八年级不等式培优提高练习.doc
不等式复习专题培优训练【含答案】

三、不等式(组)一、学习目标1、一元一次不等式(组)的解法.2、一元一次不等式(组)的整数解.3、一元一次不等式(组)的实际应用题二、知识要点1、不等式的概念;2、不等式的解集3、用数轴表示不等式的方法4、不等式的基本性质5、一元一次不等式的概念及解法6、一元一次不等式组的概念及解法7、一元一次不等式(组)的实际应用题三、考点再现1、不等式x 8x 25-≤-的负整数解是_________________.2、(2009泸州)关于x 的方程的解为正实数,则k 的取值范围是x kx 21=-3、(08山东日照)在平面直角坐标系中,若点P(m -3,m +1)在第二象限,则m 的取值范围为 ( )A 、 -1<m <3B 、 m >3C 、 m <-1D 、 m >-1 4、(2009恩施市)如果一元一次不等式组的解集为.则的取值范围是( )3x x a>⎧⎨>⎩3x >a A . B . C . D .3a>a ≥3a ≤33a <5、(08永州) 如图,a 、b 、c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是( )A a >c >bB b >a >cC a >b >cD c >a >b6、(08湖北咸宁)直线与直线在同一平面直角坐标系中的图象如:1l b x k y +=11:2l x k y 22=图所示,则关于的不等式的解集为 ;x b x k x k +>12四、典例剖析考查目标一:一元一次不等式(组)的解法.例1.(2009年内蒙古包头)解不等式:x 121x ≥+-,并把解集表示在数轴上.解:去分母得:x221x ≥+-移项,合并同类项得:1x -≥-系数化为1,得:1x ≤解集在数轴上表示为:评注:熟练掌握不等式的基本性质是正确的解一元一次不等式的基础.解不等式的一般步骤与解方程的步骤相同.但要特别注意“不等式两边同乘以(或除以)一个负数时,必须改变不等号的方向”,这是一个难点和易错点.例2.(2009恩施市)若不等式组⎩⎨⎧>->-0x 2b 2a x 的解集是1x 1<<-,则=_______.2009()a b +解:解原不等式组得 ⎪⎩⎪⎨⎧<+>2bx a 2x 因为不等式组的解集为:1x 1<<-⎩⎨⎧=-=∴⎪⎩⎪⎨⎧=-=+∴2b 3a ,12b 12a 200920091()(32)a b ==-+-+评注:一元一次不等式组的解集的求法是:(1)先分别求出各不等式的解集;(2)再利用数轴求出多个解集的公共部分就是这个不等式组的解集,若各不等式的解集没有公共部分,则这个不等式组无解.考查目标二:一元一次不等式(组)的整数解.例3. (2009年崇左)解不等式组⎪⎩⎪⎨⎧+<-≤-②①)1x (42x 121x ,并写出不等式组的正整数解.解:解不等式①得:3x ≤ 解不等式②得:2x->3,2,13x 2不等式组的正整数解是不等式组的解集是∴≤<-∴评注:求一元一次不等式(组)的整数解的一般步骤是:先求出一元一次不等式(组)的解集,再确定适合解集范围的整数解、正整数解、非负整数解(自然数解)等特殊解,有时借助于数轴会更直观.考查目标三:一元一次不等式(组)的实际应用题例4(2009年湖北十堰)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A 、B 两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(单位:m 2/个 )使用农户数(单位:户/个)造价(单位: 万元/个)A 15182B20303已知可供建造沼气池的占地面积不超过365m 2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A 型沼气池 x 个,则建造B 型沼气池(20-x )个依题意得: ()()⎩⎨⎧≥-+≤-+492203018365202015x x x x解得:7≤ x ≤ 9∵ x 为整数 ∴ x = 7,8 ,9 ,∴满足条件的方案有三种.(2)设建造A 型沼气池 x 个时,总费用为y 万元,则: y = 2x + 3( 20-x) = -x+ 60∵-1< 0,∴y 随x 增大而减小,当x=9 时,y 的值最小,此时y= 51( 万元 )∴此时方案为:建造A 型沼气池9个,建造B 型沼气池11个. ∴方案三最省钱.评注:一元一次不等式(组)在实际生活中有着广泛的应用,解此类实际问题时,需从题目中捕捉不等关系,用不等式(组)将它们表示出来,通过解不等式(组)找出符合题意的解.五、达标训练(一)选择题1.(2009临沂中考) 若,则下列式子错误的是( )x y >A . B . C .D .33x y ->-33xy ->-32x y +>+33x y >2.(2009年四川泸州)不等式组 的解集是 ( )2131x x -<⎧⎨≥-⎩A. B. C. D .无解2x<1-≥x 12x -≤<3. (2010南宁)不等式组的正整数解有:24,241x x x x +⎧⎨+<-⎩≤(A)1个 (B)2个 (C)3个 (D)4个4.(2010年福建模拟)关于x 的不等式22≤+-a x 的解集如图所示,那么a 的值是…( )A.-4 B.-2C.0 D.25、(2009湖北省荆门市)若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .B .C .D .1a>-1a -≥1a ≤1a <6.(2009年山东日照)不等式组 的解集在数轴上表示正确的是( )⎪⎩⎪⎨⎧≥--+2321123x ,x x >ABC-310D7.已知(x+3)2+=0中,y 为负数,则m 的取值范围是m y x ++3A.mB.mB.m B.m <9 CD.mD.m D.m <-98.观察图像,可以得出不等式组 的解集是⎩⎨⎧>+->+015.0013x x A.x <B.-<x <0C.0<x <2D.-<x <2313131(二)填空题1(2010潍坊)已知不等式,则的最小)2(2643-+≤+x x 1+x 值等于——2.(2009年杭州)已知关于的方程的解是正数,则m 的取值范围为________x 322=-+x mx 3.已知二次函数和直线)0(21≠++=a c bx ax y )0(2≠+=k b kx y 如图,则当时,;______x 21y y >4.(2009武汉).如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 . 5、(2009长沙)已知关于的不等式组只有四个整数解,则的取值范围是x 0521x a x -⎧⎨->⎩≥,.6.(2009年烟台市)如果不等式组的解集是,那么的值为 .2223xa xb ⎧+⎪⎨⎪-<⎩≥01x <≤a b +(三)解答题1、(2009年天津市)解不等式组,并在数轴上把解集表示出来.⎪⎩⎪⎨⎧-<--≥+-)2(x8)1x (31)1(x 323x 2、当关于、的二元一次方程组的解为正数,为负数,则求此时的取x y ⎩⎨⎧-=--=+my x m y x 432522x y m 值范围?3、(2009年青岛市)北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率)100%=⨯利润成本4、( 2009年威海)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?六、学习感悟三、不等式答案考点再现:1、-3,-2,-1;2、K >2;3、A; 4、C; 5、C; 6、x <-1. 达标训练:(一)选择题1、B;2、C;3、C;4、c;5、A;6、A;7、B;8、D.(二)填空题1、=1;2、m >-6;3、-5<x <1;4、-1<x <2;5、-3<a≤-2;6、1;7、a >4.(三)解答题1、-2<x≤3; 2、m <-1.3、解:(1)设A 、B 两种纪念品的进价分别为x 元、y 元。
初二数学《不等式分式》提高练习题

