无理数
(D )有理数与无理数的积是无理数
4、9=( )
(A )±3 (B )3 (C )±81 (D )81
5、如果x 是0.01的算术平方根,则x=( )
(A )0.0001 (B )±0.0001 (C )0.1 (D )±0.1
6、面积为8的正方形的对角线的长是( )
(A )2 (B )2 (C )22 (D )4
7、下列各式错误的是( )
(A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-=
8、4的算术平方根是( )
(A )2 (B )2 (C )4 (D )16
9、下列推理不正确的是( )
(A )a=b b a = (B )a=b 33b a =
(C )b a = a=b (D )33b a = a=b
10、如图(一),在方格纸中,
假设每个小正方形的面积为2,
则图中的四条线段中长度是
有理数的有( )条。
(A )1 (B )2 (C )3 (D )4
二、填空题(每空2分,共20分)
1、任意写一对和是有理数的无理数 。
(一)
2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。
3、如果a 21-有意义,则a 的取值范围是 。
4、算术平方根等于本身的数有 。
5、a 是9的算术平方根,而b 的算术平方根是9,则=+b a 。
6、若0)3(22=++-y x ,则=+y x 。
7、一个房间的面积是10.8m 2,而该房间恰好由120个相同的正方形地砖铺成,则每块地砖的边长是 厘米。
8、若104<<a ,则满足条件的整数a 有 个。
9、若a 200是整数,请写出小于10的a 的整数值 。
10、若b a +=5,其中a 是整数,10<<b ,则=+-)54)((b a 。
三、计算(每小题4分,共16分)
1、2591)5(2---
2、6
227- 3、287512÷-⨯ 4、326)32)(23(+--
四、将下列实数填在相应的集合中(5分)
0,3-, 43.0 ,2)5(-,π,320--,713-,3
1,0.17… 整数集合 ……
正无理数集合 ……
有理数集合 ……
五、(每小题4分,共8分)
1、你是如何理解“数轴上的点与实数构成一一对应”这句话的。
2、在数轴上通过作图形式找出一个表示无理数的点。
六、(6分)根据a 的取值,比较2a 与a 的大小。
七、(7分)如图(二),两个边长是2的正方形:
1、将这两个正方形适当剪拼成一个正方形,请画出示意图。
2、求拼出的正方形的边长。
(二)
八、(8分)易拉罐的形状是圆柱,其底面的直径为7cm ,将6个这样的易拉罐如图(三)
堆放,求6个易拉罐所占的宽度与高度。
附:第一卷参考答案
一、1、A 2、D 3、B 4、B 5、C 6、D 7、D 8、A 9、A 10、B
二、1、3和3-;2、10;3、21≤
a ;4、0,1;5、84;6、-1;7、30;8、83; 9、0,2,8;10、11.
三、1、解原式=5
21545=- 2、解原式=3383333=- 3、解原式=2823023532=-=-⨯ 4、解原式=5626236-=-+--
四、(略) 五、1、(1)数轴上的任何一个点都对应着一个实数;(2)任何一个实数对应着数轴上的一个点。
2、略. 六、当0≥a 时,a a =2;当0<a 时,a a >2
七、1、 2、设拼出的正方形边长是x ,则
八、解:如图在正△ABC 中,边长是14cm ,高是37cm
所以6个易拉罐所占的高度是(737+)cm ,宽度是21 cm 。