海淀区2018届高三一模数学(文)试题及答案(可编辑修改word版)
(完整word版)2018-2019高三第一次模拟试题文科数学

高三年级第一次模拟考试60分.在每小题给出的四个选项中,有且合 题目要畚考公式:样本败据x lt 鬲的标准差 尸¥门如一訝+他— 英叩丘为样車屮均数柱体的体积公式Y=*其中/为底!ftl 曲积・h 为海341(1)复数 I ~i = (A) 1+2i (B) 1-2i(C) 2-i (D) 2+i⑵函数的定义域为(A) (-1,2) (B) (0, 2] (C) (0, 2) (D) (-1,2] ⑶ 己知命题p :办I 砒+ llX ,则了为 锥体的体积公式v=*h 乩中$为底面面枳,h 为商 耶的親血祝*休枳公式$=4庆,評It 中月为球的半牲(A) (C)函数|;宀林匚阴的图象可以由函数'尸沁酬的图象 (A) 64 (B) 31 (C) 32 (D) 63(7) 已知某几何体的三视图如图所示,则其表面积为 (A)右+4观(B)「(C) 2 (D) 8一、选择题:本大题共12小题,毎小题5〕 分,共 只有一 项 符(B)(D)(A) (C)向左平移个单位得到JL个单位得到(B)向右平移3个单位得到 向左平移设变量x 、y 满足约束条件 ⑸ (A) 3 (B) 2 (C) 1 (D) 5(D)向右平移个单位得到g+2y —2 鼻(h[2x +工一7冬6则的最小值为(6)等比数列{an }的公比a>1,血,则-血+口 $+他"卜彌=(8) 算法如图,若输入 m=210,n= 119,则输出的n 为 (A) 2 (B) 3 (C) 7 (D) 11(9) 在 中,/恥C 权」,AB=2, AC=3,则 = (A) 10 (B)-10(C) -4 (D) 4(10) 点A 、B 、C D 均在同一球面上,其中 的体积为(11) 已知何m 2 '黑⑴-代2侧集合」「等于D |『工=对止卡(B)卜: (12) 抛物线 的焦点为F,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为 的重心,则直线 BC 的方程为 (A)龙卄一0 (B): tT '■(C)Ly=0 (D) | It \.■二、填空题:本大题共 4小题,每小题5分,共20分.(13) 班主任为了对本班学生的考试成绩进行分析,从全班 50名同学中按男生、女生用分层 抽样的方法随机地抽取一个容量为 10的样本进行分析•己知抽取的样本中男生人数为 6,则班内女生人数为 ________ .Lif ]町= :—(14) 函数.文+】(X 〉0)的值域是 _________ .(15) 在数列1禺1中,尙=1,如 厂% = 2门丨,则数列的通项 □」= _________ .—7 --- F ------(16) —P 尺的一个顶点P ( 7,12)在双曲线 产 3上,另外两顶点 F1、F2为该双曲线是正三角形,AD 丄平面 AD=2AB=6则该球(D)(C) 卜 j(—Ak 土(D)(A) (B) 15 (C)的左、右焦点,则屮八几的内心的横坐标为 __________ .三、解答题:本大题共 6小题,共70分.解答应写出文字说明、证明过程或演算步骤 (17) (本小题满分12分)在厶ABC 中,角A 、B C 的对边分别为a 、b 、c, A=2B,呦占」5 ' (I ) 求cosC 的值;[c\(II)求的值•(18) (本小题满分12分)某媒体对“男女同龄退休”这一公众关注的问题进行了民意调查, 右表是在某单位得到的数据(人数)•(I )能否有90%以上的把握认为对这一问题的看法与性别有关?(II)从反对“男女同龄退休”的甲、 乙等6名男士中选出2人进行陈述,求甲、乙至少有- 人被选出的概率.反对 合计|男 5 6 H 1 女II1 3 "14 合计 16925(19) (本小题满分12分)如图,在三棱柱.A 尅匚 "Q 中,CC1丄底面ABC 底面是边长为2的正三角形,M N 、G 分别是棱CC1 AB, BC 的中点. (I ) 求证:CN//平面AMB1 (II)若X 严2迄,求证:平面AMG.(20) (本小题满分12 分)X'设函数:「—L(I )当a=0时,求曲线在点(1, f(1))处的切线 方程;P(K 2^k) 0.25 Od U 0J0 kL323 2.072 2.706__ ,讯耐一比严 ____(a+附:(II )讨论f(x)的单调性•(21) (本小题满分12分)中心在原点0,焦点F1、F2在x 轴上的椭圆E 经过点C(2, 2),且 ―二◎土::(I) 求椭圆E 的方程;(II) 垂直于0C 的直线I 与椭圆E 交于A B 两点,当以AB 为直径的圆P 与y 轴相切时,求 直线I 的方程和圆P 的方程•请考生在第(22)、( 23)、(24)三题中任选一题作答,如果多做,则按所做的第一题记分 •作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑 •(22) (本小题满分10分)选修4-1:几何证明选讲如图,AB 是圆0的直径,以B 为圆心的圆B 与圆0的一个交点为P.过点A 作直线交圆Q 于 点交圆B 于点M N. (I )求证:QM=QNi110(II)设圆0的半径为2,圆B 的半径为1,当AM= 时,求MN 的长.(23) (本小题满分10分)选修4-4:坐标系与参数 方程 以直角坐标系的原点 O 为极点,x 轴正半轴为极轴,.已知直线I 的参数方程为 (t 为参数,(I )求曲线C 的直角坐标方程;(II)设直线I 与曲线C 相交于A B 两点,当a 变化时,求|AB|的最小值.(24) (本小题满分10分)选修4-5:不等式选讲 设曲线C 的极坐标方程为2cos 0 L朋& *并在两种坐标系中取相同的长度单位(I) 求不等式的解集S;(II) 若关于x不等式应总=1我=;『;:纂釧有解,求参数t的取值范围(18) 解: 由此可知,有90%的把握认为对这一问题的看法与性别有关.…5分(H)记反对“男女同龄退休”的6男士为ai , i = 1, 2,…,6,其中甲、乙分别为a2,从中选出2人的不同情形为: a1a2, a1a3, a1a4, a1a5, a1a6, a2a3, a2a4, a2a5 , a2a6, a3a4, a3a5, a3a6 , a4a5, a4a6, a5a6,…9分共15种可能,其中甲、乙至少有1人的情形有9种,93 所求概率为P = .…12分(19)解:(I)设 AB1的中点为 P ,连结NP 、MP1 1•/ CM^ — A1 , NP^— A1 , • CM^ NP,2 2文科数学参考答案 一、 选择题: A 卷: ADCDC B 卷: BCDAB 二、 填空题: (13) 20 三、 解答题: (17)解:DACB ADDCAB(14) BB CA(-1,1)(15) n2(16) 1(I): B =(0,亍),••• cosB = 1— s in 2B =•/ A = 2B ,「.4si nA = 2si nBcosB = , cosA = cos2B = 1 — 2si n2B = 5 , ••• cosC = cos[ —(A + B)] = — cos(A + B) = si nAsi nB — cosAcosB =— 2.525 'sinC =1 — cos2C=11 .525 ,根据由正弦定理,c si nC 11b sinB 5…12分(I) K2= 25 X (5 X 3— 6 X11)216 X 9X 11 X 142.932 > 2.706 a1 ,• CNPK是平行四边形,• CN// MP•/ CN平面AMB1 MP平面AMB1 • CN//平面AMB1 …4分(n)v cc 仏平面 ABC •••平面 CC1B1E L 平面 ABC , •/ AG 丄 BC, • AGL 平面 CC1B1B • B1M L AG •/ CC1 丄平面 ABC 平面 A1B1C1 //平面 ABC •- CC L AC, CC1 丄 B1C1 ,在 Rt △ MCA 中 , AM k CM 即 AC2= 6. 