初二数学《不等式、分式》提高练习题1、四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是( )A.B. C. D.2、若,则的大小关系为()A. B.C. D.不能确定3、若,则下列式子:①;②;③;④中,正确的有()A.1个 B.2个 C.3个 D.4个4、不等式2x-7<5-2x的正整数解有()A.1个B.2个 C.3个 D.4个5、小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的另一端。
这时爸爸的一端仍然着地.后来小宅借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.小宝体重可能是()A.19.9于克 B.22千克 C.23千克 D.23.3千克6、若式子有意义,则X应满足()A. X≠-2 且X≠1B. X≠2且X≠-2C. X=± 2且X≠1D. X=± 27、韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未满;若全部安排B队的车,每辆车4人,车不够,每辆坐5人,•有的车未满,则A队有出租车()A.11辆 B.10辆 C.9辆 D.8辆8、使代数式有意义的自变量的取值范围是______________.9、已知的值.10、已知:求代数式的值。
11每户每月用水量不超过10吨(含10吨)超过10吨的部分水费单价 1.30元/吨 2.00元/吨(1(2)若小华家四月份付水费17元,问他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费共1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?12、县公路局为了对某段公路进行绿化,计划购买A、B两种树共900棵,A、B两种树的相关信息如下表:项目单价(元/棵) 成活率品种A 80 92%B 100 98%设购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式;(2)若购树的总费用不超过82000元,则购A种树不少于多少棵?(3)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A、B两种树各多少棵?此时最低费用为多少?13、某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:型利润型利润甲店200 170乙店160 150(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后型产品的每件利润仍高于甲店型产品的每件利润.甲店的型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?14、求不等式的整数解。
八年级不等式培优题

不等式提高练习一、选择题(每小题3分,共30分)1..下列不等式一定成立的是( )A.5a >4aB.x +2<x +3C.-a >-2aD.aa 24> 2.不等式-3x +6>0的正整数有( )A.1个B.2个C.3个D.无数多个3. .在数轴上与原点的距离小于8的点对应的x 满足( )A.-8<x <8B.x <-8或x >8C.x <8D.x >84.若不等式组⎩⎨⎧>≤11x m x 无解,则m 的取值范围是( )A.m <11B.m >11C.m ≤11D.m ≥115.要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A.m >23,n >-31B.m >3,n >-3C.m <23,n <-31D.m <23,n >-31 6. 如右图,当0<y 时,自变量 x 的范围是( )A 、2-<xB 、2->xC 、2<xD 、2>x7. 如果10<<x ,则下列不等式成立的( )A 、x x x 12<<B 、x x x 12<<C 、21x x x <<D 、x x x<<21 8. 若a>b>0, 则下列结论正确的是 ( )(A) -a>-b (B)ba 11> (C)a 3<0 (D)a 2>b 29.某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环)A 、5B 、6C 、7D 、810.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数 .A.至多6人 B.至少6人 C.至多5人 D.至少5人11.不等式组⎪⎩⎪⎨⎧≤-->84332x x 的最小整数解为 ( ) (A)–1 (B) 0 (C)1 (D) 412、如果10<<x ,则下列不等式成立的( )A 、x x x 12<<B 、x x x 12<<C 、21x x x <<D 、x x x<<21 13、在平面直角坐标系内,点P (3-m ,5-m )在第四象限,则m 的取值范围是( )A 、35<<-mB 、53<<-mC 、53<<mD 、35-<<-m二、填空题:(每题3分,共15分)1、若11|1|-=--x x ,则x 的取值范围是_______ 2、 如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________.3、若b a <,用“<”或“>”号填空:2a______b a +,33a b -_____. 4、 点A (-5,1y )、B (-2,2y )都在直线x y 2-=上,则1y 与2y 的关系是 。
第3章 一元一次不等式 浙教版数学八年级上册培优试卷(含答案)

浙教版八年级上册第三章一元一次不等式培优一、选择题1.若a>b,则下列各式一定成立的是( )A.a+1<b+1B.―a>―b C.a―2<b―2D.a3>b32.如图,天平右盘中每个砝码的质量都是1g,物体A的质量为m(g),则m的取值范围在数轴上可表示为( )A.B.C.D.3.不等式组x+1>02x≤2的解集在数轴上用阴影表示正确的是( )A.B.C.D.4.实数a,b,c在数轴上的对应点的位置如图所示,下列结论正确的是( )A.a>c>b B.c―a>b―a C.a c2<b c2D.a+b>05.在数学活动课中,小俞同学将某商场促销活动的信息列出不等式为0.7×(2x―100)<1000(其中x为某一商品的定价,单位:元),那么该商场促销活动的信息是( )A.买两件该商品可减100元,再打3折,最后不到1000元B.买两件该商品可打3折,再减100元,最后不到1000元C.买两件该商品可减100元,再打7折,最后不到1000元D.买两件该商品可打7折,再减100元,最后不到1000元6.如图所示,运行程序规定:从“输入一个值x”到“结果是否>79”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.x>9B.x≤19C.9<x≤19D.9≤x≤197.若关于x 的不等式组4―(x ―2)≥33x ―a >2x有且只有4个整数解,则a 的取值范围是( )A .―1≤a <0B .―1<a ≤0C .0<a ≤1D .0≤a <18.若x 为实数,则[x ]表示不大于x 的最大整数,例如[1,6]=1,[π]=3,[―2,82]=―3等.[x ]+1是大于x 的最小整数,则方程6x ―3[x ]+9=0的解是( )A .x =―83B .x =―196C .x =―72或x =―3D .x =―83或x =―1969.已知三个实数a ,b ,c 满足a ―2b ―c =0,a +2b ―c <0,则( )A .b <0,b 2+ac ≤0B .b <0,b 2+ac ≥0C .b >0,b 2+ac ≤0D .b >0,b 2+ac ≥010. 已知关于x 的分式方程mx(x ―2)(x ―6)+2x ―2=3x ―6无解,且关于y 的不等式组m ―y >4y ―4≤3(y +4)有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .8二、填空题11.若(m ―1)x >(m ―1)的解集是x <1,则m 的取值范围是 ;12.一罐饮料净重300g ,罐上标注有“蛋白质含量≥0.5%”,其中蛋白质的含量至少为 g .13.