卡方检验的SPSS实现
实训4教学演示:卡方检验的SPSS软件实现方法

【实训提示】
1. 若是连续性变量可先转换为分类变量,再进行分析。 2. 选择统计量要看卡方检验表及其下方a这行的信息:当n
>40,且所有T≥5时,选皮尔逊卡方检验;当n>40,且 任意1≤T<5时,选择连续性校正卡方检验;当n≤40或任 意T<1时,选Fisher精确检验法。
实训4 卡方检验的SPSS软件实现方法
【实训步骤示范】 操作过程现场示范
【实训结果示例】
现场讲解
示例一:四格表卡方检验
图1 个案处理摘要
示例一:四格表卡方检验
图2-1 交叉表
图2-2 交叉表(含行、列占比)
示例一:四格表卡方检验
图3 卡方检验结果
【X3脑卒中变量结果解释】
检验结果显示:(样本量n>40,但最小理论 频数T=1.56<5。因此,选连续性校正卡方检验,) χ²=2.569,P=0.109>0.05,差异无统计学意义,按 照α=0.05的水准,不拒绝H0。尚不能认为糖尿病患 病率在脑卒中患者中存在差异。
实训4
χ²检验的SPSS软件 实现方法
【教学目标】
通过实训项目的操作,详细讲解χ²检验在医 学研究中的应用,做到理论指导与实践操 作相结合,从而避免统计学理论与实际运 算脱节的困扰。
【实践教学具体实施过程】
1. 教师对理论知识进行梳理、讲授并演示操 作过程。
2. 学生实训:学生根据实训要求基于SPSS软 件进行实训操作——对不同分组设计的资 料进行χ²检验。
实训项目:单因素χ²检验
【实训目的】
运用SPSS“分析”菜单中“描述统计”选 项,进行单因素χ²检验,检验两个或多个 样本率及构成比之间的差别有无统计学意 义,并能正确解释SPSS输出的结果。
卡方检验与秩和检验的SPSS操作过程

b. G rouping V ariable: 组别
20
例10-6
某医院用3种方法治疗478例慢性喉炎,资料见表。问3种方法治疗慢性 喉炎的疗效有无差别?
疗效等级 (1)
无效 好转 显效 痊愈
甲法 (2)
24 26 72 186
乙法 (3)
20 16 24 32
丙法 (4)
20 22 14 22
合计 (5)
T est Statistics a
M ann-Whitney U
营养状况 544.000
Wilcoxon W
1534.000
Z
-3.215
A sy mp. Sig. (2-tailed)
.001
a. Grouping V ariable: 季 节
16
多组独立样本资料秩和检验SPSS操作过程
17
例10-5
用x表示状况: x=1、2、3 用group表示季节:group=1、2 用freq表示人数
14
例10-4 变量参数的确定
15
例10-4分析结果输出
Ra nk s
季节 营 养 状夏 况季
冬季 Total
N Mean RSaunm k of Ranks 40 50.90 2036.00 44 34.86 1534.00 84
92 196.41 78 169.60 478
Te st Statistics a,b
C hi-S quare df A sy mp. S ig.
疗效等 级 51.388 2 .000
a. Kruskal Wallis Test
b. Grouping V ariable: 治 疗 方 法
统计学方法总结2spss做卡方检验的方法

统计学方法总结2spss做卡方检验的方法第一篇:统计学方法总结2spss做卡方检验的方法通过看网上的spss教程,发现用spss做卡方检验有俩种方法,特简单介绍下,若有错漏请补充,安江。
以比较两个组别(实验组与对照组)的男女差异为例。
方法一、 如下图所示设置三个变量(组别、性别、人数)再给“组别”以及“性别”变量添加值点输入数据(我是随机的)④如下图进行数据加权(教程上要求有这步,原因不明,查了一下有人说是因为这些数据不是原始数据,而是频数表数据,所以要进行预处理)⑤依次打开:分析(analyze)--描述统计(descriptive)--交叉表(crosstabs),打开交叉表对话框,按图所示将“组别”“性别”分别添加进“行”“列”中,点击交叉表对话框里的“统计量”(statistics),勾选“卡方”以及“McNemar”,点击交叉表对话框里的“单元格”(cell),勾选“行”。
⑥点击“确定”,出现最后结果。