同理,B1M=6.•/ BB1/ CC1, • BB1 丄平面 ABC •- BB1 丄 AB, • AB1= B1B2+ AB2= C1C2+ AB2= 2.3 , • AM2+ B1M2= AB2, • B1ML AM 又 AG A AM= A , • B1ML 平面 AMG (20)解:, , x2 x(x — 2) (I)当 a = 0 时,f(x) = , f (x)=—亠exex1 1f(i) =T ,f (i) =-^,曲线y = f(x)在点(1 , f(1))处的切线方程为(2x — a)ex — (x2 — ax 土 a)ex e2x(1 )若 a = 2,贝U f (x) w 0 , f(x)在(一a , +s )单调递减. …7 分(2 )若 a v 2,贝 U…10分 …12分1y =肓(x — 1) +(x — 2)(x — a)exA Bf (x)当x€ ( —a , a)或x€ (2 , +a )时,f (x) v 0,当x € (a , 2)时,f (x) > 0 , 此时f(x)在(—a , a)和(2 , +a )单调递减,在(a , 2)单调递增.(3)若a> 2,贝U当x€ ( —a , 2)或x€ (a , +a )时,f (x) v 0,当x € (2 , a)时,f (x) >0 , 此时f(x)在(—a , 2)和(a , +a )单调递减,在(2 , a)单调递增. …12分x2 y2(21)解:(I)设椭圆E的方程为02+ b2 = 1 (a>b> 0),贝y a2+ b2记c= ,a2—b2 ,不妨设F1( — c , 0) , F2(c , 0),则C f1= ( —c—2, —2) , C f2= (c —2, —2),则C f1 • C f2= 8 —c2 = 2 , c2 = 6,即a2 —b2= 6.由①、②得a2= 12, b2= 6. 当m= 3时,直线I 方程为y =— x + 3, 此时,x1 + x2 = 4,圆心为(2 , 1),半径为2,圆P 的方程为(x — 2)2 + (y — 1)2 = 4; 同理,当 m=— 3时,直线I 方程为y = — x — 3,圆P 的方程为(x + 2)2 + (y + 1)2 = 4. …12分 (22)解:(I)连结 BM BN BQ BP. •/ B 为小圆的圆心,••• BM= BN 又••• AB 为大圆的直径,• BQL MN , •- QM= QN …4 分 (n)v AB 为大圆的直径,•/ APB= 90 , • AP 为圆B 的切线,• AP2= AM- AN …6分 由已知 AB= 4, PB= 1 , AP2= AB2- PB2= 15,所以曲线C 的直角坐标方程为 y2= 2x .(n)将直线l 的参数方程代入 y2 = 2x ,得t2sin2 a — 2tcos a — 1= 0.所以椭圆E 的方程为 x2 y2 i2+ 6 = 1. (也可通过2a = iCFlI + |C ?2|求出a ) (n)依题意,直线 0C 斜率为1,由此设直线I 的方程为y = — X + m 代入椭圆 E 方程,得 3x2 — 4m 灶2m2- 12= 0. 由△= 16m2- 12(2m2 — 12) = 8(18 — m2),得 m2< 18. 4m 2m2— 12 记 A(x1 , y1)、B(x2 , y2),贝U x1 + x2=^ , x1x2 = -—. 3 3 x1 + x2 圆P 的圆心为(一_, y1 + y2 2 ),半径r = 当圆P 与y 轴相切时, x1 + x2 r = 1 2 1, 2x1x2 = (x1 + x2)2 4 2(2m2 — 12)= 3 = 4m2 —,m2= 9v 18. …10分 (I)由 2cos 0 p = sinr v ,得(p sin 0 )2 = 2 p cos 0, …6分 7 6设A、B两点对应的参数分别为t1、t2,则4C0S2 a 4 2 + = ------------------------ sin4 a sin2 a sin2 a当a =—亍时,|AB|取最小值2 .…10分 (24)解:—x + 3, x v — 3,(I) f(x) = — 3x — 3,— 3<x < 0,x — 3, x >0.如图,函数y = f(x)的图象与直线 y = 7相交于横坐标为 x1 =— 4,x2 = 10的两点, 由此得 S = [ — 4, 10].\ :I…6分(n)由(I )知,f (x )的最小值为一3,则不等式 f(x) + |2t —3| < 0有解必须且只需—3 + |2t — 3| < 0,解得0W t < 3,所以t 的取值范围是[0 , 3]. t1 + t2 = 2C0S a sin2 at1t2 sin2 a :.|AB| = |t1 - t2| = (t1 + t2)2 - 4t1t2 …10分。
北京市海淀区2018届高三第一次模拟考试数学(文)试卷(有答案)

北京市海淀区2018届高三第一次模拟考试数学(文)试卷2018.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x=-,且A B ⊆,则a 可以是(A) 1- (B)0 (C)l (D)2 (2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2) (D) (1,4) (3)下列函数满足()()=0f x f x +-的是(A) ()f x =()ln f x x =(C) 1()1f x x =- (D) ()cos f x x x =(4)执行如图所示的程序框图,输出的S 值为(A)2 (B)6 (C)8 (D) 10 (5)若抛物线22(0)y px p=上任意一点到焦点的距离恒大于1,则p 的取值范围是 (A) 1p (B) 1p (C) 2p(D) 2p(6)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为(A)1 (B)2 (C) 1- (D) 2-(7)已知n S 是等差数列{}n a 的前n 项和,则“nn S na 对,2n ≥恒成立”是“数列{}n a 为递增 数列”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件(8)已知直线l :(4)y k x =+与圆22(2)4x y ++=相交于A B ,两点,M 是线段AB 的中点,则点M 到直线3460x y --=的距离的最大值为(A)2 (B)3 (C)4 (D)5第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
2018海淀区高中数学(理)一模试卷与答案

海淀区高三年级第二学期期中练习数学(理科)2018. 4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题,共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{0,},{12}A a B x x ==-<< | ,且A B ⊆,则a 可以是 (A)1- (B) 0 (C) 1 (D) 2(2)已知向量(1,2),(1,0)==-a b ,则+2=a b(A) (1,2)- (B) (1,4)- (C) (1,2) (D) (1,4)(3)执行如图所示的程序框图,输出的S 值为 (A) 2 (B) 6 (C) 8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为,M 且(,)P x y 为M 中任意一点,则y x -的最大值为(A) 1 (B) 2 (C) 1- (D) 2-(5)已知a ,b 为正实数,则“1a >,1b >”是“lg lg 0a b +>”的( )(A)充分而不必要条件 (B) 必要而不充分条件(C)充分必要条件 (D) 既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S ,则S 的值不可能是(A) 1(B)65(C)43(D)32(7)下列函数()f x 中,其图象上任意一点(,)P x y 的坐标都满足条件y x ≤的函数是(A) 3()f x x = (B) ()f x = (C) ()e 1x f x =- (D) ()ln(1)f x x =+ (8)已知点M 在圆221:(1)(1)1C x y -+-=上,点N 在圆222:(1)(1)1C x y +++=上,则下列说法错误的是(A )OM ON ⋅的取值范围为[3--(B )||OM ON +的取值范围为[0,(C )||OM ON -的取值范围为2,2](D )若OM ON λ=,则实数λ的取值范围为[33---+第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