若关于x 的不等式组x <1x ≤a 的解集是x <1,则a 的值可以是 (写出一个即可).14.关于x 的方程k ―2x =3(k ―2)的解为非负数,且关于x 的不等式x ―2(x ―1)≤32k +x 3≥x 有解,求符合条件的所有整数k 的值的积为 .15.若关于x 的不等式组―6<x <2x ―m <m无解,那么m 的取值范围是 16.对非负实数x“四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n+12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x = .三、解答题17.课堂上,老师设计了“接力游戏”,规则:一列同学每人只完成解不等式的一步变形,即前一个同学完成一步,后一个同学接着前一个同学的步骤进行下一步变形,直至解出不等式的解集.请根据下面的“接力游戏”回答问题.接力游戏老师:3x +12―1>5x ―43甲同学:3(3x +1)―6>2(5x ―4)乙同学:9x+3―6>10x―8丙同学:9x―10x>―8―3+6丁同学:―x>―5戊同学:x>5任务一:①在“接力游戏”中,乙同学是根据______进行变形的.A.等式的基本性质B.不等式的基本性质C.乘法对加法的分配律②在“接力游戏”中,出现错误的是______同学,这一步错误的原因是______.任务二:在“接力游戏”中该不等式的正确解集是______.任务三:除纠正上述错误外,请你根据平时的学习经验,针对解不等式时还需要注意的事项给同学们提一条建议.18.解不等式1―x3―x<3―x+24.并把解集表示在数轴上.19.解不等式组:5x―6≤2(x+2) x4―1<x―3320.如图,点A,B均在数轴上,点B在点A的右侧,点A对应的数字是―4,点B对应的数字是m.(1)若AB=2,求m的值;(2)将AB线段三等分,这两个等分点所对应数字从左到右依次是a1,a2,若a2>0,求m的取值范围.21.如图所示的是某大院窗格的一部分,其中“O”代表窗格上所贴的剪纸,设第x个窗格上所贴“O”的个数为y.(1)填写下表.x12345xy581117(用含x的式子表示)(2)若第x个窗格上所贴的“O”的个数大于50,求x的取值范围.22.如图,在平面直角坐标系xOy中,已知A(1,a),B(b,3),E(3―a,0),其中a,b满足|a―5|+b―4=0.平移线AB段得到线段CD,使得C,D两点分别落在y轴和x轴上.(1)①点A的坐标是____________;点B的坐标是____________;②求三角形OCD的面积.(2)将点E向下移动1个单位长度得到点F,连接FC,FD,Q(m,0)是x轴负半轴上一点.若三角形QCD 的面积不小于三角形FCD的面积,求m的取值范围.23.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(a,0),B(0,b),C(2,4),且2a+b+10+|3a―2b+8|=0.(1)求a,b的值;,求t的取值范围;(2)点D(t,0)为x轴上一点,且S三角形ABD≤13S三角形ABC(3)平移三角形ABC到三角形EFG(其中点A,B,C的对应点分别为点E,F,G),设E(m,n),F (p,q),且满足5m―n=43p―q=4,请直接写出点G的坐标.答案解析部分1.【答案】D 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】B 10.【答案】B 11.【答案】m <112.【答案】1.513.【答案】2(答案不唯一)14.【答案】015.【答案】m ≤―316.【答案】0或79或149.17.【答案】任务一:①C ;②戊;不等式的两边同时乘以―1,不等号的方向没有改变任务二:x <5任务三:去括号时,括号前面是“―”,去括号后,括号的每一项都要变号,或移项要变号18.【答案】x >―219.【答案】0<x ≤10320.【答案】(1)―2(2)m >221.【答案】(1)14,3x +2(2)x >16.22.【答案】(1)①A (1,5),B (4,3),②3(2)m ≤―7223.【答案】(1)a 的值为―4,b 的值为―2(2)―10≤t ≤2(3)G(8,10)。
初中不等式提高试题(初二)(整理)

初中不等式提高试题1.不等式2(x + 1) - 12732x x 的解集为_____________。
2.同时满足不等式7x + 4≥5x – 8和523x x的整解为______________。
3.如果不等式33131x mx 的解集为x >5,则m 值为___________。
4.不等式7 x – 2kx <2k +6的解集为_____________。
5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________。
1、解不等式252133x 2、求下列不等式组的整数解2(2)83373(2)82xx x x x x3、解不等式:(1)0)2)(1(x x (2)0121x x4、对于1x 的一切有理数,不等式12x a a 都成立,求a 的取值范围。
5、已知1x 是不等式组352,23425x x a x a x 的解,求a 的取值范围.6、如果35x a 是不等式11233x x 的解,求a 的取值范围。
7、若不等式组841,x x x m 的解集为3x ,求m 的取值范围。
8、如果不等式组237,635x a b b x a 的解集为522x ,求a 和b 的值。
9、不等式组622131m x m x 的解集是36m x ,求m 的取值范围。
10、已知关于x 的不等式12a x 的解在2x 的范围内,求a 的取值范围。
11、已知关于x 的不等式组010x a x ,的整数解共有3个,求a 的取值范围。
12、已知关于x 的不等式组0321x ax 的整数解共有5个,求a 的取值范围。
13、若关于x 的不等式组2145,x x x a 无解,求a 的取值范围。
14、设关于x 的不等式组22321x mx m 无解,求m 的取值范围15、若不等式组a x a x 无解,那么不等式11a x a x 有没有解?若有解,请求出不等式组的解集;若没有请说明理由?16、若不等式组372,x x a a有解,求a 的取值范围。
初中数学不等式与不等式组提高题与常考题和培优题(含解析)

初中数学不等式与不等式组提高题与常考题和培优题(含解析)一.选择题(共13小题)1.已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b2.不等式2x+3>3x+2的解集在数轴上表示正确的是()A.B.C.D.3.若关于x的不等式3﹣x>a的解集为x<4,则关于m的不等式2m+3a<1的解为()A.m<2 B.m>1 C.m>﹣2 D.m<﹣14.关于x的不等式x﹣b≥0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 5.不等式组的最小整数解是()A.0 B.﹣1 C.﹣2 D.36.已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<7.不等式组的整数解的个数是()A.4 B.5 C.6 D.无数个8.已知且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.<k<1 C.0<k<1 D.0<k<9.不等式组的解集,在数轴上表示正确的是()A.B.C.D.10.当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<11.三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.3412.“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60 B.70 C.80 D.9013.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23二.填空题(共12小题)14.不等式组的解集是.15.不等式5x﹣3<3x+5的所有正整数解的和是.16.