会出现三张表,主要看第三张表的pearson卡方检验,渐进sig(双侧)值大于0.05,因此认为不同的性别对两组无显著的差别。
最后还得看一下第三张表下面的a中小于5的理论频数不能超过20%,超过了则本次检验不正确,需要(1)增加样本含量,(2)进行合理合并或删除分类。
方法二、貌似方法二只适用于俩个变量的,列如比较若干组的人数差异性 如下图所示设置两个变量(组别、人数)再给“组别”变量添加值输入数据(我是随机的)④加权处理不知道需不需要,教程上并没有,不过方法一中的解释如果正确,那么次方法也是需要预处理的。
⑤找到非参数检验->旧对话框->卡方检验,将其单击单击打开,将“人数”添加到“检验变量列表”中,点击“选项”,勾选“描述性”⑥点击“确定”,出现最后结果。
会出现三张表,主要看第三张表的渐进显著性值小于0.05,因此认为人数对组别有显著的差别。
最后还得看一下第三张表下面的a中小于5的理论频数不能超过20%,超过了则本次检验不正确,需要(1)增加样本含量,(2)进行合理合并或删除分类。
卡方检验SPSS操作

卡方检验SPSS操作卡方检验是一种统计方法,用于比较观察频数与期望频数之间的差异是否显著。
它适用于比较两个或多个分类变量之间的关系,并确定这些变量是否相互独立。
在SPSS中,可以使用交叉表和卡方检验命令来执行卡方检验。
首先,打开SPSS软件并导入待分析的数据文件。
然后,选择“数据”菜单中的“交叉表”选项。
在弹出的交叉表对话框中,将要分析的变量拖拽到“行”和“列”的方框中。
假设我们要比较性别和喜好电影类型之间的关系,那么将性别拖拽到“行”,将电影类型拖拽到“列”。
接下来,在交叉表对话框中,点击“统计”按钮。
在弹出的统计对话框中,选择“卡方”选项,并点击“继续”按钮。
然后,点击“确定”按钮生成交叉表。
SPSS将显示交叉表的结果,包括观察频数、期望频数、卡方值和p值等。
在卡方检验中,我们通过观察频数和期望频数之间的差异来判断两个变量是否相关。
如果差异较大,卡方值较大,p值较小,则说明两个变量之间存在显著关系。
不管是使用交叉表还是描述统计方法进行卡方检验,都需要注意以下几点:1.样本数据应该是随机抽取的,并且足够大。
2.对于交叉表中的每个单元格,期望频数应当大于等于5,以确保卡方检验的可靠性。
3.卡方检验只能检验两个或多个分类变量之间的关系,不能用于比较连续变量。
4.如果卡方检验结果显著,表明两个变量之间存在关联,但不能确定关联的性质或因果关系。
卡方检验在数据分析中有着广泛的应用,可以用于医学研究、市场调查、社会科学等领域。
通过SPSS软件的操作,可以便捷地进行卡方检验,并获取检验结果。
卡方检验spss步骤

卡方检验spss步骤咱先来说说啥是卡方检验吧。
卡方检验就是一种统计方法,用来分析两个分类变量之间有没有关系。
比如说,你想知道男生和女生对某种颜色的喜好有没有差别呀,就可以用这个卡方检验。
那在SPSS里怎么做呢?一、数据准备你得先把数据都整理好。
就像你要去旅行,得先把行李收拾好一样。
数据得是那种每个观测值对应着不同变量的情况。
比如说你有一个变量是性别,男或者女,还有一个变量是对颜色的喜好,红、蓝、绿啥的。
这些数据要整整齐齐地放在SPSS的数据视图里。
如果数据乱七八糟的,那卡方检验可就没法好好做啦。
二、打开分析菜单在SPSS的界面里呢,你要找到“分析”这个菜单。
这个菜单就像是一个装满了各种工具的魔法盒子,卡方检验这个小魔法就在里面呢。
你轻轻一点这个“分析”菜单,就会看到好多选项冒出来。
三、选择描述统计里的交叉表在这个分析菜单里,有个叫“描述统计”的部分,在那里你能找到“交叉表”这个选项。
这就像是在一堆糖果里找到你最爱的那一颗一样。
点了“交叉表”之后,会弹出一个新的窗口。
四、设置变量在这个新窗口里呀,你要把你的两个分类变量分别放到行和列里面。
比如说,你把性别放到行里,把颜色喜好放到列里。
这就像是给每个小玩具找到它该待的小格子一样。
这个步骤很重要哦,要是放错了地方,结果可就不对啦。
五、点击统计量按钮在这个交叉表的窗口里,你能看到一个叫“统计量”的按钮。
点这个按钮就像是打开一个神秘的小盒子,里面藏着卡方检验这个宝贝呢。
在统计量的选项里,你要找到“卡方”这个选项,然后把它勾上。
就像你在菜单里点了你最爱吃的菜一样。
六、确定并查看结果勾好卡方检验之后呢,你就可以点“确定”按钮啦。