2018年北京市海淀区高三4月一模文科数学试题及答案 精

海淀区高三年级第二学期期中练习数 学 (文科) 2018.4 本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 集合2{6},{30}A x x B x x x =∈≤=∈->N | N | ,则AB =A. {1,2}B. {3,4,5}C.{4,5,6}D.{3,4,5,6} 2.等差数列{}n a 中, 2343,9,a a a =+= 则16a a 的值为A. 14B. 183. 某程序的框图如图所示,执行该程序,若输入的x 值为5为A. 12B. 1C. 2D.1-4. 已知0a >,下列函数中,在区间(0,)a 上一定是减函数的是 A. ()f x ax b =+ B. 2()21f x x ax =-+ C. ()x f x a = D. ()log a f x x =5. 不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为A. 0B. 1C. 2D.3 6. 命题:p ∃,α∈R sin(π)cos αα-=;命题:q 0,m ∀>双曲线22221x y m m-=则下面结论正确的是A. p 是假命题B.q ⌝是真命题C. p ∧q 是假命题D. p ∨q 是真命题 7.已知曲线()ln f x x =在点00(,())x f x 处的切线经过点(0,1)-,则0x 的值为 A. 1eB. 1C. eD.108. 抛物线24y x =的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆为等边三角形时,其面积为A. B. 4 C. 6D.二、填空题:本大题共6小题,每小题5分,共30分.9. 在复平面上,若复数1+i b (b ∈R )对应的点恰好在实轴上,则b =_______. 10.若向量,a b 满足||||||1==+=a b a b ,则⋅a b 的值为______. 11.某几何体的三视图如图所示,则它的体积为______.12.在ABC ∆中,若4,2,a b ==1cos 4A =,则______.c =13.已知函数22, 0,(), 0x a x f x x ax a x ⎧-≥⎪=⎨++<⎪⎩有三个不同的零点,则实数a 的取值范围是_____. 14.已知函数()y f x =,任取t ∈R ,定义集合:侧视图{|t A y =()y f x =,点(,())P t f t ,(,())Q x f x 满足||PQ ≤. 设,t t M m 分别表示集合t A中元素的最大值和最小值,记()t t h t M m =-.则 (1) 若函数()f x x =,则(1)h =______; (2)若函数π()sin 2f x x =,则()h t 的最小正周期为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数2()2cos )f x x x =--.(Ⅰ)求π()3f 的值和()f x 的最小正周期; (Ⅱ)求函数在区间ππ[,]63-上的最大值和最小值.16. (本小题满分13分)在某大学自主招生考试中,所有选报II 类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E 五个等级. 某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(I )求该考场考生中“阅读与表达”科目中成绩为A 的人数; (II )若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A. 在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.17. (本小题满分14分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又30CAD ∠=,4PA AB ==,点N 在线段PB 上,且13PN NB =.(Ⅰ)求证:BD PC ⊥; (Ⅱ)求证://MN 平面PDC ;(Ⅲ)设平面PAB 平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.18. (本小题满分13分)函数31()3f x x kx =-,其中实数k 为常数.(I) 当4k =时,求函数的单调区间; (II) 若曲线()y f x =与直线y k =只有一个交点,求实数k的取值范围.19. (本小题满分14分)已知圆M :227(3x y +=,若椭圆C:22221x y a b+=(0a b >>)的右顶点为圆M (I )求椭圆C 的方程;(II )已知直线l :y kx =,若直线l 与椭圆C 分别交于A ,B 两点,与圆M 分别交于G ,H 两点(其中点G 在线段AB 上),且AG BH =,求k 的值.20. (本小题满分13分)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=.(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;(Ⅱ)已知点(9,3),(5,3)H L ,若点M 满足(),()M H L M ττ==,求点M 的坐标; (Ⅲ)已知0P 0000(,)(,)x y x y ∈∈Z Z 为一个定点,点列{}i P 满足:1(),i i P P τ-=其中1,2,3,...,i n =,求0nP P 的最小值.海淀区高三年级第二学期期中练习数 学 (文)参考答案及评分标准2018.4说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)2π1()2)1322f =--=………………2分 因为2()2cos )f x x x =--222(3sin cos cos )x x x x =-+- 22(12sin )x x =-+………………4分212sin x x =-cos2x x =………………6分π= 2sin(2)6x +………………8分所以 ()f x 的周期为2π2ππ||2T ω===………………9分 9. 0 10. 21-11.16 12.4 13. 4a >14.2,2(II )当ππ[,]63x ∈-时, π2π2[,]33x ∈-,ππ5π(2)[,]666x +∈- 所以当6x π=-时,函数取得最小值()16f π-=-………………11分当6x π=时,函数取得最大值()26f π=………………13分16.