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.17.若不等式x<2的解集都能使关于x的一次不等式(a﹣3)x<a+5成立,则a的取值范围是.18.若关于x的一元一次不等式组有解,则a的取值范围是.19.在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k ≥1的解集在数轴上如图表示,则k的取值范围是.20.已知满足不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解是方程:2x﹣ax=3的解,则a的值为.21.关于x的不等式组的解集为x<3,那么m的取值范围是.22.已知x=2是不等式ax﹣3a+2≥0的解,且x=1不是这个不等式的解,则实数a的取值范围是.23.四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如下图所示,则他们的体重从小到大是(用“<”号连接).24.下列判断中,正确的序号为.①若﹣a>b>0,则ab<0;②若ab>0,则a>0,b>0;③若a>b,c≠0,则ac>bc;④若a>b,c≠0,则ac2>bc2;⑤若a>b,c≠0,则﹣a﹣c<﹣b﹣c.25.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入小球时有水溢出.三.解答题(共15小题)26.解不等式﹣1≤,并把解集在数轴上表示出来.27.解不等式组:.28.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?29.已知关于x的不等式组有四个整数解,求实数a的取值范围.30.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.31.已知x=3是关于x的不等式的解,求a的取值范围.32.已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.33.关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.34.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.35.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)12001000售价(元/件)13801200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?36.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.37.某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?38.某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两种型号挖掘机,所生产的此两种型号挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B成本(万元/台)200240售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂应该如何生产获得最大利润?(注:利润=售价﹣成本)39.暑期中,哥哥和弟弟二人分别编织28个中国结,已知弟弟单独编织一周(7天)不能完成,而哥哥单独编织不到一周就已完成.哥哥平均每天比弟弟多编2个.求:(1)哥哥和弟弟平均每天各编多少个中国结?(答案取整数)(2)若弟弟先工作2天,哥哥才开始工作,那么哥哥工作几天,两人所编中国结数量相同?40.冷饮店每天需配制甲、乙两种饮料共50瓶,已知甲饮料每瓶需糖14克,柠檬酸5克,乙饮料每瓶需糖6克,柠檬酸10克,现有糖500克,柠檬酸400克.(1)请计算有几种配制方案能满足冷饮店的要求;(2)冷饮店对两种饮料上月的销售情况作了统计,结果如下表,请你根据这些统计数据确定一种比较合理的配制方案,并说明理由.两种饮料的日销量甲101214 16 21 253038 4050乙4038363429252012100天数3444811122初中数学一元一次不等式提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共13小题)1.(2017•青浦区一模)已知a>b,下列关系式中一定正确的是()A.a2<b2B.2a<2b C.a+2<b+2 D.﹣a<﹣b【分析】根据不等式的性质分别进行判断,即可求出答案.【解答】解:A,a2<b2,错误,例如:2>﹣1,则22>(﹣1)2;B、若a>b,则2a>2b,故本选项错误;C、若a>b,则a+2>b+2,故本选项错误;D、若a>b,则﹣a<﹣b,故本选项正确;故选:D.【点评】此题考查了不等式的性质,掌握不等式的性质是解题的关键,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.(2017•朝阳区校级一模)不等式2x+3>3x+2的解集在数轴上表示正确的是()A.B.C.D.【分析】先根据不等式的性质求出此不等式的解集,再根据不等式的解集在数轴上的表示方法即可求解.【解答】解:2x+3>3x+2,解得x<1,故选D.【点评】本题考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.也考查了解不等式.3.(2017•邢台县一模)若关于x的不等式3﹣x>a的解集为x<4,则关于m的不等式2m+3a<1的解为()A.m<2 B.m>1 C.m>﹣2 D.m<﹣1【分析】首先求出不等式的解集,与x<4比较,就可以得出a的值,然后解不等式即可.【解答】解:解不等式3﹣x>a,得x<3﹣a,又∵此不等式的解集是x<4,∴3﹣a=4,∴a=﹣1,∴关于m的不等式为2m﹣3<1,解得m<2.故选A.【点评】此题主要考查了一元一次不等式的解法.解一元一次不等式的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.4.(2017•兴化市校级一模)关于x的不等式x﹣b≥0恰有两个负整数解,则b 的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【分析】解不等式可得x≥b,根据不等式的两个负整数解为﹣1、﹣2即可得b 的范围.【解答】解:解不等式x﹣b≥0得x≥b,∵不等式x﹣b≥0恰有两个负整数解,∴不等式的两个负整数解为﹣1、﹣2,∴﹣3<b≤﹣2,故选:B.【点评】本题考查了不等式的正整数解,解题的关键是注意能根据整数解的具体数值,找出不等式解集的具体取值范围.5.(2017•茂县一模)不等式组的最小整数解是()A.0 B.﹣1 C.﹣2 D.3【分析】首先解不等式组确定不等式组的解集,即可确定不等式组的最小整数解.【解答】解:解不等式(1)得:x>﹣,则不等式组的解集是:﹣<x≤3,故最小的整数解是:﹣1.故选B.【点评】本题主要考查了不等式组的整数解的确定,关键是正确解得不等式组的解集.6.(2017•南雄市校级模拟)已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点P(1﹣2a,a+3)在第二象限,得.解得a>,故选B.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(2017•邢台县一模)不等式组的整数解的个数是()A.4 B.5 C.6 D.无数个【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,由①得:x>﹣2,由②得:x≤4.则不等式组的解集是:﹣2<x≤4.则整数解是:﹣1,0,1,2,3,4共6个.故选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(2017春•萧山区校级月考)已知且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.