然后SPSS 就会像个勤劳的小蜜蜂一样,开始计算结果。
结果出来之后呢,你要看一个叫“卡方检验”的表格。
这个表格里会告诉你卡方值、自由度还有显著性水平这些东西。
如果显著性水平小于0.05,那就说明这两个分类变量之间是有关系的哦。
如果大于0.05呢,那可能就没什么关系啦。
SPSS卡方检验步骤

effect
阴转人数 阳性数
30
14
9
36
39
50
T o tal 44 45 89
Chi-Square Tests
Pearson Chi-Square Continuity Correctiona
Value 20.979b
19.068
df 1 1
Asymp. Sig. (2 -si d e d) .000
A 47 52 99
血型 B
66 54 120
AB 20 19 39
O 106 62 168
T o ta l 239 187 426
Chi-Square Tests
Pearson Chi-Square
Value 6.755a
df 3
Asymp. Sig. (2 -si d e d) .080
X2=20.687,p=0.000,按a=0.05水 准,拒绝H0,接受H1,差异有统计 学意义,可认为试验组有效率高于对 照组。
P440 第5题 配对设计卡方检验 步骤: 1、定义变量
11
步骤: 2、输入数据
12
步骤: 3、变量加权
13
步骤: 3、变量加权:按频数加权
14
步骤: 4、分析:选 Analyze
35
X2=20.979,p=0.000,按a=0.0167水 准,拒绝H0,接受H1,差异有统计 学意义,可认为甲、乙两种疗法对尿 路感染治疗效果有差别,甲疗法优于 乙疗法。
36
甲、丙检 验结果
group * effect Crosstabulation
Count
group 甲 丙
T o tal
配对卡方检验spss步骤

配对卡方检验spss步骤配对卡方检验SPSS步骤引言:配对卡方检验是一种常用的统计方法,用于比较两个相关变量之间的关系是否显著。
在SPSS软件中进行配对卡方检验非常方便,本文将详细介绍使用SPSS进行配对卡方检验的步骤。
步骤一:准备数据在进行配对卡方检验之前,首先需要准备数据。
假设我们有两个相关的分类变量X和Y,且每个变量都有两个或多个水平(例如,男性和女性)。
确保数据已经输入到SPSS,每个变量拥有自己的列。
步骤二:导入数据到SPSS打开SPSS软件并选择“文件”选项,然后选择“打开”命令来导入数据文件。
确保选择正确的文件路径,并选择数据文件。
在弹出窗口中选择适当的选项,然后点击“确定”按钮将数据导入到SPSS 软件中。
步骤三:选择配对卡方检验在SPSS软件中,选择“分析”选项,并从下拉菜单中选择“非参数检验”,然后选择“配对样本”和“卡方检验”选项。
步骤四:设定变量在弹出的“配对样本卡方检验”对话框中,将需要进行配对卡方检验的变量移动到“变量对”框中。
确保变量的顺序与数据文件中的顺序一致。
步骤五:设定统计量在同一对话框中,选择“卡方相关系数”以计算配对变量之间的关系强度。
选择“精确度”选项以获取更加精确的结果。
如果选择“对称测验”,则将计算渐近P值,并且结果会更快。
步骤六:运行配对卡方检验点击对话框底部的“确定”按钮来运行配对卡方检验。
SPSS将计算卡方统计量和与之相关的P值。
结果将以表格形式呈现在输出窗口中。
步骤七:解读结果配对卡方检验的结果将显示在输出窗口中的“卡方相关系数”表格中。
首先,关注卡方值(χ^2)的大小。
如果卡方值较大,则意味着两个变量之间的关系较强。
其次,观察P值。
如果P值小于事先设定的显著性水平(通常为0.05),则可以拒绝无关假设,即认为两个变量之间的关系是显著的。
步骤八:结果报告在结果报告中,应包括所进行的配对卡方检验的变量名称、样本数量、卡方值、自由度和P值。
此外,还应说明结果对研究问题的意义和解释。
卡方检验(RxC)-SPSS教程

卡方检验(R×C)-SPSS教程一、问题与数据某研究人员拟分析血型和职业之间的关系,共招募了333位研究对象,收集他们的血型(blood_type)和职业(occupation)信息。
其中血型分为A、B、AB、O型共4种,职业分为律师(Lawyer)、医生(Doctor)、教师(Teacher)和工人(Worker),部分数据图1。