解: (I)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有100.2540÷=人………………2分所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为40(10.3750.3750.150.025)400.0753⨯----=⨯=………………4分(II )求该考场考生“数学与逻辑”科目的平均分为1(400.2)2(400.1)3(400.375)4(400.25)5(400.075)2.940⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=………………8分(Ⅲ)因为两科考试中,共有6人得分等级为A ,又恰有两人的两科成绩等级均为A ,所以还有2人只有一个科目得分为A ………………9分设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A 的同学,则在至少一科成绩等级为A 的考生中,随机抽取两人进行访谈,基本事件空间为{Ω={甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件 ………………11分设“随机抽取两人进行访谈,这两人的两科成绩等级均为A ”为事件B ,所以事件B 中包含的基本事件有1个,则1()6P B =. ………………13分 17.解:(I )证明:(I) 因为ABC ∆是正三角形,M 是AC 中点, 所以BM AC ⊥,即BD AC ⊥………………1分又因为PA ABCD ⊥平面,BD ⊂平面ABCD ,PA BD ⊥………………2分 又PA AC A =,所以BD ⊥平面PAC ………………4分 又PC ⊂平面PAC ,所以BD PC ⊥………………5分(Ⅱ)在正三角形ABC 中,BM =………………6分 在ACD ∆,因为M 为AC 中点,DM AC ⊥,所以AD CD =30CAD ∠=,所以,DM =:3:1BM MD =………………8分 所以::BN NP BM MD =,所以//MN PD ………………9分又MN ⊄平面PDC ,PD ⊂平面PDC ,所 以//MN 平面PDC ………………11分(Ⅲ)假设直线//l CD ,因为l ⊂平面PAB ,CD ⊄平面PAB , 所以//CD 平面PAB ..................12分 又CD ⊂平面ABCD ,平面PAB 平面ABCD AB =,所以//CD AB (13)分这与CD 与AB 不平行,矛盾所以直线l 与直线CD 不平行………………14分18.解:(I )因为2'()f x x k =-………………2分当4k =时,2'()4f x x =-,令2'()40f x x =-=,所以122,2x x ==-'(),()f x f x 随x 的变化情况如下表:………………4分所以()f x 的单调递增区间是(,2)-∞-,(2,)+∞ 单调递减区间是(2,2)-………………6分(II )令()()g x f x k =-,所以()g x 只有一个零点………………7分 因为2'()'()g x f x x k ==- 当k =时,3()g x x =,所以()g x 只有一个零点0 ………………8分 当0k <时,2'()0g x x k =->对R x ∈成立,所以()g x 单调递增,所以()g x 只有一个零点………………9分当0k >时,令2'()'()0g x f x x k ==-=,解得1x =2x =……………10分 所以'(),()g x g x 随x 的变化情况如下表:()g x 有且仅有一个零点等价于(0g <………………11分即2(03g k =<,解得904k <<………………12分 综上所述,k 的取值范围是94k <………………13分 19.解:(I)设椭圆的焦距为2c ,因为a =,c a =,所以1c =………………2分 所以1b = 所以椭圆C :2212x y +=………………4分 (II )设A (1x ,1y ),B (2x ,2y )由直线l 与椭圆C 交于两点A ,B ,则22220y kx x y =⎧⎨+-=⎩所以22(12)20k x +-=, 则120x x +=,122212x x k =-+………………6分所以AB ==8分 点M()到直线l的距离d =………………10分则GH =………………11分 显然,若点H 也在线段AB 上,则由对称性可知,直线y kx =就是y 轴,矛盾, 因为AG BH =,所以AB GH =所以22228(1)724()1231k k k k +=-++ 解得21k =,即1k =±………………20.解: (I)因为x ∆+=3(,y x y ∆∆∆为非零整数) 故1,2x y ∆=∆=或2,1x x ∆=∆=,所以点(0,0)的“相关点”有8个………………1分又因为22()()5x y ∆+∆=,即2211(0)(0)5x y -+-= 所以这些可能值对应的点在以(0,0)3HGB A分(II)设(,)M M M x y ,因为(),()M H L M ττ== 所以有|9||3|3M M x y -+-=,|5||3|3M M x y -+-=………………5分 所以|9||5|M M x x -=-,所以7,M x =2M y =或4M y = 所以(7,2)M 或(7,4)M ………………7分 (III)当*2,N n k k =∈时,0||n P P 的最小值为0………………8分当=1n 时,可知0||n P P 9分 当=3n 时,对于点P ,按照下面的方法选择“相关点”,可得300(,+1)P x y : 000(,)P x y →100200300(+2,+1)(+1,+3)(,+1)P x y P x y P x y →→ 故0||n P P 的最小值为1………………11分 当231,,*, N n k k k =+>∈时,对于点P ,经过2k 次变换回到初始点000(,)P x y ,然后经过3次变换回到00(,+1)n P x y ,故0||n P P 的最小值为1综上,当=1n 时,0||n P P 当*2,N n k k =∈时,0||n P P 的最小值为0 当21*, N n k k =+∈时,0||n P P 的最小值为1 ………………13分。
北京市海淀区2018年高三一模数学文科试题

2018年海淀区高三年级第二学期期中练习数 学 (文科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i -2. 已知集合{}{}1,0,1,sin π,,A B y y x x A AB =-==∈=则A.{}1-B.{}0C. {}1 D.Æ 3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1 B. 3 C.5D. 75. 函数()2sin f x x x =+的部分图象可能是A B C D6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为A .1B .2C .12D .3 7. 已知()x f x a =和()x g x b =是指数函数,则“(2)(2)f g >”是“a b >”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件OyxOyxOyxOyx8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为A .0B .1C .2D .4二、填空题:本大题共6小题,每小题5分,共30分.9. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______方案一: 方案二: 方案三:11. 在ABC ∆中,3a =,5b =,120C =,则sin ______,_______.sin Ac B== 12. 某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①()x f x p q =⋅,(0,1)q q >≠;②()log (0,1)xp f x q p p =+>≠;③2()f x x px q =++.