<k<1 C.0<k<1 D.0<k<【分析】先根据方程组将两式相减,得到x﹣y=1﹣2k,再代入﹣1<x﹣y<0,得到关于k的不等式组,进而得出k的取值范围.【解答】解:∵∴(2x+y)﹣(x+2y)=(2k+1)﹣4k,∴x﹣y=1﹣2k,又∵﹣1<x﹣y<0,∴﹣1<1﹣2k<0,解得<k<1.故选:B.【点评】本题主要考查了解一元一次不等式组以及解二元一次方程组,解决问题的关键是根据方程组求得x﹣y=1﹣2k,运用整体思想进行代入计算.9.(2016•)不等式组的解集,在数轴上表示正确的是()A.B.C.D.【分析】解出不等式组的解集,即可得到哪个选项是正确的,本题得以解决.【解答】解:由①,得x<4,由②,得x≤﹣3,由①②得,原不等式组的解集是x≤﹣3;故选A.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法.10.(2016•)当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<【分析】先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<,又∵x<1,∴x2、x、的大小顺序是:x2<x<.故选A【点评】本题主要考查了不等式,解决问题的关键是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或>.11.(2016•)三个连续正整数的和小于39,这样的正整数中,最大一组的和是()A.39 B.36 C.35 D.34【分析】设三个连续正整数分别为x﹣1,x,x+1,列出不等式即可解决问题.【解答】解:设三个连续正整数分别为x﹣1,x,x+1.由题意(x﹣1)+x+(x+1)<39,∴x<13,∵x为整数,∴x=12时,三个连续整数的和最大,三个连续整数的和为:11+12+13=36.故选B.【点评】本题考查一元一次不等式的应用,解题的关键是构建不等式解决问题,属于中考常考题型.12.(2016•)“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60 B.70 C.80 D.90【分析】设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据总人数列不等式求解可得.【解答】解:设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得:2x+≤200,解得:x≤80,∴最多可搬桌椅80套,故选:C.【点评】本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.13.(2016•潍坊)运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【解答】解:由题意得,,解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x>11,所以,x的取值范围是11<x≤23.故选C.【点评】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.二.填空题(共12小题)14.(2016•)不等式组的解集是﹣3<x≤1.【分析】分别解两个不等式得到x≤1和x>﹣3,然后利用大小小大中间找确定不等式组的解集.【解答】解:,解①得x≤1,解②得x>﹣3,所以不等式组的解集为﹣3<x≤1.故答案为﹣3<x≤1.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.(2016•新县校级模拟)不等式5x﹣3<3x+5的所有正整数解的和是6.【分析】先根据不等式的性质求出不等式的解集,再根据不等式的解集找出所有正整数解即可.【解答】解:移项,得:5x﹣3x<5+3,合并同类项,得:2x<8,系数化为1,得:x<4,∴不等式所有正整数解得和为:1+2+3=6,故答案为:6.【点评】本题考查了不等式的性质,解一元一次不等式,一元一次不等式的整数解的应用,解此题的关键是求出不等式的解集.16.(2017春•萧山区月考)若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【解答】解:解3m﹣2x<5,得x>.由不等式的解集,得=3.解得m=.故答案为:.【点评】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.17.(2016•郑州校级模拟)若不等式x<2的解集都能使关于x的一次不等式(a ﹣3)x<a+5成立,则a的取值范围是3<a≤.【分析】先求出x的取值范围,再由不等式的基本性质即可得出a的取值范围.【解答】解:解不等式x<2得,x<4.∵不等式x<2的解集都能使关于x的一次不等式(a﹣3)x<a+5成立,∴,解得3<a≤.故答案为:3<a≤.【点评】本题考查的是不等式的解集,根据题意得出关于a的不等式组是解答此题的关键.18.(2016•如皋市校级二模)若关于x的一元一次不等式组有解,则a的取值范围是a<1.【分析】不等式组中两不等式分别求出解集,由不等式组有解确定出a的范围即可.【解答】解:不等式整理得:,由不等式有解,得到a<1,则a的范围是a<1,故答案为:a<1【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.19.(2016•杭州模拟)在实数范围内规定新运算“△”,其规则是:a△b=2a﹣b.已知不等式x△k≥1的解集在数轴上如图表示,则k的取值范围是k=﹣3.【分析】根据新运算法则得到不等式2x﹣k≥1,通过解不等式即可求k的取值范围,结合图象可以求得k的值.【解答】解:根据图示知,已知不等式的解集是x≥﹣1.则2x﹣1≥﹣3∵x△k=2x﹣k≥1,∴2x﹣1≥k且2x﹣1≥﹣3,∴k=﹣3.故答案是:k=﹣3.【点评】本题考查了在数轴上表示不等式的解集、解一元一次不等式.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.(2016•乌审旗模拟)已知满足不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解是方程:2x﹣ax=3的解,则a的值为.【分析】首先解不等式求得不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可.【解答】解:解不等式3(x﹣2)+5<4(x﹣1)+6,去括号,得:3x﹣6+5<4x﹣4+6,移项,得3x﹣4x<﹣4+6+6﹣5,合并同类项,得﹣x<3,系数化成1得:x>﹣3.则最小的整数解是﹣2.把x=﹣2代入2x﹣ax=3得:﹣4+2a=3,解得:a=.故答案是:.【点评】本题考查了一元一次不等式的解法以及方程的解的定义,正确解不等式求得x的值是关键.21.(2016•包头二模)关于x的不等式组的解集为x<3,那么m的取值范围是m≥3.【分析】首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.【解答】解:,解①得x<3,∵不等式组的解集是x<3,∴m≥3.故答案是:m≥3.【点评】本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.22.(2016春•扬州校级期末)已知x=2是不等式ax﹣3a+2≥0的解,且x=1不是这个不等式的解,则实数a的取值范围是1<a≤2.【分析】根据x=2是不等式ax﹣3a+2≥0的解,且x=1不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=2是不等式ax﹣3a+2≥0的解,∴2a﹣3a+2≥0,解得:a≤2,∵x=1不是这个不等式的解,∴a﹣3a+2<0,解得:a>1,∴1<a≤2,故答案为:1<a≤2.【点评】本题考查了不等式的解集,解决本题的关键是求不等式的解集.23.(2016春•召陵区期末)四个小朋友玩跷跷板,他们的体重分别为P,Q,R,S,如下图所示,则他们的体重从小到大是(用“<”号连接)S>P>R>Q.