图1 部分数据二、对问题分析研究者想分析血型与职业类型的关系,建议使用卡方检验(R×C),但需要先满足3项假设:假设1:存在两个无序多分类变量,如本研究中血型和职业类型均为无序分类变量。
假设2:具有相互独立的观测值,如本研究中各位研究对象的信息都是独立的,不会相互干扰。
假设3:样本量足够大,最小的样本量要求为分析中的任一单元格期望频数大于5。
经分析,本研究数据符合假设1和假设2,那么应该如何检验假设3,并进行卡方检验(R×C)呢?三、SPSS操作在主页面点击Analyze→Descriptive Statistics→Crosstabs,弹出Crosstabs 对话框。
将变量blood_type和occupation分别放入Row(s)栏和Column(s)栏,如图2。
图2 Crosstabs点击Statistics后,弹出的对话框中点击Chi-square,并点击Nominal栏中的Phi and Cramer’s V。
如图3。
图3 Crosstabs: Statistics点击Continue→Cells,在弹出的对话框中,点击Counts栏Expected选项,并点击Percentages栏中的Row和Column选项,Residuals栏中的Adjusted Standardized,点击Continue→OK。
如图4。
图4 Crosstabs: Cell Display经上述操作,SPSS输出预期频数结果如图5。
图5 Crosstabulation结果显示,本研究最小的期望频数是8.4,大于5,满足假设3,具有足够的样本量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 弹出下列窗口 选择加权个案,并将变量“freq”拉进框内
(3)卡方检验操作: 分别选择 “分析” “统计描述” “交叉表”
如右图
弹出交叉表(Crosstabs)主对话框 1.行变量 本例选择“group” 2.列变量 本例选择“effect”
• 点击右边“统计量”选项,弹出对话框 (如下图) • 选择“卡方”选项
关于OR值
• Odds Ratio:相对危险度(也称比值比、优 势比) • 指病例组中暴露人数与非暴露人数的比值 除以对照组中暴露人数与非暴露人数的比 值。 • 涵义:暴露者的疾病危险度为非暴露者的 多少倍。OR>1说明疾病的危险度因暴露而 增加,暴露与疾病为“正”关联。OR<1说 明疾病的危险度因暴露而减少,“负”关 联
主要内容
• 1.两独立样本率比较的卡方检验
• 2.配对计数资料的卡方检验 • 3.分层资料的卡方检验
• 4.卡方的两两比较
多个率间的多重比较
• 多个率比较的资料可以整理成多个2乘k表资 料,若不经过任何处理,而直接进行两两比 较,必须重新规定检验标准,其目的是为保 证检验假设中I型错误 的概率不变。 • 重新规定检验标准的估计方法有两种 • 1.多个实验组间的两两比较 分析目的为k个 实验组间,任两个率进行比较 ,公式如下
spss18.0 卡方检验
主要内容
• 1.两独立样本率比较的卡方检验
• 2.配对计数资料的卡方检验 • 3.分层资料的卡方检验
• 4.卡方的两两比较
一、两独立样本的卡方检验
列联表资料:指两个或者多个分类变量各水平组合频数分 布表,又称频数交叉表,简称交叉表(Crosstabs)。 下表为四格表
操作过程 (1)建立数据文件(chi2_2.sav) 数据格式:4行3列(如下图)
• 练习2:某医师研究物理疗法、药物治疗和 外用膏药三种方法治疗周围性面神经麻痹 的疗效。 • 问题1:三种疗法的有效率有无差别 • 问题2:如果三种疗法存在差异,是否任意 两组疗法均有差别
素材猫
其他选项介绍
• 1.相关性:计算Pearson和 Spearsmen相关系数,用以 说明行变量和列变量的相关 程度。 • 2相依系数:又称列联系数。 也是用来说明相关性。 • 3.Gamma :测量两个等级变 量之间关联度的统计量 • 4.Kappa:Kappa系数,见 下文
• • • •
观察值:观察频数 期望值:期望频数 行百分比:给出行变量百分比 列百分比:给出列变量百分比
• 结果3:OR的均一性检验,用两种方法比较 性别之间OR是否存在差异(p=0.001)。 说明男性高于女性