能较准确反映商场月销售额()f x 与月份x 关系的函数模型为_________(填写相应函数的序号),若所选函数满足(1)10,(3)2f f ==,则()f x =_____________.13.一个空间几何体的三视图如图所示,该几何体的表面积为__________.14. 设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(1) 若1Ω与2Ω有且只有一个公共点,则a =;俯视图主视图侧视图(2) 记()S a 为1Ω与2Ω公共部分的面积,则函数()S a 的取值范围是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos =B ,2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b 的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ABC =90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示.(Ⅰ)若M 是FC 的中点,求证:直线DM //平面1A EF ; (Ⅱ)求证:BD ⊥1A F ;(Ⅲ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.18. (本小题满分13分)已知函数()ln f x x x =. (Ⅰ)求()f x 的单调区间;(Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立.19. (本小题满分14分)已知1122(,),(,)A x y B x y 是椭圆22:24C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 关于点(1,0)M 对称时,求证:121x x ==;(Ⅱ)当直线AB 经过点(0,3) 时,求证:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.1图 图 2(Ⅰ)试判断(3)A :123(0,2),(3,0),(5,2)A A A 与(3)B :123(0,2),(2,5),(5,2)B B B 是否互为正交点列,并说明理由;(Ⅱ)求证:(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列(4)B ; (Ⅲ)是否存在无正交点列(5)B 的有序整数点列(5)A ?并证明你的结论.。
北京市海淀区2018届高三第一学期期末练习数学(文)试卷(含答案)

海淀区高三年级第一学期期末练习数学(文科) 2018.1第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知i 是虚数单位,若()1+i a i i +=,则实数a 的值为 A. 1B. 0C.1-D. 2-(2)已知,a b R ∈,若a b p ,则A. 2a b pB. 2ab b p C.1122a b p D. 33a b p (3)执行如图所示的程序框图,输出的k 值为 A.4 B.5 C.6 D.7(4)下面的茎叶图记录的是甲、乙两个班级各5各同学在一次 数学测试中的选择题的成绩(单位:分,每道题5分,共8道题):已知两组数据的平均数相等,则,x y 的值分别为 A.0,0B.0,5C.5,0D.5,5(5)已知直线0x y m -+=与圆22:1O x y +=相交于,A B 两点,且AOB ∆为正三角形,则实数m 的值为 A.3 B. 6 C. 3或3- D. 6或6-(6)设,则“1a =”是“直线10ax y +-=与直线++10x ay =平行”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件,(7)在ABC ∆中,=1,AB AC D =是AC 的中点,则BD CD ⋅u u u r u u u r的取值范围是A. 31(,)44-B. 1(,)4-∞ C. 3(,)4-+∞D. 13(,)44(8)已知正方体的1111ABCD A B C D -棱长为2,点,M N 分别是棱11,BC C D 的中点,点P 在平面1111A B C D 内,点Q 在线段1A N 上,若5PM =,则PQ 长度的最小值为 A.21-B.2C.3515- D. 355第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)已知双曲线221ax y -=的一条渐近线方程为y x =,则实数k 的值为 .(10)若变量,x y 满足约束条件010220y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则z x y =+的最大值是 .(11)ABC ∆中, 1,7,a b ==且ABC ∆的面积为32,则c = . (12)某三棱锥的三视图如图所示,该三棱锥的四个面的面积中最大的值是 .(13)函数2,0()(2),0x x f x x x x ⎧≤=⎨-⎩f 的最大值为 ;若函数()f x 的图像与直线(1)y k x =-有且只有一个公共点,则实数k 的取值范围是 .(14)某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一1 2 3 4 5 得分 甲 C C A B B 4 乙 C C B B C 3 丙 B C C B B 2 则甲同学答错的题目的题号是 ,其正确的选项是 .三、解答题共6小题,共80分。
北京市海淀区2018届高三第一次模拟考试数学(理)试卷

海淀区高三年级第二学期期中练习数 学(文科) 2018.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x=-,且A B ⊆,则a 可以是(A) 1- (B)0 (C)l (D)2(2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2) (D) (1,4)(3)执行如图所示的程序框图,输出的S 值为 (A)2 (B)6 (C)8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为(A)1 (B)2 (C) 1- (D) 2-(5)已知a ,b 为正实数,则“1a,1b ”是“lg lg 0a b +”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转 动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面 上的投影的面积记作S ,则S 的值不可能是(A) 1 (B) 65 (C) 43 (D)32(7)下列函数()f x 中,其图像上任意一点(,)P x y 的坐标都满足条件y x ≤的函数是(A) 3()f x x = (B) ()f x =()1x f x e =- (D) ()ln(1)f x x =+(8)已知点M 在圆1C :22(1)(1)1x y -+-=上,点在圆2C :22(+1)(+1)1x y +=上,则下列说法错误的是(A) OM ON 的取值范围为[3--(B )OM ON +取值范围为(C)OM ON -的取值范围为2](D)若OM ON λ=,则实数λ的取值范围为[33---+第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第二学期期中练习数学(文科)2018.4本试卷共 4 页,150 分。