【分析】由图一、二得,S>P>R,则S﹣P>0,由图三得,P+R>Q+S,则S﹣P <R﹣Q,所以,R﹣Q>0,即R>Q;即可解答.【解答】解:由图一、二得,S>P>R,∴S﹣P>0,由图三得,P+R>Q+S,∴S﹣P<R﹣Q,∴R﹣Q>0,∴R>Q;综上,S>P>R>Q.故答案为:S>P>R>Q.【点评】本题主要考查了不等式的性质,①不等式两边加(或减)同一个数(或式子),不等号的方向不变;②不等式两边乘(或除以)同一个正数,不等号的方向不变;③不等式两边乘(或除以)同一个负数,不等号的方向改变.24.(2016春•济南校级期末)下列判断中,正确的序号为①④⑤.①若﹣a>b>0,则ab<0;②若ab>0,则a>0,b>0;③若a>b,c≠0,则ac>bc;④若a>b,c≠0,则ac2>bc2;⑤若a>b,c≠0,则﹣a﹣c<﹣b﹣c.【分析】①若﹣a>b>0,则a<0,b>0,所以ab<0,据此判断即可.②若ab>0,则a>0,b>0或a<0,b<0,据此判断即可.③若a>b,c≠0,则c>0时,ac>bc;c<0时,ac<bc;据此判断即可.④若a>b,c≠0,则c2>0,所以ac2>bc2,据此判断即可.⑤若a>b,c≠0,则﹣a<﹣b,所以﹣a﹣c<﹣b﹣c,据此解答即可.【解答】解:∵﹣a>b>0,∴a<0,b>0,∴ab<0,①正确;∵ab>0,∴a>0,b>0或a<0,b<0,②错误;∵a>b,c≠0,∴c>0时,ac>bc;c<0时,ac<bc;③错误;∵a>b,c≠0,∴c2>0,∴ac2>bc2,④正确;∵a>b,c≠0,∴﹣a<﹣b,∴﹣a﹣c<﹣b﹣c,⑤正确.综上,可得判断中,正确的序号为:①④⑤.故答案为:①④⑤.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.25.(2016春•扶沟县期末)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入10小球时有水溢出.【分析】设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由待定系数法就可求出结论;当y>49时,建立不等式求出其解即可.【解答】解:设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由题意,得:,解得:,即y=2x+30;由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.故答案为:10.【点评】本题考查了列一元一次方程解实际问题的运用,待定系数法求函数的解析式的运用,列不等式解实际问题的运用,解答时求出函数的解析式是关键.三.解答题(共15小题)26.(2016•)解不等式﹣1≤,并把解集在数轴上表示出来.【分析】利用解一元一次不等式的方法解出不等式的解集,再将其表示在数轴上即可得出结论.【解答】解:不等式两边同时×6得:3x﹣6≤14﹣2x,移项得:5x≤20,解得:x≤4.将其在数轴上表示出来如图所示.【点评】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.27.(2016•)解不等式组:.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<2,解②得x≥﹣1,则不等式组的解集是﹣1≤x<2.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.28.(2016•)x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.29.(2016•呼和浩特)已知关于x的不等式组有四个整数解,求实数a的取值范围.【分析】分别求出不等式组中两不等式的解集,根据不等式组有四个整数解,即可确定出a的范围.【解答】解:解不等式组,解不等式①得:x>﹣,解不等式②得:x≤a+4,∵不等式组有四个整数解,∴不等式组的解集再数轴上表示为:∴1≤a+4<2,解得:﹣3≤a<﹣2.【点评】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.30.(2013•)已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.【分析】首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.【解答】解:①×2得:2x﹣4y=2m③,②﹣③得:y=,把y=代入①得:x=m+,把x=m+,y=代入不等式组中得:,解不等式组得:﹣4<m≤﹣,则m=﹣3,﹣2.【点评】此题主要考查了一元一次不等式组的整数解,以及二元一次方程的解,关键是掌握消元的方法,用含m的式子表示x、y.31.(2013•凉山州)已知x=3是关于x的不等式的解,求a的取值范围.【分析】先根据不等式,解此不等式,再对a分类讨论,即可求出a的取值范围.【解答】解:解得(14﹣3a)x>6当a<,x>,又x=3是关于x的不等式的解,则<3,解得a>4;当a>,x<,又x=3是关于x的不等式的解,则>3,解得a<4(与所设条件不符,舍去);综上得4<a<.故a的取值范围是4<a<.【点评】本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,注意分类讨论是解题的关键.32.(2011•)已知关于x、y的方程组的解满足不等式x+y<3,求实数a的取值范围.【分析】先解方程组,求得x、y的值,再根据x+y<3,解不等式即可.【解答】解:,①+②得,3x=6a+3,解得x=2a+1,将x=2a+1代入①得,y=2a﹣2,∵x+y<3,∴2a+1+2a﹣2<3,即4a<4,a<1.【点评】本题是一元一次不等式和二元一次方程组的综合题,是中档题,难度适中.33.(2016•)关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【分析】(1)求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可;(2)根据不等式①的解都是②的解,求出a的范围即可.【解答】解:(1)由①得:x<,由②得:x<,由两个不等式的解集相同,得到=,解得:a=1;(2)由不等式①的解都是②的解,得到≤,解得:a≥1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.34.(2013•毕节地区)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.【点评】此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.(2014•)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)12001000售价(元/件)13801200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.。
完整版八年级不等式培优提高练习