• 结果4:又称协变量分析,将性别当做协变 量,即剔除性别这个影响后吸烟与肺癌的 关系。结果显示在剔除性别影响后,吸烟 和肺癌仍然显著相关,即吸烟史导致肺癌 的危险因素。
• 结果5:又称公共OR值估计,合并OR值为2.812,95%置 信区间不包括1,且与1相比差异有显著性(p=0.000) • 注意:经OR值均一性检验各层OR值有显著差异时,不宜 计算公共OR值
• 结果解释:所用方法是基于二项分布的 McNemar检验,p=0.000(双侧),差异显 著,即抗生素用于治疗呼吸道感染是有效的。
使用
系数分析吻合情况
例:116例患者的诊断结果见下表及数据 “diagnosis.sav”,使用kappa系数法分析影 像CT诊断和病理诊断的吻合情况。
• • • • • • • •
• 1.两独立样本率比较的卡方检验
• 2.配对计数资料的卡方检验 • 3.分层资料的卡方检验
• 4.卡方的两两比较
例:Doll和Hill以709例肺癌患者做病例、709 个非肿瘤患者做对照,按性别分层,研究 吸烟与肺癌的关系,调查结果如下表。试 做肺癌的病例对照分析。
如果不分层结果如下
结果解释:p=0.002,差异具有统计学意义
分层做法
操作:(1)建立数据文件 分层变量:选如“gender” (2)菜单选择 统计量主对话框下 风险 Cochran’s and Mantel-Haenszel统计量
结果1:男性卡方检验p=0.000 女性p=0.584
结果2:风险估计,男性组OR=14.043,95% 置信区间不包括1。女性OR=1.222, 95% 置信区间包括1。提示,对于男性而言吸烟 史发生肺癌的危险因素,女性则不是。
(4)结果解释:
Pearson 卡方:非校正卡方检验 连续校正:仅适用于四格表
Fisher 的精确检验:Fisher确切概率检验,也仅 适用于四格表资料 似然比:似然比卡方检验,适用为 等级变量,且从小到大排列时方有意义,其他 情况忽略
• 分类变量(行变量):变量名“group”, 1=“抗病毒组”,2=“紫外线组”。 • 分类变量(列变量):变量名”effect”, 1=“有效”,2=“无效”。 • 频数变量:变量名“freq”,将四格表中的4 个频数输入此列
(2)加权个案 加权个案是指对变量,特别是频数变量赋 予权重。本例对变量“freq”进行加权。 Spss18.0操作 点击“数据”——选择“加权个案”
• 第二种方法:SPSS语法修改。 选择“黏贴”选项,进行修改。
• 通过修改个案选择和黏贴交叉表的语法 • 也可以直接进行交叉表语法的修改
练习
• 练习一:某医院欲比较异梨醇口服液(实 验组)和氢氯噻嗪+地塞米松(对照)降低 颅内压的疗效。将200例颅内压增高患者随 机分为两组。见下表。问两组降低颅内压 的总体有效率有无差别
'
k (k 1) / 2 1
例 3个实验组间的两两比较,其检验水准 ' 用上 面公式估计如下
'
3(3 1) / 2 1
0.0125
2.实验组与同一个对照组的比较 公式如下
'
2( k 1)
SPSS进行两两比较
有两种方式 1.第一种,直接通过“选择个案“来筛选数据。
• 4.卡方的两两比较
2.配对计数资料的卡方检验
• 配对设计的特点是对同一样本的每一份样 品分别用A、B两种方法处理,或者前后测 量,观察其阳性和阴性例数。
• 文件chi_pair.sav为例 • 操作过程: 分析 统计描述 交叉表 行变量:treat_b 列变量:treat_a 统计量:McNemar
文件diagnosis.sav为例 操作过程: 分析 统计描述 交叉表 行变量:treat_b 列变量:treat_a 统计量:McNemar Kappa
结果解释:McNemar 检验结果p=0.057,两 法诊断结果差异无统计学意义
两种诊断吻合系数为 k=0.740,p=0.000,说 明两种诊断方法的吻合度有统计学意义且 较强。一般大于0.7表示吻合度较强。 0.7~0.4一般,小于0.4表示较弱
不需要加权个案的数据
如果数据格式如下图(例:骨科数据)
每一行都是一个个体,无需加权。如果分析4 种病变节段在性别分布有无差异,如下图:
将“性别”和“病变节段”分别拖入行变量 和列变量,其他操作同需加权数据。
• 1.两独立样本率比较的卡方检验
• 2.配对计数资料的卡方检验 • 3.分层资料的卡方检验