考试时长 120 分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题,共 40 分)一、选择题共 8 小题,每小题 5 分,共 40 分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合 A = {0, a}, B = {x | -1 <x < 2},且A ⊆B ,则a 可以是(A) -1 (B)0 (C)1(D)2 (2)已知向量a = (1, 2), b = (-1, 0) ,则a+2b =(A) (-1, 2)(B)(-1, 4)(C)(1, 2)(D)(1, 4)(3)下列函数满足f (-x) +f (x) = 0 的是(A) f (x) = (B) f (x) = ln x(C) f (x) =1x -1(D) f (x) =x cos x(4)执行如图所示的程序框图,输出的S 值为(A) 2 (B)6(C) 8 (D)10(5)若抛物线y2= 2 px( p > 0) 上任意一点到焦点的距离恒大于 1,则p 的取值范围是x(A) p <1(B)p >1(C)p < 2 (D)p > 2(6)如图,网格纸上小正方形的边长为 1,若四边形ABCD 及其内部的点组成的集合记为M , P(x, y) 为M 中任意一点,则y -x 的最大值为(A) 1 (B) 2(C)-1 (D)-2(7)已知S n是等差数列{a n}的前n 项和,则“ S n<na n对n ≥ 2 恒成立”是“数列{a n}为递增数列”的(A)充分而不必要条件(B) 必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(8)已知直线l :y =k (x + 4) 与圆(x + 2)2+y 2= 4 相交于A ,B 两点,M 是线段AB 中点,则M 到直线3x - 4 y - 6 = 0 的距离的最大值为(A) 2 (B) 3 (C) 4 (D) 5第二部分(非选择题,共 110 分)二、填空题共6 小题,每小题 5 分,共30 分。
(9)复数2i1+ i.=- 2(10) 已知点(2, 0) 是双曲线C :x 2a 2y = 1的一个顶点,则C 的离心率为.(11) 在∆ABC 中,若c = 2, a =3, ∠A = ,则sin C =6, cos 2C =.(12) 某几何体的三视图如下图所示,则该几何体的体积是.(13) 已知函数 f (x ) = 1+ cos x ,给出下列结论: x主视图俯视图左视图π 2① f (x ) 在(0, ) 上是减函数;② f (x ) 在(0, π) 上的最小值为 ;2 π③ f (x ) 在(0, 2π) 上至少有两个零点.其中正确结论的序号为 .(写出所有正确结论的序号)(14) 将标号为 1,2,……,20 的 20 张卡片放入下列表格中,一个格放入一张卡片.把每列标号最小的卡片选出,将这些卡片中标号最大的数设为 a ;把每行标号最大的卡片选出, 将这些卡片中标号最小的数设为b .甲同学认为a 有可能比b 大,乙同学认为a 和b 有可能相等.那么甲乙两位同学中说法正确的同学是.1 1 31 1三、解答题共6 小题,共80 分。
解答应写出文字说明、演算步骤或证明过程。
(15)(本小题13 分)已知等比数列{a }满足a =1,1.n 1 a5=8a2(Ⅰ)求数列{a n}的通项公式;(Ⅱ)试判断是否存在正整数n ,使得{a n}的前n 项和S n为5?若存在,求出n 的值;若2不存在,说明理由. (16)(本小题13 分)函数f (x) = 3sin(x +)(> 0,||<π) 的部分图2 象如图所示,其中x0是函数f (x) 的零点. (Ⅰ)写出,及x0的值;(Ⅱ)求函数f (x) 在区间[-π, 0] 上的最大值和最小值. 2(17)(本小题13 分)流行性感冒多由病毒引起,据调查,空气相对湿度过大或过小时,都有利于一些病毒的繁殖和传播.科学测定,当空气相对湿度大于65% 或小于40% 时,病毒繁殖滋生较快,当空气相对湿度在45% 55% 时,病毒死亡较快.现随机抽取了全国部分城市,获得了它们的空气月平均相对湿度共300 个数据,整理得到数据分组及频数分布表,其中为了记录方便,将空气相对湿度在a% : b% 时记为区间[a,b) .组号12345678分组[15, 25)[25, 35)[35, 45)[45, 55)[55, 65)[65, 75)[75,85)[85, 95)频数23153050751205(Ⅰ)求上述数据中空气相对湿度使病菌死亡较快的频率;(Ⅱ)从区间[15, 35) 的数据中任取两个数据,求恰有一个数据位于[25, 35) 的概率;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中空气月平均相对湿度的平均数在第几组(只需写出结论).(18)(本小题14 分)如图,四棱锥AD =AB =AE =1BC = 1 ,2E -ABCD 中,AD // BC ,且BC ⊥平面ABE ,M 为棱CE 的中点.(Ⅰ)求证:DM / / 平面ABE ;(Ⅱ)求证:平面CDE ⊥平面CBE ;(Ⅲ)当四面体D -ABE 的体积最大时,判断直线AE 与直线CD 是否垂直,并说明理由.(19)(本小题14 分)] ] 已知椭圆C 的两个焦点为 F (-1, 0), F (1, 0) ,离心率为 1.122(Ⅰ)求椭圆C 的方程;(Ⅱ)设点 A 是椭圆C 的右顶点,过点 F 1 的直线与椭圆C 交于 P , Q 两点,直线 AP , AQ与直线 x = -4 分别交于 M 、 N 两点. 求证:点 F 1 在以 MN 为直径的圆上.(20)(本小题 13 分)已知函数 f (x ) = e x sin x - ax .(Ⅰ)当 a = 0 时,求曲线 y =f (x ) 在(0, f (0)) 处的切线方程;(Ⅱ)当 a ≤ 0 时,判断 f (x ) 在[0, 3上的单调性,并说明理由;4(Ⅲ)当a < 1 时,求证: ∀x ∈[0, 3,都有 f (x ) ≥ 0 .45 2 1 ,且 n2018 文科参考答案一.选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.题号 1 2 3 4 5 6 7 8 答案CADDDBCC二.填空题:本大题共 6 小题,每小题 5 分,共 30 分.9.1+ i3+310. 21 ,11. 3 312. 213.①③ 14. 乙三.解答题:本大题共 6 小题,共 80 分。
解答应写出文字说明,演算步骤或证明过程.15.解:(Ⅰ)设{a n }的公比为 q ,1 a 5 = 因为a 2 a =a q 3q 3 = 1 所以8, ........................................................................................................... 2 分q = 1得2 ………………4 分a = a q n -1 = 所以1 ( n = 1, 2, ) 2n -1………………6 分5 3 8 ,⎭2n ⎪ ⎝⎝ n 5(Ⅱ)不存在 n ,使得{a n }的前 n 项和 Sn 为 2………………7 分因为 a 1 = 1, q = 12 ,⎛ 1 ⎫n1 - ⎪ S = ⎝ 2⎭ = 2⎛1 - 1 ⎫n11 - 所以 22n ⎪………………10 分方法 1:S = 52(1-1 ) = 5 令n2 , 则 2n 2得2n= -4 ,该方程无解........................................................................................ 13 分5所以不存在 n ,使得{a n }的前 n 项和 Sn 为 2 .方法 2:1 -1 < 1因为对任意n ∈ N *,有 2n,S = 2⎛1 - 所以1 ⎫ < 2⎭………………13 分5所以不存在 n ,使得{a n }的前 n 项和 Sn 为 2 。