是( )v 0的解集是( )A . x >--B . x v-丄C . x >-丄D . x v 丄5 5553.若不等式(ax - 1) (x+2)> 0的解集是-3v x v- 2,那么a 等于()A . 4B . 2C . 3D .丄2 25.若关于x 的不等式组{;浆畀整数解共有3个,则m的取值范围是()A . 5v m < 6B . 5< m v 6C . 5< m < 6D . 5v m v 66.已知a >b , CM 0,则下列关系一定成立的是()A . ac >beB .丄•一C . C - a >C - bD . c+a >c+bc c7. 下列命题中:① 如果a v b ,那么ae 2v be 2;② 关于x 的不等式(a- 1) x > 1 - a 的解集是x v- 1,贝U a v 1; ③ 若一^是自然数,则满足条件的正整数 x 有4个.6-x 正确的命题个数是() A . 0B . 1C . 2D . 38.若x 是方程2x+m - 3 (m - 1) =1+x 的解为负数,贝U m 的取值范围是( )A . m >-1B . m v-1C . m > 1D . m v 11 •若关于x 的不等式组 2恰好只有四个整数解,则 a 的取值范围2x+2<3(x+a)A- a" '2 .设a , b 是常数,D. - 2 1-—,则关于x 的不等式 bx - aB . 不等式43C .- 2 1 :-— 3>0的解集为x v£54.不等式二了-厂」—:-厂的解集为x >2,则m 的值为(9.按下面的程序计算:若输入x=100,输出结果是501,若输入x=25,输出结果是631,若开始输入的 x 值为正整数,最后输出的结果为 556,则开始输入的x 值可能有( )A . 1种B . 2种C . 3种D . 4种10. 若x 为任意实数时,二次三项式x 2-6x+c 的值都不小于0,则常数c 满足的 条件是( )A . c >0B . c >9C . c >0D . c >911. 关于x 的方程mx -仁2x 的解为正实数,则 m 的取值范围是( )A . m > 2B . m < 2C . m > 2D . m v 2C-1 d ( y —1 }12 .关于x 的不等式组的解集为x v 3,那么m 的取值范围为( ) A . m=3B . m > 3C . m v 3D . m > 313 .已知△ ABC 的边长分别为2x+1,3x ,5,则厶ABC 的周长L 的取值范围是( ) A . 6v L v 36B . 10v L < 11C . 11< L v 36D . 10v L v 3614 .已知实数x 、y 同时满足三个条件:①3x - 2y=4 - p ,②4x - 3y=2+p ,③x > y ,那么实数p 的取值范围是( )A . p >- 1B . p v 1C . p v- 1D . p > 115 .关于x 的不等式组 、 的解集是x >- 1,则m= _________ .x>ir+216 .若不等式组 <2x _a <^ jJ 二 的解集为-1 v x v 1,那么(a+1) (b - 1)的值等 于范围是17 .已知关于x 、y 的二元一次方程组xf2y--2的解满足x+y >2,则k 的取值18 .若不等式组 有解,那么a 必须满足19 .已知a 、b 都是实数,且a=y-,b=—,b v*v 2a ,那么实数x 的取值范围是________20. 若关于x 、y 的二元一次方程组* *于加'1的解满足x+y >0,则m 的取值范x+3y=3 围是 _______ .21.关于x的不等式x - 3>丄一的解集在数轴上表示如图所示,则 a 的值是 _______ ._1~ 1 2 3 4 5 7^22.已知关于x 的分式方程 的解为负数,那么字母 a 的取值范围 R +2 JJ +2是 _______ .23. 求不等式(2x - 1) (x+3)> 0的解集.请你仿照上述方法解决下列问题: (1) 求不等式(2x - 3) (x+1)v 0的解集.解:根据 同号两数相乘,积为正”可得:① r2x-l>0K +3>0r2x-l<0解①得x;解②得x V- 3.•••不等式的解集为x或 x v- 3.(2)求不等式> 0的解集.24. x取哪些整数值时,不等式5x+2>3 (x- 1)与丄x- K 7-一二都成立?25.已知关于x的不等式组恰好有两个整数解, 求实数a的取值范围.26. 已知一元一次不等式mx - 3> 2x+m.(1)若它的解集是XV-—,求m的取值范围;rn-2(2)若它的解集是x>-,试问:这样的m是否存在?如果存在,求出它的值;4如果不存在,请说明理由.27. 用等号或不等号填空:(1)比较4m与m2+4的大小当m=3 时,4m ______ m2+4当m=2 时,4m ______ m2+4当m= - 3 时,4m ____ m2+4(2)无论取什么值,4m与m2+4总有这样的大小关系吗?试说明理由.(3)比较x2+2与2x2+4x+6的大小关系,并说明理由.(4)比较2x+3与-3x- 7的大小关系.28.是否存在整数m ,使关于x 的不等式1七厶—与关于x 的不等式x+1> m m m的解集相同?若存在,求出整数 m 和不等式的解集;若不存在,请说 明理由.29. 已知关于x 的不等式(2a- b ) x+a- 5b >0的解集为x<—, (1) 求丄的值.(2) 求关于x 的不等式ax > b 的解集.值.31. 小明把三个数-1, 2 -a, 丄在数轴上从左到右依次排列在三个对应点上, 你能确定a 的取值范围吗?请写出你的解答过程.32. 阅读下面的例题,并回答问题.30. 若不等式组的偶数解a 满足方程组I" ax-y--7 |2x4-3y=7.求x 2+y 2的【例题】解一元二次不等式:x2- 2x- 8>0.解:对x2- 2x- 8分解因式,得x2- 2x- 8= (x - 1) 2- 9= (x - 1) 2-32= (x+2) (x - 4), •'•(x+2) (x - 4)> 0.由两实数相乘,同号得正,异号得负”,可得解①得x>4;解②得X V- 2.故x2- 2x - 8>0的解集是x>4或x V- 2.(1)_____________________________ 直接写出x2- 9>0的解是;(2)仿照例题的解法解不等式:x2+4x- 21V0;(3)求分式不等式:二一w 0的解集.x-2。
【湘教版】八年级数学上4.1不等式能力培优训练(含答案)

专题列不等式 1.四个小朋友玩跷跷板,他们的体重分别为 P , Q , R , S ,如图所示,则他们的体重大小关P > R >S > Q B . Q >S > P >R C . S >P > Q > R 2. 下列关于 a a 用不等式表示正确的是A. a a 0B. a a 0C. |a a 0D. a a 03. 某工地实施爆破,操作人员点燃导火线后,必须在炸药爆炸前跑到400m 外安全区域, 若导火线燃烧的速度为 1.1cm/秒,人跑步的速度为5m/秒,则导火线的长xcm 应满足的不 等式是: ____________________ .4.辽宁崗部忒冇“半駅之乡 F 勺关称―臬字细织 衲汽乍装运A Ji 阴种苹果到外地硝宙”按规足冊辆乍H 装冋一种 申杲-冃.必须较满”已血每辆仆的运鞍葷型毎吨苹果的获利情况如下表所示1A毎轴1 A 车运4* W ( im ? :<2 审汆抿利E n 儿>5 . y J(1)変求」戏运小苹生节加裝运种 苹 跟的汽乍散M <辆了 z 满足的不等式5 < 3芒荻刑」彳“少 F 12 600丿C ・试"J f I ]隨迖A 种苹果的汽车数 d: J (辆》炖满足的知一伞 不警式.状元笔记【知识要点】不等式:用不等号 >”.N”. “N”“W”“壬连接而成的式子叫作不等式.【温馨提示】注意 不大于“.不小于“.不超过”等字表示不等时要带上 “=号.4. 1 不等式玄阜系疋D . S > P > R >Q【方法技巧】1仔细审题,抓住题中的关键字小于”.大于”.不大于”.不小于”.不超过”列不等式. 2•列不等式时还应掌握常见的数量关系式,如:速度刘寸间=路程,单价W数量=总价,工作效率 >工作时间=工作总量等.参考答案:1. D 解析:观察前两幅图易发现S> P > R,再观察第一幅和第三幅图可以发现R> Q.2. D 解析:分两类讨论:a 0时,|a| a 2a ,显然|a| a 0 ;当a 0时,a a a a 0,故同a 0.x3. 5 4001.14.解:(1) 3x 2(10 x) 26 ;(2) 5x 9(10 x) 126 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备欢迎下载
1.若关于 x 的不等式组恰好只有四个整数解,则 a 的取值范围是()
A .a B.C.﹣ 2 D.﹣ 2
2.设 a,b 是常数,不等式 + >0 的解集为 x<,则关于 x 的不等式 bx﹣a <0 的解集是()
A .x>B.x<﹣C. x>﹣D. x<
3.若不等式( ax﹣1)(x+2)> 0 的解集是﹣ 3<x<﹣ 2,那么 a 等于()
A .B.C. 3 D.一 3
4.不等式的解集为 x> 2,则 m 的值为()
A .4 B.2 C.D.