,0] = ,= 2,==116 , x0 12.16.解:(Ⅰ) .......................................................................................................... 6 分(Ⅱ)由(Ⅰ)可知,f (x ) = 3sin(2x +6………………7 分x ∈[-因为2 ,2x + ∈[- 5, ]所以6 6 6 ………………9 分2x + = - 6 2 x = -3f (x )-3当即时,的最小值为 ...................................... 1 1 分2x + 6 6x =03f (x )2当即时,的最大值为 .............................................. 13 分17.解:(Ⅰ)由已知,当空气相对湿度在45% 55% 时,病毒死亡较快.而样本在[45, 55) 上的频数为 30,30 = 1 所以所求频率为300 10 ………………3 分(Ⅱ)设事件 A 为“从区间[15, 35) 的数据中任取两个数据,恰有一个数据位于[25, 35) ” ............................................................... 4 分设区间[15, 25) 中的两个数据为a 1 , a 2 ,区间[25, 35) 中的三个数据为b 1 , b 2 , b 3 ,因此,从区间[15, 35) 的数据中任取两个数据,包含(a 1 , a 2 ), (a 1 , b 1 ), (a 1 , b 2 ), (a 1 , b 3 ), (a 2 , b 1 ), (a 2 , b 2 ), (a 2 , b 3 ), (b 1 , b 2 ), (b 1 , b 3 ), (b 2 , b 3 )) ,共 10 个基本事件, ........................................................................................................................ 6 分而事件 A 包含(a 1 , b 1 ), (a 1 , b 2 ), (a 1 , b 3 ), (a 2 , b 1 ), (a 2 , b 2 ), (a 2 , b 3 ) 共 6 个基本事件,P ( A ) = 6 = 3…………………….…8 分所以 10 5 (10)分(Ⅲ)第 6 组 ........................................................................................................................... 13 分CB18.(Ⅰ)证明:取线段 EB 的中点 N ,连接 MN , AN . E因为 M 为棱CE 的中点,所以在∆CBE 中 MN / / BC , MN = 1BC 2. …………………….…1 分又 AD / / BC , AD = 1BC2 ,所以 MN / / AD , MN = AD .所以四边形 DMNA 是平行四边形,所以 DM / / AN ........................................................................................................... 2 分又 DM ⊄ 平面 ABE , AN ⊂ 平面 ABE ,所以DM / / 平面 ABE ................................................................................................ 4 分 DMAN(Ⅱ)因为AE =AB , N 为EB 中点,所以 AN ⊥BE. …………………….…5 分又BC ⊥平面ABE , AN ⊂平面ABE ,所以 BC ⊥AN.…………………….…6 分又 BC BE =B ,所以AN ⊥平面BCE ........................................................................................................... 7 分又DM / / AN ,所以DM ⊥平面BCE ................................................................................................. 8 分因为DM ⊂平面CDE ,所以平面CDE ⊥平面CBE......................................................................................... 9 分(Ⅲ)AE ⊥CD. .…………………….…10 分设∠EAB =,V =1⨯1AE ⋅AB ⋅sin⋅AD =1sin则四面体D -ABE 的体积 3 2 6 . ………………….…11 分当= 90︒,即AE ⊥AB 时体积最⎩a = b + c + = 大 ............................................................................................. 12 分又 BC ⊥ 平面 ABE , AE ⊂ 平面 ABE ,所以 AE ⊥ BC. .…………………….…13 分因为 BC AB = B ,所以 AE ⊥ 平面 ABC .因为CD ⊂ 平面 ABCD ,所以AE ⊥ CD ...............................................................................................................14 分x 2 + y 2=> >a 2b 21(a b 0) 19. 解:(Ⅰ)由题意,设椭圆方程为 ,⎧c = 1 ⎪ c = 1 ⎨ ⎪ ⎪ 2 2 2 则 ..................................................................................................... 2 分得a = 2,b = 3..…………………….…4 ,所以椭圆方程为 x 2 y 21.4 3.…………………….…5 分(Ⅱ)证明:由(Ⅰ)可得 A (2, 0) .P (- 3 -1, - 3)当直线 PQ 不存在斜率时,可得1, ), Q (2 2直线 AP 方程为y = -1( x - 2) 2,令 x = -4, 得 M (-4, 3) ,a 21 = (- ) = (- - )18k 同理,得 N (-4, -3) .F M 3, 3 , F N 3, 3 所以,得 F 1M ⋅ F 1 N = 0 .所以∠MF 1 N = 90︒ , F 1 在以 MN 为直径的圆上 .................................................................. 7 分当直线 PQ 存在斜率时,设 PQ 方程为y = k ( x +1)⎧ y = k ( x +1) ⎪, P (x 1 , y 1 ) 、Q (x 2 , y 2 ).⎨ x 2 y 2⎩⎪ 4 + 3 = 1(3 + 4k 2 ) x 2 + 8k 2 x + 4k 2 -12 = 0 由 可得 .∆ > 0 2 x 1 + x 2 = - 3 + 4k 2 , x 1 x 2 = 4k 2 -12 3 + 4k 2 显然 , , ....................................................... 8 分y = 直线 AP 方程为 y 1x 1 - 2 (x - 2)M (-4, -6 y 1) ,得x 1 - 2 ,同理,N (-4, -6 y 2 ) x 2 - 2. .