5.若关于 x 的不等式组的整数解共有 3 个,则 m 的取值范围是()
A .5<m≤ 6 B.5≤m<6 C. 5≤ m≤6 D. 5<m<6 6.已知 a>b,c≠0,则下列关系一定成立的是()
A .ac> bc B.C. c﹣a>c﹣b D. c+a> c+b 7.下列命题中:
①如果 a<b,那么 ac2<bc2;
②关于 x 的不等式( a﹣1)x >1﹣a 的解集是 x <﹣ 1,则 a<1;
③若是自然数,则满足条件的正整数x 有 4 个.
正确的命题个数是()
A .0 B.1 C. 2 D. 3
8.若 x 是方程 2x+m﹣3(m﹣ 1)=1+x 的解为负数,则 m 的取值范围是()
A .m>﹣ 1 B.m<﹣ 1 C. m>1 D. m<1
9.按下面的程序计算:
若输入 x=100,输出结果是 501,若输入 x=25,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 值可能有()A.1 种B.2 种C.3 种D.4 种
10.若 x 为任意实数时,二次三项式 x2﹣ 6x+c 的值都不小于 0,则常数 c 满足的条件是()
A .c≥0 B.c≥9 C. c>0 D. c>9
11.关于x 的方程mx﹣1=2x 的解为正实数,则m 的取值范围是()
A .m≥ 2 B.m≤2 C. m>2 D. m<2
12.关于x 的不等式组的解集为x<3,那么m 的取值范围为
()
A .m=3 B.m>3 C. m<3 D. m≥3
13.已知△ ABC 的边长分别为 2x+1,3x, 5,则△ ABC 的周长 L 的取值范围是()
A.6<L<36B.10<L≤11C.11≤L<36D.10<L<36 14.已知实数 x、y 同时满足三个条件:① 3x﹣2y=4﹣p,② 4x ﹣3y=2+p,③ x>y,那么实数 p 的取值范围是()
A .p>﹣ 1 B.p<1 C. p<﹣ 1 D. p>1
15.关于 x 的不等式组的解集是x>﹣1,则m=.
16.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于.
17.已知关于x、y 的二元一次方程组的解满足x+y>2,则k 的取值范围是.
18.若不等式组有解,那么 a 必须满足.
19.已知a、b 都是实数,且a= ,b= ,b<<2a,那么实数x 的取值
范围是.
20.若关于
围是
21.关于 x
是
x 、y 的二元一次方程组
.
的不等式 x ﹣ 3>
.
的解满足 x+y > 0,则 m 的取值范
的解集在数轴上表示如图所示,则 a 的值
22.已知关于 x 的分式方程
的解为负数,那么字母
是
.
23.求不等式( 2x ﹣1)( x+3)> 0 的解集. 解:根据 “同号两数相乘,积为正 ”可得:① 或 ②
解①得 x >
;解②得 x <﹣ 3.
a 的取值范围
.
∴不等式的解集为 x > 或 x <﹣ 3.
请你仿照上述方法解决下列问题:
( 1)求不等式( 2x ﹣ 3)(x+1)< 0 的解集.
( 2)求不等式≥ 0 的解集.
24.x 取哪些整数值时,不等式 5x+2> 3( x ﹣ 1)与 x ﹣ 1≤ 7﹣ 都成立?
25.已知关于 x 的不等式组恰好有两个整数解,求实数a的取值范围.
26.已知一元一次不等式( 1)若它的解集是 x<mx﹣3>2x+m.
,求 m 的取值范围;
(2)若它的解集是 x>,试问:这样的 m 是否存在?如果存在,求出它的值;如果不存在,请说明理由.
27.用等号或不等号填空:
( 1)比较 4m 与 m2+4 的大小
当 m=3 时, 4m m2+4
当 m=2 时, 4m m2+4
当 m=﹣3 时, 4m m2+4
(2)无论取什么值, 4m 与 m2+4 总有这样的大小关系吗?试说明理由.
(3)比较 x2+2 与 2x2+4x+6 的大小关系,并说明理由.
(4)比较 2x+3 与﹣ 3x﹣ 7 的大小关系.
28.是否存在整数 m,使关于 x 的不等式 1+>+ 与关于 x 的不等式 x+1>
的解集相同?若存在,求出整数 m 和不等式的解集;若不存在,请说明理由.
29.已知关于 x 的不等式( 2a﹣ b)x+a﹣ 5b>0 的解集为 x<,
(1)求的值.
(2)求关于 x 的不等式 ax>b 的解集.
.若不等式组
的偶数解 a 满足方程组
,求 x
2+y2 的
30
值.
31.小明把三个数﹣ 1,2﹣a,在数轴上从左到右依次排列在三个对应点上,你能确定 a 的取值范围吗?请写出你的解答过程.
32.阅读下面的例题,并回答问题.
【例题】解一元二次不等式:x2﹣ 2x﹣8>0.
解:对 x2﹣2x﹣ 8 分解因式,得 x2﹣2x﹣ 8=(x ﹣1)2﹣ 9=(x﹣1)2﹣32=(x+2)(x﹣4),
∴(x+2)( x﹣ 4)> 0.由“两实数相乘,同号得正,异号得负”,可得
①
或②
解①得 x> 4;解②得 x<﹣ 2.
故 x2﹣2x﹣8>0 的解集是 x>4 或 x<﹣ 2.
( 1)直接写出 x2﹣ 9> 0 的解是;
(2)仿照例题的解法解不等式: x2+4x﹣ 21<0;
(3)求分式不等式:≤0的解集.。