…………………….…9 分-6 y 1 -6 y 2F 1M = (-3, x - 2), F 1N = (-3, x - 2) 所以 1 2 .F 1M ⋅ F 1 N = 9 + (x 36 y 1 y 2- 2)(x- 2) 1 2因为y 1 = k ( x 1 +1), y 2 = k ( x 2 +1) .…………………….…10 分36 y y36k 2 (x +1)(x +1) 1 2 =1 2所以(x 1 - 2)(x 2 - 2)(x 1 - 2)(x 2 - 2).…………………….…11 分36k 2 ( x x + x + x +1) 1 212( x 1x 2 - 2(x 1 + x 2 ) + 4)36k 2 =4k 2 -12 - 8k 2 + 3 + 4k 2(3 + 4k 2 ) 4k 2 -12 +16k 2 +12 +16k 23 + 4k 2=-9 ⋅ 36k 2 36k 2 = -9所以 F 1M ⋅ F 1 N = 0 ..…………………….…13 分所以∠MFN = 90︒ , F 在以MN 为直径的圆上 ....................................................................... 14 分综上, F 在以 MN 为直径的圆上.20. 解:(Ⅰ)当a = 0 时, f (x ) = e x sin x ,f '(x ) = e x (sin x + cos x ),x ∈ R ..................................................................................1 分得 f '(0) = 1..…………………….…2 分又f (0) = e 0 sin 0=0 , .............................................................................................................. 3 分所以曲线 y = f (x ) 在(0, f (0)) 处的切线方程为 y = x ..…………………….…4 分方法 1:(Ⅱ)因为 f (x ) = e xsin x - ax ,所以f '(x ) = e x(sin x + cos x ) - a .= 2e xsin(x + ) - a 4.…………………….…5 分=] x x ∈[0,3因为4 ,+ ∈[ ,] 所以 4 4. .…………………….…6 分2e x sin(x + 所以 4 ≥ 0..…………………….…7 分所以 当 a ≤ 0 时, f '(x ) ≥ 0 ,f (x )[0, 34 所以在区间单调递增 ...................................................... 8 分[0,3a ≤ 0f (x )4 ](Ⅲ)由(Ⅱ)可知,当时,在区间单调递增,x ∈[0, 3 4 f (x ) ≥f (0) = 0所以时, ..................................................................................................... 9 分当0 < a < 1时,设 g (x ) = f '(x ) ,则 g '(x ) = e x (sin x + cos x ) + e x (cos x - sin x ) = 2e xcos x ,g (x ), g '(x ) 随 x 的变化情况如下表:x(0,) 223 ( , ) 24 3 4g '(x )+-g (x )1- a极大值-a) ] ]2 2 e 2- 3 2 2 )f '(x )[0, ]2 3 ( , ]所以 在上单调递增,在 2 4 上单调递减 ............................................. 10 分f '(0) = 1- a > 0f '(3= -a < 0 4因为, ,x 0 所以存在唯一的实数3 ∈( , ) 2 4,使得f '(x 0 ) = 0, ........................................ 11 分x ∈(x ,3且当x ∈(0, x 0 ) 时, f '(x ) > 0 ,当4] 时, f '(x ) < 0 ,[x ,3所以 f (x ) 在[0, x 0 ] 上单调递增, f (x ) 在4] 上单调递减 (12)分3 3 3 3 f ( ) = e4 ⨯ - a > e 4 ⨯ - 3 > > 0又 f (0) = 0 , 42 4 2 ,x ∈[0,30 < a < 14 ] f (x ) ≥ 0所以当时,对于任意的 ,.x ∈[0,3a < 14]f (x ) ≥ 0综上所述,当时,对任意的,均有..…………………….…13 分方法 2:(Ⅱ)因为 f (x ) = e xsin x - ax ,所以f '(x ) = e x(sin x + cos x ) - a .................................................................................... 5 分令 g (x ) = f '(x ) ,) 则g '(x ) = e x (sin x + cos x ) + e x (cos x - sin x ) = 2e xcos x , .............................................. 6 分g (x ), g '(x ) 随 x 的变化情况如下表:x(0,) 223 ( , ) 24 3 4g '(x )+-g (x )1- a极大值-a.…………………….…7 分g (0) = 1- a > 0, g (3) = -a ≥ 0当 a ≤ 0 时,x ∈[0, 34g (x ) ≥ 04 .f '(x ) ≥ 0所以时,,即,f (x )[0, 34 所以在区间单调递增 .................................................................................. 8 分a ≤ 0f (x )[0,34 (Ⅲ)由(Ⅱ)可知,当时,在区间单调递增,x ∈[0, 3 4 f (x ) ≥f (0) = 0所以时, ..................................................................................................... 9 分0 < a < 1f '(x )[0, ]2 3 ( , ]当 时, 由(Ⅱ)可知, 在上单调递增,在 2 4 上单调递减,f '(0) = 1- a > 0f '(3= -a < 0 4因为,,]] ]]2 2 e 2- 3 2 2 x 0 所以存在唯一的实数3 ∈( , ) 2 4,使得f '(x 0 ) = 0 , ........................................ 11 分x ∈(x ,3且当x ∈(0, x 0 ) 时, f '(x ) > 0 ,当4 ] 时, f '(x ) < 0 ,[x ,3所以 f (x ) 在[0, x 0 ] 上单调递增, f (x ) 在 04] 上单调递减..…………………….…12 分3 3 3 3 f ( ) = e4 ⨯ - a > e 4 ⨯ - 3 > > 0又 f (0) = 0 , 42 4 2 ,x ∈[0,30 < a < 14 ] f (x ) ≥ 0所以当时,对于任意的 ,.x ∈[0,3a < 14]f (x ) ≥ 0综上所述,当时,对任意的,均有 .................................................... 13 分。